mirror of
https://github.com/kvazar-network/kevacoin.git
synced 2025-01-26 14:54:21 +00:00
Pieter Wuille
e7c1b4490f
Squashed 'src/secp256k1/' changes from 8225239..84973d3
84973d3 Merge #454: Remove residual parts from the schnorr expirement. 5e95bf2 Remove residual parts from the schnorr expirement. cbc20b8 Merge #452: Minor optimizations to _scalar_inverse to save 4M 4cc8f52 Merge #437: Unroll secp256k1_fe_(get|set)_b32 to make them much faster. 465159c Further shorten the addition chain for scalar inversion. a2b6b19 Fix benchmark print_number infinite loop. 8b7680a Unroll secp256k1_fe_(get|set)_b32 for 10x26. aa84990 Unroll secp256k1_fe_(get|set)_b32 for 5x52. cf12fa1 Minor optimizations to _scalar_inverse to save 4M 1199492 Merge #408: Add `secp256k1_ec_pubkey_negate` and `secp256k1_ec_privkey_negate` 6af0871 Merge #441: secp256k1_context_randomize: document. ab31a52 Merge #444: test: Use checked_alloc eda5c1a Merge #449: Remove executable bit from secp256k1.c 51b77ae Remove executable bit from secp256k1.c 5eb030c test: Use checked_alloc 72d952c FIXUP: Missing "is" 70ff29b secp256k1_context_randomize: document. 9d560f9 Merge #428: Exhaustive recovery 8e48aa6 Add `secp256k1_ec_pubkey_negate` and `secp256k1_ec_privkey_negate` 2cee5fd exhaustive tests: add recovery module 678b0e5 exhaustive tests: remove erroneous comment from ecdsa_sig_sign 03ff8c2 group_impl.h: remove unused `secp256k1_ge_set_infinity` function a724d72 configure: add --enable-coverage to set options for coverage analysis b595163 recovery: add tests to cover API misusage 6f8ae2f ecdh: test NULL-checking of arguments 25e3cfb ecdsa_impl: replace scalar if-checks with VERIFY_CHECKs in ecdsa_sig_sign git-subtree-dir: src/secp256k1 git-subtree-split: 84973d393ac240a90b2e1a6538c5368202bc2224
libsecp256k1
Optimized C library for EC operations on curve secp256k1.
This library is a work in progress and is being used to research best practices. Use at your own risk.
Features:
- secp256k1 ECDSA signing/verification and key generation.
- Adding/multiplying private/public keys.
- Serialization/parsing of private keys, public keys, signatures.
- Constant time, constant memory access signing and pubkey generation.
- Derandomized DSA (via RFC6979 or with a caller provided function.)
- Very efficient implementation.
Implementation details
- General
- No runtime heap allocation.
- Extensive testing infrastructure.
- Structured to facilitate review and analysis.
- Intended to be portable to any system with a C89 compiler and uint64_t support.
- Expose only higher level interfaces to minimize the API surface and improve application security. ("Be difficult to use insecurely.")
- Field operations
- Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
- Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys).
- Using 10 26-bit limbs.
- Field inverses and square roots using a sliding window over blocks of 1s (by Peter Dettman).
- Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
- Scalar operations
- Optimized implementation without data-dependent branches of arithmetic modulo the curve's order.
- Using 4 64-bit limbs (relying on __int128 support in the compiler).
- Using 8 32-bit limbs.
- Optimized implementation without data-dependent branches of arithmetic modulo the curve's order.
- Group operations
- Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7).
- Use addition between points in Jacobian and affine coordinates where possible.
- Use a unified addition/doubling formula where necessary to avoid data-dependent branches.
- Point/x comparison without a field inversion by comparison in the Jacobian coordinate space.
- Point multiplication for verification (aP + bG).
- Use wNAF notation for point multiplicands.
- Use a much larger window for multiples of G, using precomputed multiples.
- Use Shamir's trick to do the multiplication with the public key and the generator simultaneously.
- Optionally (off by default) use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones.
- Point multiplication for signing
- Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.
- Access the table with branch-free conditional moves so memory access is uniform.
- No data-dependent branches
- The precomputed tables add and eventually subtract points for which no known scalar (private key) is known, preventing even an attacker with control over the private key used to control the data internally.
Build steps
libsecp256k1 is built using autotools:
$ ./autogen.sh
$ ./configure
$ make
$ ./tests
$ sudo make install # optional
Description
Languages
C++
66.7%
C
17.4%
Python
10.6%
M4
1.6%
Makefile
1%
Other
2.5%