You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1134 lines
30 KiB
1134 lines
30 KiB
#ifndef CRYPTOPP_MISC_H |
|
#define CRYPTOPP_MISC_H |
|
|
|
#include "cryptlib.h" |
|
#include "smartptr.h" |
|
#include <string.h> // for memcpy and memmove |
|
|
|
#ifdef _MSC_VER |
|
#include <stdlib.h> |
|
#if _MSC_VER >= 1400 |
|
// VC2005 workaround: disable declarations that conflict with winnt.h |
|
#define _interlockedbittestandset CRYPTOPP_DISABLED_INTRINSIC_1 |
|
#define _interlockedbittestandreset CRYPTOPP_DISABLED_INTRINSIC_2 |
|
#define _interlockedbittestandset64 CRYPTOPP_DISABLED_INTRINSIC_3 |
|
#define _interlockedbittestandreset64 CRYPTOPP_DISABLED_INTRINSIC_4 |
|
#include <intrin.h> |
|
#undef _interlockedbittestandset |
|
#undef _interlockedbittestandreset |
|
#undef _interlockedbittestandset64 |
|
#undef _interlockedbittestandreset64 |
|
#define CRYPTOPP_FAST_ROTATE(x) 1 |
|
#elif _MSC_VER >= 1300 |
|
#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32 | (x) == 64) |
|
#else |
|
#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32) |
|
#endif |
|
#elif (defined(__MWERKS__) && TARGET_CPU_PPC) || \ |
|
(defined(__GNUC__) && (defined(_ARCH_PWR2) || defined(_ARCH_PWR) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || defined(_ARCH_COM))) |
|
#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32) |
|
#elif defined(__GNUC__) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86) // depend on GCC's peephole optimization to generate rotate instructions |
|
#define CRYPTOPP_FAST_ROTATE(x) 1 |
|
#else |
|
#define CRYPTOPP_FAST_ROTATE(x) 0 |
|
#endif |
|
|
|
#ifdef __BORLANDC__ |
|
#include <mem.h> |
|
#endif |
|
|
|
#if defined(__GNUC__) && defined(__linux__) |
|
#define CRYPTOPP_BYTESWAP_AVAILABLE |
|
#include <byteswap.h> |
|
#endif |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
// ************** compile-time assertion *************** |
|
|
|
template <bool b> |
|
struct CompileAssert |
|
{ |
|
static char dummy[2*b-1]; |
|
}; |
|
|
|
#define CRYPTOPP_COMPILE_ASSERT(assertion) CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, __LINE__) |
|
#if defined(CRYPTOPP_EXPORTS) || defined(CRYPTOPP_IMPORTS) |
|
#define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) |
|
#else |
|
#define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) static CompileAssert<(assertion)> CRYPTOPP_ASSERT_JOIN(cryptopp_assert_, instance) |
|
#endif |
|
#define CRYPTOPP_ASSERT_JOIN(X, Y) CRYPTOPP_DO_ASSERT_JOIN(X, Y) |
|
#define CRYPTOPP_DO_ASSERT_JOIN(X, Y) X##Y |
|
|
|
// ************** misc classes *************** |
|
|
|
class CRYPTOPP_DLL Empty |
|
{ |
|
}; |
|
|
|
//! _ |
|
template <class BASE1, class BASE2> |
|
class CRYPTOPP_NO_VTABLE TwoBases : public BASE1, public BASE2 |
|
{ |
|
}; |
|
|
|
//! _ |
|
template <class BASE1, class BASE2, class BASE3> |
|
class CRYPTOPP_NO_VTABLE ThreeBases : public BASE1, public BASE2, public BASE3 |
|
{ |
|
}; |
|
|
|
template <class T> |
|
class ObjectHolder |
|
{ |
|
protected: |
|
T m_object; |
|
}; |
|
|
|
class NotCopyable |
|
{ |
|
public: |
|
NotCopyable() {} |
|
private: |
|
NotCopyable(const NotCopyable &); |
|
void operator=(const NotCopyable &); |
|
}; |
|
|
|
template <class T> |
|
struct NewObject |
|
{ |
|
T* operator()() const {return new T;} |
|
}; |
|
|
|
/*! This function safely initializes a static object in a multithreaded environment without using locks. |
|
It may leak memory when two threads try to initialize the static object at the same time |
|
but this should be acceptable since each static object is only initialized once per session. |
|
*/ |
|
template <class T, class F = NewObject<T>, int instance=0> |
|
class Singleton |
|
{ |
|
public: |
|
Singleton(F objectFactory = F()) : m_objectFactory(objectFactory) {} |
|
|
|
// prevent this function from being inlined |
|
CRYPTOPP_NOINLINE const T & Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const; |
|
|
|
private: |
|
F m_objectFactory; |
|
}; |
|
|
|
template <class T, class F, int instance> |
|
const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const |
|
{ |
|
static simple_ptr<T> s_pObject; |
|
static char s_objectState = 0; |
|
|
|
retry: |
|
switch (s_objectState) |
|
{ |
|
case 0: |
|
s_objectState = 1; |
|
try |
|
{ |
|
s_pObject.m_p = m_objectFactory(); |
|
} |
|
catch(...) |
|
{ |
|
s_objectState = 0; |
|
throw; |
|
} |
|
s_objectState = 2; |
|
break; |
|
case 1: |
|
goto retry; |
|
default: |
|
break; |
|
} |
|
return *s_pObject.m_p; |
|
} |
|
|
|
// ************** misc functions *************** |
|
|
|
#if (!__STDC_WANT_SECURE_LIB__) |
|
inline void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count) |
|
{ |
|
if (count > sizeInBytes) |
|
throw InvalidArgument("memcpy_s: buffer overflow"); |
|
memcpy(dest, src, count); |
|
} |
|
|
|
inline void memmove_s(void *dest, size_t sizeInBytes, const void *src, size_t count) |
|
{ |
|
if (count > sizeInBytes) |
|
throw InvalidArgument("memmove_s: buffer overflow"); |
|
memmove(dest, src, count); |
|
} |
|
#endif |
|
|
|
inline void * memset_z(void *ptr, int value, size_t num) |
|
{ |
|
// avoid extranous warning on GCC 4.3.2 Ubuntu 8.10 |
|
#if CRYPTOPP_GCC_VERSION >= 30001 |
|
if (__builtin_constant_p(num) && num==0) |
|
return ptr; |
|
#endif |
|
return memset(ptr, value, num); |
|
} |
|
|
|
// can't use std::min or std::max in MSVC60 or Cygwin 1.1.0 |
|
template <class T> inline const T& STDMIN(const T& a, const T& b) |
|
{ |
|
return b < a ? b : a; |
|
} |
|
|
|
template <class T1, class T2> inline const T1 UnsignedMin(const T1& a, const T2& b) |
|
{ |
|
CRYPTOPP_COMPILE_ASSERT((sizeof(T1)<=sizeof(T2) && T2(-1)>0) || (sizeof(T1)>sizeof(T2) && T1(-1)>0)); |
|
assert(a==0 || a>0); // GCC workaround: get rid of the warning "comparison is always true due to limited range of data type" |
|
assert(b>=0); |
|
|
|
if (sizeof(T1)<=sizeof(T2)) |
|
return b < (T2)a ? (T1)b : a; |
|
else |
|
return (T1)b < a ? (T1)b : a; |
|
} |
|
|
|
template <class T> inline const T& STDMAX(const T& a, const T& b) |
|
{ |
|
return a < b ? b : a; |
|
} |
|
|
|
#define RETURN_IF_NONZERO(x) size_t returnedValue = x; if (returnedValue) return returnedValue |
|
|
|
// this version of the macro is fastest on Pentium 3 and Pentium 4 with MSVC 6 SP5 w/ Processor Pack |
|
#define GETBYTE(x, y) (unsigned int)byte((x)>>(8*(y))) |
|
// these may be faster on other CPUs/compilers |
|
// #define GETBYTE(x, y) (unsigned int)(((x)>>(8*(y)))&255) |
|
// #define GETBYTE(x, y) (((byte *)&(x))[y]) |
|
|
|
#define CRYPTOPP_GET_BYTE_AS_BYTE(x, y) byte((x)>>(8*(y))) |
|
|
|
template <class T> |
|
unsigned int Parity(T value) |
|
{ |
|
for (unsigned int i=8*sizeof(value)/2; i>0; i/=2) |
|
value ^= value >> i; |
|
return (unsigned int)value&1; |
|
} |
|
|
|
template <class T> |
|
unsigned int BytePrecision(const T &value) |
|
{ |
|
if (!value) |
|
return 0; |
|
|
|
unsigned int l=0, h=8*sizeof(value); |
|
|
|
while (h-l > 8) |
|
{ |
|
unsigned int t = (l+h)/2; |
|
if (value >> t) |
|
l = t; |
|
else |
|
h = t; |
|
} |
|
|
|
return h/8; |
|
} |
|
|
|
template <class T> |
|
unsigned int BitPrecision(const T &value) |
|
{ |
|
if (!value) |
|
return 0; |
|
|
|
unsigned int l=0, h=8*sizeof(value); |
|
|
|
while (h-l > 1) |
|
{ |
|
unsigned int t = (l+h)/2; |
|
if (value >> t) |
|
l = t; |
|
else |
|
h = t; |
|
} |
|
|
|
return h; |
|
} |
|
|
|
template <class T> |
|
inline T Crop(T value, size_t size) |
|
{ |
|
if (size < 8*sizeof(value)) |
|
return T(value & ((T(1) << size) - 1)); |
|
else |
|
return value; |
|
} |
|
|
|
template <class T1, class T2> |
|
inline bool SafeConvert(T1 from, T2 &to) |
|
{ |
|
to = (T2)from; |
|
if (from != to || (from > 0) != (to > 0)) |
|
return false; |
|
return true; |
|
} |
|
|
|
inline size_t BitsToBytes(size_t bitCount) |
|
{ |
|
return ((bitCount+7)/(8)); |
|
} |
|
|
|
inline size_t BytesToWords(size_t byteCount) |
|
{ |
|
return ((byteCount+WORD_SIZE-1)/WORD_SIZE); |
|
} |
|
|
|
inline size_t BitsToWords(size_t bitCount) |
|
{ |
|
return ((bitCount+WORD_BITS-1)/(WORD_BITS)); |
|
} |
|
|
|
inline size_t BitsToDwords(size_t bitCount) |
|
{ |
|
return ((bitCount+2*WORD_BITS-1)/(2*WORD_BITS)); |
|
} |
|
|
|
CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *buf, const byte *mask, size_t count); |
|
CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *output, const byte *input, const byte *mask, size_t count); |
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API VerifyBufsEqual(const byte *buf1, const byte *buf2, size_t count); |
|
|
|
template <class T> |
|
inline bool IsPowerOf2(const T &n) |
|
{ |
|
return n > 0 && (n & (n-1)) == 0; |
|
} |
|
|
|
template <class T1, class T2> |
|
inline T2 ModPowerOf2(const T1 &a, const T2 &b) |
|
{ |
|
assert(IsPowerOf2(b)); |
|
return T2(a) & (b-1); |
|
} |
|
|
|
template <class T1, class T2> |
|
inline T1 RoundDownToMultipleOf(const T1 &n, const T2 &m) |
|
{ |
|
if (IsPowerOf2(m)) |
|
return n - ModPowerOf2(n, m); |
|
else |
|
return n - n%m; |
|
} |
|
|
|
template <class T1, class T2> |
|
inline T1 RoundUpToMultipleOf(const T1 &n, const T2 &m) |
|
{ |
|
if (n+m-1 < n) |
|
throw InvalidArgument("RoundUpToMultipleOf: integer overflow"); |
|
return RoundDownToMultipleOf(n+m-1, m); |
|
} |
|
|
|
template <class T> |
|
inline unsigned int GetAlignmentOf(T *dummy=NULL) // VC60 workaround |
|
{ |
|
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
if (sizeof(T) < 16) |
|
return 1; |
|
#endif |
|
|
|
#if (_MSC_VER >= 1300) |
|
return __alignof(T); |
|
#elif defined(__GNUC__) |
|
return __alignof__(T); |
|
#elif CRYPTOPP_BOOL_SLOW_WORD64 |
|
return UnsignedMin(4U, sizeof(T)); |
|
#else |
|
return sizeof(T); |
|
#endif |
|
} |
|
|
|
inline bool IsAlignedOn(const void *p, unsigned int alignment) |
|
{ |
|
return alignment==1 || (IsPowerOf2(alignment) ? ModPowerOf2((size_t)p, alignment) == 0 : (size_t)p % alignment == 0); |
|
} |
|
|
|
template <class T> |
|
inline bool IsAligned(const void *p, T *dummy=NULL) // VC60 workaround |
|
{ |
|
return IsAlignedOn(p, GetAlignmentOf<T>()); |
|
} |
|
|
|
#ifdef IS_LITTLE_ENDIAN |
|
typedef LittleEndian NativeByteOrder; |
|
#else |
|
typedef BigEndian NativeByteOrder; |
|
#endif |
|
|
|
inline ByteOrder GetNativeByteOrder() |
|
{ |
|
return NativeByteOrder::ToEnum(); |
|
} |
|
|
|
inline bool NativeByteOrderIs(ByteOrder order) |
|
{ |
|
return order == GetNativeByteOrder(); |
|
} |
|
|
|
template <class T> |
|
std::string IntToString(T a, unsigned int base = 10) |
|
{ |
|
if (a == 0) |
|
return "0"; |
|
bool negate = false; |
|
if (a < 0) |
|
{ |
|
negate = true; |
|
a = 0-a; // VC .NET does not like -a |
|
} |
|
std::string result; |
|
while (a > 0) |
|
{ |
|
T digit = a % base; |
|
result = char((digit < 10 ? '0' : ('a' - 10)) + digit) + result; |
|
a /= base; |
|
} |
|
if (negate) |
|
result = "-" + result; |
|
return result; |
|
} |
|
|
|
template <class T1, class T2> |
|
inline T1 SaturatingSubtract(const T1 &a, const T2 &b) |
|
{ |
|
return T1((a > b) ? (a - b) : 0); |
|
} |
|
|
|
template <class T> |
|
inline CipherDir GetCipherDir(const T &obj) |
|
{ |
|
return obj.IsForwardTransformation() ? ENCRYPTION : DECRYPTION; |
|
} |
|
|
|
CRYPTOPP_DLL void CRYPTOPP_API CallNewHandler(); |
|
|
|
inline void IncrementCounterByOne(byte *inout, unsigned int s) |
|
{ |
|
for (int i=s-1, carry=1; i>=0 && carry; i--) |
|
carry = !++inout[i]; |
|
} |
|
|
|
inline void IncrementCounterByOne(byte *output, const byte *input, unsigned int s) |
|
{ |
|
int i, carry; |
|
for (i=s-1, carry=1; i>=0 && carry; i--) |
|
carry = ((output[i] = input[i]+1) == 0); |
|
memcpy_s(output, s, input, i+1); |
|
} |
|
|
|
// ************** rotate functions *************** |
|
|
|
template <class T> inline T rotlFixed(T x, unsigned int y) |
|
{ |
|
assert(y < sizeof(T)*8); |
|
return T((x<<y) | (x>>(sizeof(T)*8-y))); |
|
} |
|
|
|
template <class T> inline T rotrFixed(T x, unsigned int y) |
|
{ |
|
assert(y < sizeof(T)*8); |
|
return T((x>>y) | (x<<(sizeof(T)*8-y))); |
|
} |
|
|
|
template <class T> inline T rotlVariable(T x, unsigned int y) |
|
{ |
|
assert(y < sizeof(T)*8); |
|
return T((x<<y) | (x>>(sizeof(T)*8-y))); |
|
} |
|
|
|
template <class T> inline T rotrVariable(T x, unsigned int y) |
|
{ |
|
assert(y < sizeof(T)*8); |
|
return T((x>>y) | (x<<(sizeof(T)*8-y))); |
|
} |
|
|
|
template <class T> inline T rotlMod(T x, unsigned int y) |
|
{ |
|
y %= sizeof(T)*8; |
|
return T((x<<y) | (x>>(sizeof(T)*8-y))); |
|
} |
|
|
|
template <class T> inline T rotrMod(T x, unsigned int y) |
|
{ |
|
y %= sizeof(T)*8; |
|
return T((x>>y) | (x<<(sizeof(T)*8-y))); |
|
} |
|
|
|
#ifdef _MSC_VER |
|
|
|
template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return y ? _lrotl(x, y) : x; |
|
} |
|
|
|
template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return y ? _lrotr(x, y) : x; |
|
} |
|
|
|
template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return _lrotl(x, y); |
|
} |
|
|
|
template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return _lrotr(x, y); |
|
} |
|
|
|
template<> inline word32 rotlMod<word32>(word32 x, unsigned int y) |
|
{ |
|
return _lrotl(x, y); |
|
} |
|
|
|
template<> inline word32 rotrMod<word32>(word32 x, unsigned int y) |
|
{ |
|
return _lrotr(x, y); |
|
} |
|
|
|
#endif // #ifdef _MSC_VER |
|
|
|
#if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER) |
|
// Intel C++ Compiler 10.0 calls a function instead of using the rotate instruction when using these instructions |
|
|
|
template<> inline word64 rotlFixed<word64>(word64 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return y ? _rotl64(x, y) : x; |
|
} |
|
|
|
template<> inline word64 rotrFixed<word64>(word64 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return y ? _rotr64(x, y) : x; |
|
} |
|
|
|
template<> inline word64 rotlVariable<word64>(word64 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return _rotl64(x, y); |
|
} |
|
|
|
template<> inline word64 rotrVariable<word64>(word64 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return _rotr64(x, y); |
|
} |
|
|
|
template<> inline word64 rotlMod<word64>(word64 x, unsigned int y) |
|
{ |
|
return _rotl64(x, y); |
|
} |
|
|
|
template<> inline word64 rotrMod<word64>(word64 x, unsigned int y) |
|
{ |
|
return _rotr64(x, y); |
|
} |
|
|
|
#endif // #if _MSC_VER >= 1310 |
|
|
|
#if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER) |
|
// Intel C++ Compiler 10.0 gives undefined externals with these |
|
|
|
template<> inline word16 rotlFixed<word16>(word16 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return y ? _rotl16(x, y) : x; |
|
} |
|
|
|
template<> inline word16 rotrFixed<word16>(word16 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return y ? _rotr16(x, y) : x; |
|
} |
|
|
|
template<> inline word16 rotlVariable<word16>(word16 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return _rotl16(x, y); |
|
} |
|
|
|
template<> inline word16 rotrVariable<word16>(word16 x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return _rotr16(x, y); |
|
} |
|
|
|
template<> inline word16 rotlMod<word16>(word16 x, unsigned int y) |
|
{ |
|
return _rotl16(x, y); |
|
} |
|
|
|
template<> inline word16 rotrMod<word16>(word16 x, unsigned int y) |
|
{ |
|
return _rotr16(x, y); |
|
} |
|
|
|
template<> inline byte rotlFixed<byte>(byte x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return y ? _rotl8(x, y) : x; |
|
} |
|
|
|
template<> inline byte rotrFixed<byte>(byte x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return y ? _rotr8(x, y) : x; |
|
} |
|
|
|
template<> inline byte rotlVariable<byte>(byte x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return _rotl8(x, y); |
|
} |
|
|
|
template<> inline byte rotrVariable<byte>(byte x, unsigned int y) |
|
{ |
|
assert(y < 8*sizeof(x)); |
|
return _rotr8(x, y); |
|
} |
|
|
|
template<> inline byte rotlMod<byte>(byte x, unsigned int y) |
|
{ |
|
return _rotl8(x, y); |
|
} |
|
|
|
template<> inline byte rotrMod<byte>(byte x, unsigned int y) |
|
{ |
|
return _rotr8(x, y); |
|
} |
|
|
|
#endif // #if _MSC_VER >= 1400 |
|
|
|
#if (defined(__MWERKS__) && TARGET_CPU_PPC) |
|
|
|
template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y) |
|
{ |
|
assert(y < 32); |
|
return y ? __rlwinm(x,y,0,31) : x; |
|
} |
|
|
|
template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y) |
|
{ |
|
assert(y < 32); |
|
return y ? __rlwinm(x,32-y,0,31) : x; |
|
} |
|
|
|
template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y) |
|
{ |
|
assert(y < 32); |
|
return (__rlwnm(x,y,0,31)); |
|
} |
|
|
|
template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y) |
|
{ |
|
assert(y < 32); |
|
return (__rlwnm(x,32-y,0,31)); |
|
} |
|
|
|
template<> inline word32 rotlMod<word32>(word32 x, unsigned int y) |
|
{ |
|
return (__rlwnm(x,y,0,31)); |
|
} |
|
|
|
template<> inline word32 rotrMod<word32>(word32 x, unsigned int y) |
|
{ |
|
return (__rlwnm(x,32-y,0,31)); |
|
} |
|
|
|
#endif // #if (defined(__MWERKS__) && TARGET_CPU_PPC) |
|
|
|
// ************** endian reversal *************** |
|
|
|
template <class T> |
|
inline unsigned int GetByte(ByteOrder order, T value, unsigned int index) |
|
{ |
|
if (order == LITTLE_ENDIAN_ORDER) |
|
return GETBYTE(value, index); |
|
else |
|
return GETBYTE(value, sizeof(T)-index-1); |
|
} |
|
|
|
inline byte ByteReverse(byte value) |
|
{ |
|
return value; |
|
} |
|
|
|
inline word16 ByteReverse(word16 value) |
|
{ |
|
#ifdef CRYPTOPP_BYTESWAP_AVAILABLE |
|
return bswap_16(value); |
|
#elif defined(_MSC_VER) && _MSC_VER >= 1300 |
|
return _byteswap_ushort(value); |
|
#else |
|
return rotlFixed(value, 8U); |
|
#endif |
|
} |
|
|
|
inline word32 ByteReverse(word32 value) |
|
{ |
|
#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) |
|
__asm__ ("bswap %0" : "=r" (value) : "0" (value)); |
|
return value; |
|
#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE) |
|
return bswap_32(value); |
|
#elif defined(__MWERKS__) && TARGET_CPU_PPC |
|
return (word32)__lwbrx(&value,0); |
|
#elif _MSC_VER >= 1400 || (_MSC_VER >= 1300 && !defined(_DLL)) |
|
return _byteswap_ulong(value); |
|
#elif CRYPTOPP_FAST_ROTATE(32) |
|
// 5 instructions with rotate instruction, 9 without |
|
return (rotrFixed(value, 8U) & 0xff00ff00) | (rotlFixed(value, 8U) & 0x00ff00ff); |
|
#else |
|
// 6 instructions with rotate instruction, 8 without |
|
value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); |
|
return rotlFixed(value, 16U); |
|
#endif |
|
} |
|
|
|
inline word64 ByteReverse(word64 value) |
|
{ |
|
#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) && defined(__x86_64__) |
|
__asm__ ("bswap %0" : "=r" (value) : "0" (value)); |
|
return value; |
|
#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE) |
|
return bswap_64(value); |
|
#elif defined(_MSC_VER) && _MSC_VER >= 1300 |
|
return _byteswap_uint64(value); |
|
#elif CRYPTOPP_BOOL_SLOW_WORD64 |
|
return (word64(ByteReverse(word32(value))) << 32) | ByteReverse(word32(value>>32)); |
|
#else |
|
value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) | ((value & W64LIT(0x00FF00FF00FF00FF)) << 8); |
|
value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) | ((value & W64LIT(0x0000FFFF0000FFFF)) << 16); |
|
return rotlFixed(value, 32U); |
|
#endif |
|
} |
|
|
|
inline byte BitReverse(byte value) |
|
{ |
|
value = ((value & 0xAA) >> 1) | ((value & 0x55) << 1); |
|
value = ((value & 0xCC) >> 2) | ((value & 0x33) << 2); |
|
return rotlFixed(value, 4U); |
|
} |
|
|
|
inline word16 BitReverse(word16 value) |
|
{ |
|
value = ((value & 0xAAAA) >> 1) | ((value & 0x5555) << 1); |
|
value = ((value & 0xCCCC) >> 2) | ((value & 0x3333) << 2); |
|
value = ((value & 0xF0F0) >> 4) | ((value & 0x0F0F) << 4); |
|
return ByteReverse(value); |
|
} |
|
|
|
inline word32 BitReverse(word32 value) |
|
{ |
|
value = ((value & 0xAAAAAAAA) >> 1) | ((value & 0x55555555) << 1); |
|
value = ((value & 0xCCCCCCCC) >> 2) | ((value & 0x33333333) << 2); |
|
value = ((value & 0xF0F0F0F0) >> 4) | ((value & 0x0F0F0F0F) << 4); |
|
return ByteReverse(value); |
|
} |
|
|
|
inline word64 BitReverse(word64 value) |
|
{ |
|
#if CRYPTOPP_BOOL_SLOW_WORD64 |
|
return (word64(BitReverse(word32(value))) << 32) | BitReverse(word32(value>>32)); |
|
#else |
|
value = ((value & W64LIT(0xAAAAAAAAAAAAAAAA)) >> 1) | ((value & W64LIT(0x5555555555555555)) << 1); |
|
value = ((value & W64LIT(0xCCCCCCCCCCCCCCCC)) >> 2) | ((value & W64LIT(0x3333333333333333)) << 2); |
|
value = ((value & W64LIT(0xF0F0F0F0F0F0F0F0)) >> 4) | ((value & W64LIT(0x0F0F0F0F0F0F0F0F)) << 4); |
|
return ByteReverse(value); |
|
#endif |
|
} |
|
|
|
template <class T> |
|
inline T BitReverse(T value) |
|
{ |
|
if (sizeof(T) == 1) |
|
return (T)BitReverse((byte)value); |
|
else if (sizeof(T) == 2) |
|
return (T)BitReverse((word16)value); |
|
else if (sizeof(T) == 4) |
|
return (T)BitReverse((word32)value); |
|
else |
|
{ |
|
assert(sizeof(T) == 8); |
|
return (T)BitReverse((word64)value); |
|
} |
|
} |
|
|
|
template <class T> |
|
inline T ConditionalByteReverse(ByteOrder order, T value) |
|
{ |
|
return NativeByteOrderIs(order) ? value : ByteReverse(value); |
|
} |
|
|
|
template <class T> |
|
void ByteReverse(T *out, const T *in, size_t byteCount) |
|
{ |
|
assert(byteCount % sizeof(T) == 0); |
|
size_t count = byteCount/sizeof(T); |
|
for (size_t i=0; i<count; i++) |
|
out[i] = ByteReverse(in[i]); |
|
} |
|
|
|
template <class T> |
|
inline void ConditionalByteReverse(ByteOrder order, T *out, const T *in, size_t byteCount) |
|
{ |
|
if (!NativeByteOrderIs(order)) |
|
ByteReverse(out, in, byteCount); |
|
else if (in != out) |
|
memcpy_s(out, byteCount, in, byteCount); |
|
} |
|
|
|
template <class T> |
|
inline void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen) |
|
{ |
|
const size_t U = sizeof(T); |
|
assert(inlen <= outlen*U); |
|
memcpy_s(out, outlen*U, in, inlen); |
|
memset_z((byte *)out+inlen, 0, outlen*U-inlen); |
|
ConditionalByteReverse(order, out, out, RoundUpToMultipleOf(inlen, U)); |
|
} |
|
|
|
#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const byte *) |
|
{ |
|
return block[0]; |
|
} |
|
|
|
inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word16 *) |
|
{ |
|
return (order == BIG_ENDIAN_ORDER) |
|
? block[1] | (block[0] << 8) |
|
: block[0] | (block[1] << 8); |
|
} |
|
|
|
inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word32 *) |
|
{ |
|
return (order == BIG_ENDIAN_ORDER) |
|
? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16) | (word32(block[0]) << 24) |
|
: word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16) | (word32(block[3]) << 24); |
|
} |
|
|
|
inline word64 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word64 *) |
|
{ |
|
return (order == BIG_ENDIAN_ORDER) |
|
? |
|
(word64(block[7]) | |
|
(word64(block[6]) << 8) | |
|
(word64(block[5]) << 16) | |
|
(word64(block[4]) << 24) | |
|
(word64(block[3]) << 32) | |
|
(word64(block[2]) << 40) | |
|
(word64(block[1]) << 48) | |
|
(word64(block[0]) << 56)) |
|
: |
|
(word64(block[0]) | |
|
(word64(block[1]) << 8) | |
|
(word64(block[2]) << 16) | |
|
(word64(block[3]) << 24) | |
|
(word64(block[4]) << 32) | |
|
(word64(block[5]) << 40) | |
|
(word64(block[6]) << 48) | |
|
(word64(block[7]) << 56)); |
|
} |
|
|
|
inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, byte value, const byte *xorBlock) |
|
{ |
|
block[0] = xorBlock ? (value ^ xorBlock[0]) : value; |
|
} |
|
|
|
inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word16 value, const byte *xorBlock) |
|
{ |
|
if (order == BIG_ENDIAN_ORDER) |
|
{ |
|
if (xorBlock) |
|
{ |
|
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
} |
|
else |
|
{ |
|
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
} |
|
} |
|
else |
|
{ |
|
if (xorBlock) |
|
{ |
|
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
} |
|
else |
|
{ |
|
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
} |
|
} |
|
} |
|
|
|
inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word32 value, const byte *xorBlock) |
|
{ |
|
if (order == BIG_ENDIAN_ORDER) |
|
{ |
|
if (xorBlock) |
|
{ |
|
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|
block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
} |
|
else |
|
{ |
|
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|
block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
} |
|
} |
|
else |
|
{ |
|
if (xorBlock) |
|
{ |
|
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|
block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|
} |
|
else |
|
{ |
|
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|
block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|
} |
|
} |
|
} |
|
|
|
inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word64 value, const byte *xorBlock) |
|
{ |
|
if (order == BIG_ENDIAN_ORDER) |
|
{ |
|
if (xorBlock) |
|
{ |
|
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
|
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
|
block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
|
block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
|
block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|
block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|
block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
} |
|
else |
|
{ |
|
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
|
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
|
block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
|
block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
|
block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|
block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|
block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
} |
|
} |
|
else |
|
{ |
|
if (xorBlock) |
|
{ |
|
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|
block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|
block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
|
block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
|
block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
|
block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
|
} |
|
else |
|
{ |
|
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|
block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|
block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|
block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
|
block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
|
block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
|
block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
|
} |
|
} |
|
} |
|
#endif // #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
|
|
template <class T> |
|
inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block) |
|
{ |
|
#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
if (!assumeAligned) |
|
return UnalignedGetWordNonTemplate(order, block, (T*)NULL); |
|
assert(IsAligned<T>(block)); |
|
#endif |
|
return ConditionalByteReverse(order, *reinterpret_cast<const T *>(block)); |
|
} |
|
|
|
template <class T> |
|
inline void GetWord(bool assumeAligned, ByteOrder order, T &result, const byte *block) |
|
{ |
|
result = GetWord<T>(assumeAligned, order, block); |
|
} |
|
|
|
template <class T> |
|
inline void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock = NULL) |
|
{ |
|
#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
if (!assumeAligned) |
|
return UnalignedPutWordNonTemplate(order, block, value, xorBlock); |
|
assert(IsAligned<T>(block)); |
|
assert(IsAligned<T>(xorBlock)); |
|
#endif |
|
*reinterpret_cast<T *>(block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast<const T *>(xorBlock) : 0); |
|
} |
|
|
|
template <class T, class B, bool A=false> |
|
class GetBlock |
|
{ |
|
public: |
|
GetBlock(const void *block) |
|
: m_block((const byte *)block) {} |
|
|
|
template <class U> |
|
inline GetBlock<T, B, A> & operator()(U &x) |
|
{ |
|
CRYPTOPP_COMPILE_ASSERT(sizeof(U) >= sizeof(T)); |
|
x = GetWord<T>(A, B::ToEnum(), m_block); |
|
m_block += sizeof(T); |
|
return *this; |
|
} |
|
|
|
private: |
|
const byte *m_block; |
|
}; |
|
|
|
template <class T, class B, bool A=false> |
|
class PutBlock |
|
{ |
|
public: |
|
PutBlock(const void *xorBlock, void *block) |
|
: m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {} |
|
|
|
template <class U> |
|
inline PutBlock<T, B, A> & operator()(U x) |
|
{ |
|
PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock); |
|
m_block += sizeof(T); |
|
if (m_xorBlock) |
|
m_xorBlock += sizeof(T); |
|
return *this; |
|
} |
|
|
|
private: |
|
const byte *m_xorBlock; |
|
byte *m_block; |
|
}; |
|
|
|
template <class T, class B, bool GA=false, bool PA=false> |
|
struct BlockGetAndPut |
|
{ |
|
// function needed because of C++ grammatical ambiguity between expression-statements and declarations |
|
static inline GetBlock<T, B, GA> Get(const void *block) {return GetBlock<T, B, GA>(block);} |
|
typedef PutBlock<T, B, PA> Put; |
|
}; |
|
|
|
template <class T> |
|
std::string WordToString(T value, ByteOrder order = BIG_ENDIAN_ORDER) |
|
{ |
|
if (!NativeByteOrderIs(order)) |
|
value = ByteReverse(value); |
|
|
|
return std::string((char *)&value, sizeof(value)); |
|
} |
|
|
|
template <class T> |
|
T StringToWord(const std::string &str, ByteOrder order = BIG_ENDIAN_ORDER) |
|
{ |
|
T value = 0; |
|
memcpy_s(&value, sizeof(value), str.data(), UnsignedMin(str.size(), sizeof(value))); |
|
return NativeByteOrderIs(order) ? value : ByteReverse(value); |
|
} |
|
|
|
// ************** help remove warning on g++ *************** |
|
|
|
template <bool overflow> struct SafeShifter; |
|
|
|
template<> struct SafeShifter<true> |
|
{ |
|
template <class T> |
|
static inline T RightShift(T value, unsigned int bits) |
|
{ |
|
return 0; |
|
} |
|
|
|
template <class T> |
|
static inline T LeftShift(T value, unsigned int bits) |
|
{ |
|
return 0; |
|
} |
|
}; |
|
|
|
template<> struct SafeShifter<false> |
|
{ |
|
template <class T> |
|
static inline T RightShift(T value, unsigned int bits) |
|
{ |
|
return value >> bits; |
|
} |
|
|
|
template <class T> |
|
static inline T LeftShift(T value, unsigned int bits) |
|
{ |
|
return value << bits; |
|
} |
|
}; |
|
|
|
template <unsigned int bits, class T> |
|
inline T SafeRightShift(T value) |
|
{ |
|
return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits); |
|
} |
|
|
|
template <unsigned int bits, class T> |
|
inline T SafeLeftShift(T value) |
|
{ |
|
return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits); |
|
} |
|
|
|
// ************** use one buffer for multiple data members *************** |
|
|
|
#define CRYPTOPP_BLOCK_1(n, t, s) t* m_##n() {return (t *)(m_aggregate+0);} size_t SS1() {return sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|
#define CRYPTOPP_BLOCK_2(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS1());} size_t SS2() {return SS1()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|
#define CRYPTOPP_BLOCK_3(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS2());} size_t SS3() {return SS2()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|
#define CRYPTOPP_BLOCK_4(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS3());} size_t SS4() {return SS3()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|
#define CRYPTOPP_BLOCK_5(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS4());} size_t SS5() {return SS4()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|
#define CRYPTOPP_BLOCK_6(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS5());} size_t SS6() {return SS5()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|
#define CRYPTOPP_BLOCK_7(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS6());} size_t SS7() {return SS6()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|
#define CRYPTOPP_BLOCK_8(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS7());} size_t SS8() {return SS7()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|
#define CRYPTOPP_BLOCKS_END(i) size_t SST() {return SS##i();} void AllocateBlocks() {m_aggregate.New(SST());} AlignedSecByteBlock m_aggregate; |
|
|
|
NAMESPACE_END |
|
|
|
#endif
|
|
|