You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2799 lines
88 KiB
2799 lines
88 KiB
// Copyright (c) 2009-2010 Satoshi Nakamoto |
|
// Copyright (c) 2009-2016 The Bitcoin Core developers |
|
// Distributed under the MIT software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#if defined(HAVE_CONFIG_H) |
|
#include "config/bitcoin-config.h" |
|
#endif |
|
|
|
#include "net.h" |
|
|
|
#include "addrman.h" |
|
#include "chainparams.h" |
|
#include "clientversion.h" |
|
#include "consensus/consensus.h" |
|
#include "crypto/common.h" |
|
#include "crypto/sha256.h" |
|
#include "hash.h" |
|
#include "primitives/transaction.h" |
|
#include "netbase.h" |
|
#include "scheduler.h" |
|
#include "ui_interface.h" |
|
#include "utilstrencodings.h" |
|
|
|
#ifdef WIN32 |
|
#include <string.h> |
|
#else |
|
#include <fcntl.h> |
|
#endif |
|
|
|
#ifdef USE_UPNP |
|
#include <miniupnpc/miniupnpc.h> |
|
#include <miniupnpc/miniwget.h> |
|
#include <miniupnpc/upnpcommands.h> |
|
#include <miniupnpc/upnperrors.h> |
|
#endif |
|
|
|
|
|
#include <math.h> |
|
|
|
// Dump addresses to peers.dat and banlist.dat every 15 minutes (900s) |
|
#define DUMP_ADDRESSES_INTERVAL 900 |
|
|
|
// We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization. |
|
#define FEELER_SLEEP_WINDOW 1 |
|
|
|
#if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL) |
|
#define MSG_NOSIGNAL 0 |
|
#endif |
|
|
|
// Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h. |
|
// Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version. |
|
#ifdef WIN32 |
|
#ifndef PROTECTION_LEVEL_UNRESTRICTED |
|
#define PROTECTION_LEVEL_UNRESTRICTED 10 |
|
#endif |
|
#ifndef IPV6_PROTECTION_LEVEL |
|
#define IPV6_PROTECTION_LEVEL 23 |
|
#endif |
|
#endif |
|
|
|
const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*"; |
|
|
|
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8] |
|
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8] |
|
// |
|
// Global state variables |
|
// |
|
bool fDiscover = true; |
|
bool fListen = true; |
|
bool fRelayTxes = true; |
|
CCriticalSection cs_mapLocalHost; |
|
std::map<CNetAddr, LocalServiceInfo> mapLocalHost; |
|
static bool vfLimited[NET_MAX] = {}; |
|
std::string strSubVersion; |
|
|
|
limitedmap<uint256, int64_t> mapAlreadyAskedFor(MAX_INV_SZ); |
|
|
|
// Signals for message handling |
|
static CNodeSignals g_signals; |
|
CNodeSignals& GetNodeSignals() { return g_signals; } |
|
|
|
void CConnman::AddOneShot(const std::string& strDest) |
|
{ |
|
LOCK(cs_vOneShots); |
|
vOneShots.push_back(strDest); |
|
} |
|
|
|
unsigned short GetListenPort() |
|
{ |
|
return (unsigned short)(GetArg("-port", Params().GetDefaultPort())); |
|
} |
|
|
|
// find 'best' local address for a particular peer |
|
bool GetLocal(CService& addr, const CNetAddr *paddrPeer) |
|
{ |
|
if (!fListen) |
|
return false; |
|
|
|
int nBestScore = -1; |
|
int nBestReachability = -1; |
|
{ |
|
LOCK(cs_mapLocalHost); |
|
for (std::map<CNetAddr, LocalServiceInfo>::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++) |
|
{ |
|
int nScore = (*it).second.nScore; |
|
int nReachability = (*it).first.GetReachabilityFrom(paddrPeer); |
|
if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) |
|
{ |
|
addr = CService((*it).first, (*it).second.nPort); |
|
nBestReachability = nReachability; |
|
nBestScore = nScore; |
|
} |
|
} |
|
} |
|
return nBestScore >= 0; |
|
} |
|
|
|
//! Convert the pnSeeds6 array into usable address objects. |
|
static std::vector<CAddress> convertSeed6(const std::vector<SeedSpec6> &vSeedsIn) |
|
{ |
|
// It'll only connect to one or two seed nodes because once it connects, |
|
// it'll get a pile of addresses with newer timestamps. |
|
// Seed nodes are given a random 'last seen time' of between one and two |
|
// weeks ago. |
|
const int64_t nOneWeek = 7*24*60*60; |
|
std::vector<CAddress> vSeedsOut; |
|
vSeedsOut.reserve(vSeedsIn.size()); |
|
for (std::vector<SeedSpec6>::const_iterator i(vSeedsIn.begin()); i != vSeedsIn.end(); ++i) |
|
{ |
|
struct in6_addr ip; |
|
memcpy(&ip, i->addr, sizeof(ip)); |
|
CAddress addr(CService(ip, i->port), NODE_NETWORK); |
|
addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek; |
|
vSeedsOut.push_back(addr); |
|
} |
|
return vSeedsOut; |
|
} |
|
|
|
// get best local address for a particular peer as a CAddress |
|
// Otherwise, return the unroutable 0.0.0.0 but filled in with |
|
// the normal parameters, since the IP may be changed to a useful |
|
// one by discovery. |
|
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices) |
|
{ |
|
CAddress ret(CService(CNetAddr(),GetListenPort()), NODE_NONE); |
|
CService addr; |
|
if (GetLocal(addr, paddrPeer)) |
|
{ |
|
ret = CAddress(addr, nLocalServices); |
|
} |
|
ret.nTime = GetAdjustedTime(); |
|
return ret; |
|
} |
|
|
|
int GetnScore(const CService& addr) |
|
{ |
|
LOCK(cs_mapLocalHost); |
|
if (mapLocalHost.count(addr) == LOCAL_NONE) |
|
return 0; |
|
return mapLocalHost[addr].nScore; |
|
} |
|
|
|
// Is our peer's addrLocal potentially useful as an external IP source? |
|
bool IsPeerAddrLocalGood(CNode *pnode) |
|
{ |
|
CService addrLocal = pnode->GetAddrLocal(); |
|
return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() && |
|
!IsLimited(addrLocal.GetNetwork()); |
|
} |
|
|
|
// pushes our own address to a peer |
|
void AdvertiseLocal(CNode *pnode) |
|
{ |
|
if (fListen && pnode->fSuccessfullyConnected) |
|
{ |
|
CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices()); |
|
// If discovery is enabled, sometimes give our peer the address it |
|
// tells us that it sees us as in case it has a better idea of our |
|
// address than we do. |
|
if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || |
|
GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0)) |
|
{ |
|
addrLocal.SetIP(pnode->GetAddrLocal()); |
|
} |
|
if (addrLocal.IsRoutable()) |
|
{ |
|
LogPrint("net", "AdvertiseLocal: advertising address %s\n", addrLocal.ToString()); |
|
FastRandomContext insecure_rand; |
|
pnode->PushAddress(addrLocal, insecure_rand); |
|
} |
|
} |
|
} |
|
|
|
// learn a new local address |
|
bool AddLocal(const CService& addr, int nScore) |
|
{ |
|
if (!addr.IsRoutable()) |
|
return false; |
|
|
|
if (!fDiscover && nScore < LOCAL_MANUAL) |
|
return false; |
|
|
|
if (IsLimited(addr)) |
|
return false; |
|
|
|
LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); |
|
|
|
{ |
|
LOCK(cs_mapLocalHost); |
|
bool fAlready = mapLocalHost.count(addr) > 0; |
|
LocalServiceInfo &info = mapLocalHost[addr]; |
|
if (!fAlready || nScore >= info.nScore) { |
|
info.nScore = nScore + (fAlready ? 1 : 0); |
|
info.nPort = addr.GetPort(); |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool AddLocal(const CNetAddr &addr, int nScore) |
|
{ |
|
return AddLocal(CService(addr, GetListenPort()), nScore); |
|
} |
|
|
|
bool RemoveLocal(const CService& addr) |
|
{ |
|
LOCK(cs_mapLocalHost); |
|
LogPrintf("RemoveLocal(%s)\n", addr.ToString()); |
|
mapLocalHost.erase(addr); |
|
return true; |
|
} |
|
|
|
/** Make a particular network entirely off-limits (no automatic connects to it) */ |
|
void SetLimited(enum Network net, bool fLimited) |
|
{ |
|
if (net == NET_UNROUTABLE) |
|
return; |
|
LOCK(cs_mapLocalHost); |
|
vfLimited[net] = fLimited; |
|
} |
|
|
|
bool IsLimited(enum Network net) |
|
{ |
|
LOCK(cs_mapLocalHost); |
|
return vfLimited[net]; |
|
} |
|
|
|
bool IsLimited(const CNetAddr &addr) |
|
{ |
|
return IsLimited(addr.GetNetwork()); |
|
} |
|
|
|
/** vote for a local address */ |
|
bool SeenLocal(const CService& addr) |
|
{ |
|
{ |
|
LOCK(cs_mapLocalHost); |
|
if (mapLocalHost.count(addr) == 0) |
|
return false; |
|
mapLocalHost[addr].nScore++; |
|
} |
|
return true; |
|
} |
|
|
|
|
|
/** check whether a given address is potentially local */ |
|
bool IsLocal(const CService& addr) |
|
{ |
|
LOCK(cs_mapLocalHost); |
|
return mapLocalHost.count(addr) > 0; |
|
} |
|
|
|
/** check whether a given network is one we can probably connect to */ |
|
bool IsReachable(enum Network net) |
|
{ |
|
LOCK(cs_mapLocalHost); |
|
return !vfLimited[net]; |
|
} |
|
|
|
/** check whether a given address is in a network we can probably connect to */ |
|
bool IsReachable(const CNetAddr& addr) |
|
{ |
|
enum Network net = addr.GetNetwork(); |
|
return IsReachable(net); |
|
} |
|
|
|
|
|
CNode* CConnman::FindNode(const CNetAddr& ip) |
|
{ |
|
LOCK(cs_vNodes); |
|
BOOST_FOREACH(CNode* pnode, vNodes) |
|
if ((CNetAddr)pnode->addr == ip) |
|
return (pnode); |
|
return NULL; |
|
} |
|
|
|
CNode* CConnman::FindNode(const CSubNet& subNet) |
|
{ |
|
LOCK(cs_vNodes); |
|
BOOST_FOREACH(CNode* pnode, vNodes) |
|
if (subNet.Match((CNetAddr)pnode->addr)) |
|
return (pnode); |
|
return NULL; |
|
} |
|
|
|
CNode* CConnman::FindNode(const std::string& addrName) |
|
{ |
|
LOCK(cs_vNodes); |
|
BOOST_FOREACH(CNode* pnode, vNodes) { |
|
if (pnode->GetAddrName() == addrName) { |
|
return (pnode); |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
CNode* CConnman::FindNode(const CService& addr) |
|
{ |
|
LOCK(cs_vNodes); |
|
BOOST_FOREACH(CNode* pnode, vNodes) |
|
if ((CService)pnode->addr == addr) |
|
return (pnode); |
|
return NULL; |
|
} |
|
|
|
bool CConnman::CheckIncomingNonce(uint64_t nonce) |
|
{ |
|
LOCK(cs_vNodes); |
|
BOOST_FOREACH(CNode* pnode, vNodes) { |
|
if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce) |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure) |
|
{ |
|
if (pszDest == NULL) { |
|
if (IsLocal(addrConnect)) |
|
return NULL; |
|
|
|
// Look for an existing connection |
|
CNode* pnode = FindNode((CService)addrConnect); |
|
if (pnode) |
|
{ |
|
LogPrintf("Failed to open new connection, already connected\n"); |
|
return NULL; |
|
} |
|
} |
|
|
|
/// debug print |
|
LogPrint("net", "trying connection %s lastseen=%.1fhrs\n", |
|
pszDest ? pszDest : addrConnect.ToString(), |
|
pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0); |
|
|
|
// Connect |
|
SOCKET hSocket; |
|
bool proxyConnectionFailed = false; |
|
if (pszDest ? ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort(), nConnectTimeout, &proxyConnectionFailed) : |
|
ConnectSocket(addrConnect, hSocket, nConnectTimeout, &proxyConnectionFailed)) |
|
{ |
|
if (!IsSelectableSocket(hSocket)) { |
|
LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n"); |
|
CloseSocket(hSocket); |
|
return NULL; |
|
} |
|
|
|
if (pszDest && addrConnect.IsValid()) { |
|
// It is possible that we already have a connection to the IP/port pszDest resolved to. |
|
// In that case, drop the connection that was just created, and return the existing CNode instead. |
|
// Also store the name we used to connect in that CNode, so that future FindNode() calls to that |
|
// name catch this early. |
|
LOCK(cs_vNodes); |
|
CNode* pnode = FindNode((CService)addrConnect); |
|
if (pnode) |
|
{ |
|
pnode->MaybeSetAddrName(std::string(pszDest)); |
|
CloseSocket(hSocket); |
|
LogPrintf("Failed to open new connection, already connected\n"); |
|
return NULL; |
|
} |
|
} |
|
|
|
addrman.Attempt(addrConnect, fCountFailure); |
|
|
|
// Add node |
|
NodeId id = GetNewNodeId(); |
|
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize(); |
|
CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, pszDest ? pszDest : "", false); |
|
pnode->nServicesExpected = ServiceFlags(addrConnect.nServices & nRelevantServices); |
|
pnode->AddRef(); |
|
|
|
return pnode; |
|
} else if (!proxyConnectionFailed) { |
|
// If connecting to the node failed, and failure is not caused by a problem connecting to |
|
// the proxy, mark this as an attempt. |
|
addrman.Attempt(addrConnect, fCountFailure); |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
void CConnman::DumpBanlist() |
|
{ |
|
SweepBanned(); // clean unused entries (if bantime has expired) |
|
|
|
if (!BannedSetIsDirty()) |
|
return; |
|
|
|
int64_t nStart = GetTimeMillis(); |
|
|
|
CBanDB bandb; |
|
banmap_t banmap; |
|
SetBannedSetDirty(false); |
|
GetBanned(banmap); |
|
if (!bandb.Write(banmap)) |
|
SetBannedSetDirty(true); |
|
|
|
LogPrint("net", "Flushed %d banned node ips/subnets to banlist.dat %dms\n", |
|
banmap.size(), GetTimeMillis() - nStart); |
|
} |
|
|
|
void CNode::CloseSocketDisconnect() |
|
{ |
|
fDisconnect = true; |
|
LOCK(cs_hSocket); |
|
if (hSocket != INVALID_SOCKET) |
|
{ |
|
LogPrint("net", "disconnecting peer=%d\n", id); |
|
CloseSocket(hSocket); |
|
} |
|
} |
|
|
|
void CConnman::ClearBanned() |
|
{ |
|
{ |
|
LOCK(cs_setBanned); |
|
setBanned.clear(); |
|
setBannedIsDirty = true; |
|
} |
|
DumpBanlist(); //store banlist to disk |
|
if(clientInterface) |
|
clientInterface->BannedListChanged(); |
|
} |
|
|
|
bool CConnman::IsBanned(CNetAddr ip) |
|
{ |
|
bool fResult = false; |
|
{ |
|
LOCK(cs_setBanned); |
|
for (banmap_t::iterator it = setBanned.begin(); it != setBanned.end(); it++) |
|
{ |
|
CSubNet subNet = (*it).first; |
|
CBanEntry banEntry = (*it).second; |
|
|
|
if(subNet.Match(ip) && GetTime() < banEntry.nBanUntil) |
|
fResult = true; |
|
} |
|
} |
|
return fResult; |
|
} |
|
|
|
bool CConnman::IsBanned(CSubNet subnet) |
|
{ |
|
bool fResult = false; |
|
{ |
|
LOCK(cs_setBanned); |
|
banmap_t::iterator i = setBanned.find(subnet); |
|
if (i != setBanned.end()) |
|
{ |
|
CBanEntry banEntry = (*i).second; |
|
if (GetTime() < banEntry.nBanUntil) |
|
fResult = true; |
|
} |
|
} |
|
return fResult; |
|
} |
|
|
|
void CConnman::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { |
|
CSubNet subNet(addr); |
|
Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch); |
|
} |
|
|
|
void CConnman::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { |
|
CBanEntry banEntry(GetTime()); |
|
banEntry.banReason = banReason; |
|
if (bantimeoffset <= 0) |
|
{ |
|
bantimeoffset = GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME); |
|
sinceUnixEpoch = false; |
|
} |
|
banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset; |
|
|
|
{ |
|
LOCK(cs_setBanned); |
|
if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) { |
|
setBanned[subNet] = banEntry; |
|
setBannedIsDirty = true; |
|
} |
|
else |
|
return; |
|
} |
|
if(clientInterface) |
|
clientInterface->BannedListChanged(); |
|
{ |
|
LOCK(cs_vNodes); |
|
BOOST_FOREACH(CNode* pnode, vNodes) { |
|
if (subNet.Match((CNetAddr)pnode->addr)) |
|
pnode->fDisconnect = true; |
|
} |
|
} |
|
if(banReason == BanReasonManuallyAdded) |
|
DumpBanlist(); //store banlist to disk immediately if user requested ban |
|
} |
|
|
|
bool CConnman::Unban(const CNetAddr &addr) { |
|
CSubNet subNet(addr); |
|
return Unban(subNet); |
|
} |
|
|
|
bool CConnman::Unban(const CSubNet &subNet) { |
|
{ |
|
LOCK(cs_setBanned); |
|
if (!setBanned.erase(subNet)) |
|
return false; |
|
setBannedIsDirty = true; |
|
} |
|
if(clientInterface) |
|
clientInterface->BannedListChanged(); |
|
DumpBanlist(); //store banlist to disk immediately |
|
return true; |
|
} |
|
|
|
void CConnman::GetBanned(banmap_t &banMap) |
|
{ |
|
LOCK(cs_setBanned); |
|
banMap = setBanned; //create a thread safe copy |
|
} |
|
|
|
void CConnman::SetBanned(const banmap_t &banMap) |
|
{ |
|
LOCK(cs_setBanned); |
|
setBanned = banMap; |
|
setBannedIsDirty = true; |
|
} |
|
|
|
void CConnman::SweepBanned() |
|
{ |
|
int64_t now = GetTime(); |
|
|
|
LOCK(cs_setBanned); |
|
banmap_t::iterator it = setBanned.begin(); |
|
while(it != setBanned.end()) |
|
{ |
|
CSubNet subNet = (*it).first; |
|
CBanEntry banEntry = (*it).second; |
|
if(now > banEntry.nBanUntil) |
|
{ |
|
setBanned.erase(it++); |
|
setBannedIsDirty = true; |
|
LogPrint("net", "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString()); |
|
} |
|
else |
|
++it; |
|
} |
|
} |
|
|
|
bool CConnman::BannedSetIsDirty() |
|
{ |
|
LOCK(cs_setBanned); |
|
return setBannedIsDirty; |
|
} |
|
|
|
void CConnman::SetBannedSetDirty(bool dirty) |
|
{ |
|
LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag |
|
setBannedIsDirty = dirty; |
|
} |
|
|
|
|
|
bool CConnman::IsWhitelistedRange(const CNetAddr &addr) { |
|
LOCK(cs_vWhitelistedRange); |
|
BOOST_FOREACH(const CSubNet& subnet, vWhitelistedRange) { |
|
if (subnet.Match(addr)) |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
void CConnman::AddWhitelistedRange(const CSubNet &subnet) { |
|
LOCK(cs_vWhitelistedRange); |
|
vWhitelistedRange.push_back(subnet); |
|
} |
|
|
|
|
|
std::string CNode::GetAddrName() const { |
|
LOCK(cs_addrName); |
|
return addrName; |
|
} |
|
|
|
void CNode::MaybeSetAddrName(const std::string& addrNameIn) { |
|
LOCK(cs_addrName); |
|
if (addrName.empty()) { |
|
addrName = addrNameIn; |
|
} |
|
} |
|
|
|
CService CNode::GetAddrLocal() const { |
|
LOCK(cs_addrLocal); |
|
return addrLocal; |
|
} |
|
|
|
void CNode::SetAddrLocal(const CService& addrLocalIn) { |
|
LOCK(cs_addrLocal); |
|
if (addrLocal.IsValid()) { |
|
error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToString(), addrLocalIn.ToString()); |
|
} else { |
|
addrLocal = addrLocalIn; |
|
} |
|
} |
|
|
|
#undef X |
|
#define X(name) stats.name = name |
|
void CNode::copyStats(CNodeStats &stats) |
|
{ |
|
stats.nodeid = this->GetId(); |
|
X(nServices); |
|
X(addr); |
|
{ |
|
LOCK(cs_filter); |
|
X(fRelayTxes); |
|
} |
|
X(nLastSend); |
|
X(nLastRecv); |
|
X(nTimeConnected); |
|
X(nTimeOffset); |
|
stats.addrName = GetAddrName(); |
|
X(nVersion); |
|
{ |
|
LOCK(cs_SubVer); |
|
X(cleanSubVer); |
|
} |
|
X(fInbound); |
|
X(fAddnode); |
|
X(nStartingHeight); |
|
{ |
|
LOCK(cs_vSend); |
|
X(mapSendBytesPerMsgCmd); |
|
X(nSendBytes); |
|
} |
|
{ |
|
LOCK(cs_vRecv); |
|
X(mapRecvBytesPerMsgCmd); |
|
X(nRecvBytes); |
|
} |
|
X(fWhitelisted); |
|
|
|
// It is common for nodes with good ping times to suddenly become lagged, |
|
// due to a new block arriving or other large transfer. |
|
// Merely reporting pingtime might fool the caller into thinking the node was still responsive, |
|
// since pingtime does not update until the ping is complete, which might take a while. |
|
// So, if a ping is taking an unusually long time in flight, |
|
// the caller can immediately detect that this is happening. |
|
int64_t nPingUsecWait = 0; |
|
if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { |
|
nPingUsecWait = GetTimeMicros() - nPingUsecStart; |
|
} |
|
|
|
// Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :) |
|
stats.dPingTime = (((double)nPingUsecTime) / 1e6); |
|
stats.dMinPing = (((double)nMinPingUsecTime) / 1e6); |
|
stats.dPingWait = (((double)nPingUsecWait) / 1e6); |
|
|
|
// Leave string empty if addrLocal invalid (not filled in yet) |
|
CService addrLocalUnlocked = GetAddrLocal(); |
|
stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : ""; |
|
} |
|
#undef X |
|
|
|
bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete) |
|
{ |
|
complete = false; |
|
int64_t nTimeMicros = GetTimeMicros(); |
|
LOCK(cs_vRecv); |
|
nLastRecv = nTimeMicros / 1000000; |
|
nRecvBytes += nBytes; |
|
while (nBytes > 0) { |
|
|
|
// get current incomplete message, or create a new one |
|
if (vRecvMsg.empty() || |
|
vRecvMsg.back().complete()) |
|
vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, INIT_PROTO_VERSION)); |
|
|
|
CNetMessage& msg = vRecvMsg.back(); |
|
|
|
// absorb network data |
|
int handled; |
|
if (!msg.in_data) |
|
handled = msg.readHeader(pch, nBytes); |
|
else |
|
handled = msg.readData(pch, nBytes); |
|
|
|
if (handled < 0) |
|
return false; |
|
|
|
if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) { |
|
LogPrint("net", "Oversized message from peer=%i, disconnecting\n", GetId()); |
|
return false; |
|
} |
|
|
|
pch += handled; |
|
nBytes -= handled; |
|
|
|
if (msg.complete()) { |
|
|
|
//store received bytes per message command |
|
//to prevent a memory DOS, only allow valid commands |
|
mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand); |
|
if (i == mapRecvBytesPerMsgCmd.end()) |
|
i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER); |
|
assert(i != mapRecvBytesPerMsgCmd.end()); |
|
i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE; |
|
|
|
msg.nTime = nTimeMicros; |
|
complete = true; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
void CNode::SetSendVersion(int nVersionIn) |
|
{ |
|
// Send version may only be changed in the version message, and |
|
// only one version message is allowed per session. We can therefore |
|
// treat this value as const and even atomic as long as it's only used |
|
// once a version message has been successfully processed. Any attempt to |
|
// set this twice is an error. |
|
if (nSendVersion != 0) { |
|
error("Send version already set for node: %i. Refusing to change from %i to %i", id, nSendVersion, nVersionIn); |
|
} else { |
|
nSendVersion = nVersionIn; |
|
} |
|
} |
|
|
|
int CNode::GetSendVersion() const |
|
{ |
|
// The send version should always be explicitly set to |
|
// INIT_PROTO_VERSION rather than using this value until SetSendVersion |
|
// has been called. |
|
if (nSendVersion == 0) { |
|
error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION); |
|
return INIT_PROTO_VERSION; |
|
} |
|
return nSendVersion; |
|
} |
|
|
|
|
|
int CNetMessage::readHeader(const char *pch, unsigned int nBytes) |
|
{ |
|
// copy data to temporary parsing buffer |
|
unsigned int nRemaining = 24 - nHdrPos; |
|
unsigned int nCopy = std::min(nRemaining, nBytes); |
|
|
|
memcpy(&hdrbuf[nHdrPos], pch, nCopy); |
|
nHdrPos += nCopy; |
|
|
|
// if header incomplete, exit |
|
if (nHdrPos < 24) |
|
return nCopy; |
|
|
|
// deserialize to CMessageHeader |
|
try { |
|
hdrbuf >> hdr; |
|
} |
|
catch (const std::exception&) { |
|
return -1; |
|
} |
|
|
|
// reject messages larger than MAX_SIZE |
|
if (hdr.nMessageSize > MAX_SIZE) |
|
return -1; |
|
|
|
// switch state to reading message data |
|
in_data = true; |
|
|
|
return nCopy; |
|
} |
|
|
|
int CNetMessage::readData(const char *pch, unsigned int nBytes) |
|
{ |
|
unsigned int nRemaining = hdr.nMessageSize - nDataPos; |
|
unsigned int nCopy = std::min(nRemaining, nBytes); |
|
|
|
if (vRecv.size() < nDataPos + nCopy) { |
|
// Allocate up to 256 KiB ahead, but never more than the total message size. |
|
vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); |
|
} |
|
|
|
hasher.Write((const unsigned char*)pch, nCopy); |
|
memcpy(&vRecv[nDataPos], pch, nCopy); |
|
nDataPos += nCopy; |
|
|
|
return nCopy; |
|
} |
|
|
|
const uint256& CNetMessage::GetMessageHash() const |
|
{ |
|
assert(complete()); |
|
if (data_hash.IsNull()) |
|
hasher.Finalize(data_hash.begin()); |
|
return data_hash; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// requires LOCK(cs_vSend) |
|
size_t CConnman::SocketSendData(CNode *pnode) const |
|
{ |
|
auto it = pnode->vSendMsg.begin(); |
|
size_t nSentSize = 0; |
|
|
|
while (it != pnode->vSendMsg.end()) { |
|
const auto &data = *it; |
|
assert(data.size() > pnode->nSendOffset); |
|
int nBytes = 0; |
|
{ |
|
LOCK(pnode->cs_hSocket); |
|
if (pnode->hSocket == INVALID_SOCKET) |
|
break; |
|
nBytes = send(pnode->hSocket, reinterpret_cast<const char*>(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); |
|
} |
|
if (nBytes > 0) { |
|
pnode->nLastSend = GetSystemTimeInSeconds(); |
|
pnode->nSendBytes += nBytes; |
|
pnode->nSendOffset += nBytes; |
|
nSentSize += nBytes; |
|
if (pnode->nSendOffset == data.size()) { |
|
pnode->nSendOffset = 0; |
|
pnode->nSendSize -= data.size(); |
|
pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize; |
|
it++; |
|
} else { |
|
// could not send full message; stop sending more |
|
break; |
|
} |
|
} else { |
|
if (nBytes < 0) { |
|
// error |
|
int nErr = WSAGetLastError(); |
|
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) |
|
{ |
|
LogPrintf("socket send error %s\n", NetworkErrorString(nErr)); |
|
pnode->CloseSocketDisconnect(); |
|
} |
|
} |
|
// couldn't send anything at all |
|
break; |
|
} |
|
} |
|
|
|
if (it == pnode->vSendMsg.end()) { |
|
assert(pnode->nSendOffset == 0); |
|
assert(pnode->nSendSize == 0); |
|
} |
|
pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it); |
|
return nSentSize; |
|
} |
|
|
|
struct NodeEvictionCandidate |
|
{ |
|
NodeId id; |
|
int64_t nTimeConnected; |
|
int64_t nMinPingUsecTime; |
|
int64_t nLastBlockTime; |
|
int64_t nLastTXTime; |
|
bool fRelevantServices; |
|
bool fRelayTxes; |
|
bool fBloomFilter; |
|
CAddress addr; |
|
uint64_t nKeyedNetGroup; |
|
}; |
|
|
|
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) |
|
{ |
|
return a.nMinPingUsecTime > b.nMinPingUsecTime; |
|
} |
|
|
|
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) |
|
{ |
|
return a.nTimeConnected > b.nTimeConnected; |
|
} |
|
|
|
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { |
|
return a.nKeyedNetGroup < b.nKeyedNetGroup; |
|
} |
|
|
|
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) |
|
{ |
|
// There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block. |
|
if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime; |
|
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices; |
|
return a.nTimeConnected > b.nTimeConnected; |
|
} |
|
|
|
static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) |
|
{ |
|
// There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn. |
|
if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime; |
|
if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes; |
|
if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter; |
|
return a.nTimeConnected > b.nTimeConnected; |
|
} |
|
|
|
/** Try to find a connection to evict when the node is full. |
|
* Extreme care must be taken to avoid opening the node to attacker |
|
* triggered network partitioning. |
|
* The strategy used here is to protect a small number of peers |
|
* for each of several distinct characteristics which are difficult |
|
* to forge. In order to partition a node the attacker must be |
|
* simultaneously better at all of them than honest peers. |
|
*/ |
|
bool CConnman::AttemptToEvictConnection() |
|
{ |
|
std::vector<NodeEvictionCandidate> vEvictionCandidates; |
|
{ |
|
LOCK(cs_vNodes); |
|
|
|
BOOST_FOREACH(CNode *node, vNodes) { |
|
if (node->fWhitelisted) |
|
continue; |
|
if (!node->fInbound) |
|
continue; |
|
if (node->fDisconnect) |
|
continue; |
|
NodeEvictionCandidate candidate = {node->id, node->nTimeConnected, node->nMinPingUsecTime, |
|
node->nLastBlockTime, node->nLastTXTime, |
|
(node->nServices & nRelevantServices) == nRelevantServices, |
|
node->fRelayTxes, node->pfilter != NULL, node->addr, node->nKeyedNetGroup}; |
|
vEvictionCandidates.push_back(candidate); |
|
} |
|
} |
|
|
|
if (vEvictionCandidates.empty()) return false; |
|
|
|
// Protect connections with certain characteristics |
|
|
|
// Deterministically select 4 peers to protect by netgroup. |
|
// An attacker cannot predict which netgroups will be protected |
|
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNetGroupKeyed); |
|
vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end()); |
|
|
|
if (vEvictionCandidates.empty()) return false; |
|
|
|
// Protect the 8 nodes with the lowest minimum ping time. |
|
// An attacker cannot manipulate this metric without physically moving nodes closer to the target. |
|
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeMinPingTime); |
|
vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(8, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end()); |
|
|
|
if (vEvictionCandidates.empty()) return false; |
|
|
|
// Protect 4 nodes that most recently sent us transactions. |
|
// An attacker cannot manipulate this metric without performing useful work. |
|
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeTXTime); |
|
vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end()); |
|
|
|
if (vEvictionCandidates.empty()) return false; |
|
|
|
// Protect 4 nodes that most recently sent us blocks. |
|
// An attacker cannot manipulate this metric without performing useful work. |
|
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeBlockTime); |
|
vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end()); |
|
|
|
if (vEvictionCandidates.empty()) return false; |
|
|
|
// Protect the half of the remaining nodes which have been connected the longest. |
|
// This replicates the non-eviction implicit behavior, and precludes attacks that start later. |
|
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeTimeConnected); |
|
vEvictionCandidates.erase(vEvictionCandidates.end() - static_cast<int>(vEvictionCandidates.size() / 2), vEvictionCandidates.end()); |
|
|
|
if (vEvictionCandidates.empty()) return false; |
|
|
|
// Identify the network group with the most connections and youngest member. |
|
// (vEvictionCandidates is already sorted by reverse connect time) |
|
uint64_t naMostConnections; |
|
unsigned int nMostConnections = 0; |
|
int64_t nMostConnectionsTime = 0; |
|
std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes; |
|
BOOST_FOREACH(const NodeEvictionCandidate &node, vEvictionCandidates) { |
|
mapNetGroupNodes[node.nKeyedNetGroup].push_back(node); |
|
int64_t grouptime = mapNetGroupNodes[node.nKeyedNetGroup][0].nTimeConnected; |
|
size_t groupsize = mapNetGroupNodes[node.nKeyedNetGroup].size(); |
|
|
|
if (groupsize > nMostConnections || (groupsize == nMostConnections && grouptime > nMostConnectionsTime)) { |
|
nMostConnections = groupsize; |
|
nMostConnectionsTime = grouptime; |
|
naMostConnections = node.nKeyedNetGroup; |
|
} |
|
} |
|
|
|
// Reduce to the network group with the most connections |
|
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]); |
|
|
|
// Disconnect from the network group with the most connections |
|
NodeId evicted = vEvictionCandidates.front().id; |
|
LOCK(cs_vNodes); |
|
for(std::vector<CNode*>::const_iterator it(vNodes.begin()); it != vNodes.end(); ++it) { |
|
if ((*it)->GetId() == evicted) { |
|
(*it)->fDisconnect = true; |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
void CConnman::AcceptConnection(const ListenSocket& hListenSocket) { |
|
struct sockaddr_storage sockaddr; |
|
socklen_t len = sizeof(sockaddr); |
|
SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len); |
|
CAddress addr; |
|
int nInbound = 0; |
|
int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler); |
|
|
|
if (hSocket != INVALID_SOCKET) |
|
if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) |
|
LogPrintf("Warning: Unknown socket family\n"); |
|
|
|
bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr); |
|
{ |
|
LOCK(cs_vNodes); |
|
BOOST_FOREACH(CNode* pnode, vNodes) |
|
if (pnode->fInbound) |
|
nInbound++; |
|
} |
|
|
|
if (hSocket == INVALID_SOCKET) |
|
{ |
|
int nErr = WSAGetLastError(); |
|
if (nErr != WSAEWOULDBLOCK) |
|
LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); |
|
return; |
|
} |
|
|
|
if (!fNetworkActive) { |
|
LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString()); |
|
CloseSocket(hSocket); |
|
return; |
|
} |
|
|
|
if (!IsSelectableSocket(hSocket)) |
|
{ |
|
LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString()); |
|
CloseSocket(hSocket); |
|
return; |
|
} |
|
|
|
// According to the internet TCP_NODELAY is not carried into accepted sockets |
|
// on all platforms. Set it again here just to be sure. |
|
int set = 1; |
|
#ifdef WIN32 |
|
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int)); |
|
#else |
|
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int)); |
|
#endif |
|
|
|
if (IsBanned(addr) && !whitelisted) |
|
{ |
|
LogPrintf("connection from %s dropped (banned)\n", addr.ToString()); |
|
CloseSocket(hSocket); |
|
return; |
|
} |
|
|
|
if (nInbound >= nMaxInbound) |
|
{ |
|
if (!AttemptToEvictConnection()) { |
|
// No connection to evict, disconnect the new connection |
|
LogPrint("net", "failed to find an eviction candidate - connection dropped (full)\n"); |
|
CloseSocket(hSocket); |
|
return; |
|
} |
|
} |
|
|
|
NodeId id = GetNewNodeId(); |
|
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize(); |
|
|
|
CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, "", true); |
|
pnode->AddRef(); |
|
pnode->fWhitelisted = whitelisted; |
|
GetNodeSignals().InitializeNode(pnode, *this); |
|
|
|
LogPrint("net", "connection from %s accepted\n", addr.ToString()); |
|
|
|
{ |
|
LOCK(cs_vNodes); |
|
vNodes.push_back(pnode); |
|
} |
|
} |
|
|
|
void CConnman::ThreadSocketHandler() |
|
{ |
|
unsigned int nPrevNodeCount = 0; |
|
while (!interruptNet) |
|
{ |
|
// |
|
// Disconnect nodes |
|
// |
|
{ |
|
LOCK(cs_vNodes); |
|
// Disconnect unused nodes |
|
std::vector<CNode*> vNodesCopy = vNodes; |
|
BOOST_FOREACH(CNode* pnode, vNodesCopy) |
|
{ |
|
if (pnode->fDisconnect) |
|
{ |
|
// remove from vNodes |
|
vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); |
|
|
|
// release outbound grant (if any) |
|
pnode->grantOutbound.Release(); |
|
|
|
// close socket and cleanup |
|
pnode->CloseSocketDisconnect(); |
|
|
|
// hold in disconnected pool until all refs are released |
|
pnode->Release(); |
|
vNodesDisconnected.push_back(pnode); |
|
} |
|
} |
|
} |
|
{ |
|
// Delete disconnected nodes |
|
std::list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected; |
|
BOOST_FOREACH(CNode* pnode, vNodesDisconnectedCopy) |
|
{ |
|
// wait until threads are done using it |
|
if (pnode->GetRefCount() <= 0) { |
|
bool fDelete = false; |
|
{ |
|
TRY_LOCK(pnode->cs_inventory, lockInv); |
|
if (lockInv) { |
|
TRY_LOCK(pnode->cs_vSend, lockSend); |
|
if (lockSend) { |
|
fDelete = true; |
|
} |
|
} |
|
} |
|
if (fDelete) { |
|
vNodesDisconnected.remove(pnode); |
|
DeleteNode(pnode); |
|
} |
|
} |
|
} |
|
} |
|
size_t vNodesSize; |
|
{ |
|
LOCK(cs_vNodes); |
|
vNodesSize = vNodes.size(); |
|
} |
|
if(vNodesSize != nPrevNodeCount) { |
|
nPrevNodeCount = vNodesSize; |
|
if(clientInterface) |
|
clientInterface->NotifyNumConnectionsChanged(nPrevNodeCount); |
|
} |
|
|
|
// |
|
// Find which sockets have data to receive |
|
// |
|
struct timeval timeout; |
|
timeout.tv_sec = 0; |
|
timeout.tv_usec = 50000; // frequency to poll pnode->vSend |
|
|
|
fd_set fdsetRecv; |
|
fd_set fdsetSend; |
|
fd_set fdsetError; |
|
FD_ZERO(&fdsetRecv); |
|
FD_ZERO(&fdsetSend); |
|
FD_ZERO(&fdsetError); |
|
SOCKET hSocketMax = 0; |
|
bool have_fds = false; |
|
|
|
BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { |
|
FD_SET(hListenSocket.socket, &fdsetRecv); |
|
hSocketMax = std::max(hSocketMax, hListenSocket.socket); |
|
have_fds = true; |
|
} |
|
|
|
{ |
|
LOCK(cs_vNodes); |
|
BOOST_FOREACH(CNode* pnode, vNodes) |
|
{ |
|
// Implement the following logic: |
|
// * If there is data to send, select() for sending data. As this only |
|
// happens when optimistic write failed, we choose to first drain the |
|
// write buffer in this case before receiving more. This avoids |
|
// needlessly queueing received data, if the remote peer is not themselves |
|
// receiving data. This means properly utilizing TCP flow control signalling. |
|
// * Otherwise, if there is space left in the receive buffer, select() for |
|
// receiving data. |
|
// * Hand off all complete messages to the processor, to be handled without |
|
// blocking here. |
|
|
|
bool select_recv = !pnode->fPauseRecv; |
|
bool select_send; |
|
{ |
|
LOCK(pnode->cs_vSend); |
|
select_send = !pnode->vSendMsg.empty(); |
|
} |
|
|
|
LOCK(pnode->cs_hSocket); |
|
if (pnode->hSocket == INVALID_SOCKET) |
|
continue; |
|
|
|
FD_SET(pnode->hSocket, &fdsetError); |
|
hSocketMax = std::max(hSocketMax, pnode->hSocket); |
|
have_fds = true; |
|
|
|
if (select_send) { |
|
FD_SET(pnode->hSocket, &fdsetSend); |
|
continue; |
|
} |
|
if (select_recv) { |
|
FD_SET(pnode->hSocket, &fdsetRecv); |
|
} |
|
} |
|
} |
|
|
|
int nSelect = select(have_fds ? hSocketMax + 1 : 0, |
|
&fdsetRecv, &fdsetSend, &fdsetError, &timeout); |
|
if (interruptNet) |
|
return; |
|
|
|
if (nSelect == SOCKET_ERROR) |
|
{ |
|
if (have_fds) |
|
{ |
|
int nErr = WSAGetLastError(); |
|
LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); |
|
for (unsigned int i = 0; i <= hSocketMax; i++) |
|
FD_SET(i, &fdsetRecv); |
|
} |
|
FD_ZERO(&fdsetSend); |
|
FD_ZERO(&fdsetError); |
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(timeout.tv_usec/1000))) |
|
return; |
|
} |
|
|
|
// |
|
// Accept new connections |
|
// |
|
BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) |
|
{ |
|
if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv)) |
|
{ |
|
AcceptConnection(hListenSocket); |
|
} |
|
} |
|
|
|
// |
|
// Service each socket |
|
// |
|
std::vector<CNode*> vNodesCopy; |
|
{ |
|
LOCK(cs_vNodes); |
|
vNodesCopy = vNodes; |
|
BOOST_FOREACH(CNode* pnode, vNodesCopy) |
|
pnode->AddRef(); |
|
} |
|
BOOST_FOREACH(CNode* pnode, vNodesCopy) |
|
{ |
|
if (interruptNet) |
|
return; |
|
|
|
// |
|
// Receive |
|
// |
|
bool recvSet = false; |
|
bool sendSet = false; |
|
bool errorSet = false; |
|
{ |
|
LOCK(pnode->cs_hSocket); |
|
if (pnode->hSocket == INVALID_SOCKET) |
|
continue; |
|
recvSet = FD_ISSET(pnode->hSocket, &fdsetRecv); |
|
sendSet = FD_ISSET(pnode->hSocket, &fdsetSend); |
|
errorSet = FD_ISSET(pnode->hSocket, &fdsetError); |
|
} |
|
if (recvSet || errorSet) |
|
{ |
|
{ |
|
{ |
|
// typical socket buffer is 8K-64K |
|
char pchBuf[0x10000]; |
|
int nBytes = 0; |
|
{ |
|
LOCK(pnode->cs_hSocket); |
|
if (pnode->hSocket == INVALID_SOCKET) |
|
continue; |
|
nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT); |
|
} |
|
if (nBytes > 0) |
|
{ |
|
bool notify = false; |
|
if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify)) |
|
pnode->CloseSocketDisconnect(); |
|
RecordBytesRecv(nBytes); |
|
if (notify) { |
|
size_t nSizeAdded = 0; |
|
auto it(pnode->vRecvMsg.begin()); |
|
for (; it != pnode->vRecvMsg.end(); ++it) { |
|
if (!it->complete()) |
|
break; |
|
nSizeAdded += it->vRecv.size() + CMessageHeader::HEADER_SIZE; |
|
} |
|
{ |
|
LOCK(pnode->cs_vProcessMsg); |
|
pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it); |
|
pnode->nProcessQueueSize += nSizeAdded; |
|
pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize; |
|
} |
|
WakeMessageHandler(); |
|
} |
|
} |
|
else if (nBytes == 0) |
|
{ |
|
// socket closed gracefully |
|
if (!pnode->fDisconnect) |
|
LogPrint("net", "socket closed\n"); |
|
pnode->CloseSocketDisconnect(); |
|
} |
|
else if (nBytes < 0) |
|
{ |
|
// error |
|
int nErr = WSAGetLastError(); |
|
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) |
|
{ |
|
if (!pnode->fDisconnect) |
|
LogPrintf("socket recv error %s\n", NetworkErrorString(nErr)); |
|
pnode->CloseSocketDisconnect(); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// |
|
// Send |
|
// |
|
if (sendSet) |
|
{ |
|
LOCK(pnode->cs_vSend); |
|
size_t nBytes = SocketSendData(pnode); |
|
if (nBytes) { |
|
RecordBytesSent(nBytes); |
|
} |
|
} |
|
|
|
// |
|
// Inactivity checking |
|
// |
|
int64_t nTime = GetSystemTimeInSeconds(); |
|
if (nTime - pnode->nTimeConnected > 60) |
|
{ |
|
if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) |
|
{ |
|
LogPrint("net", "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->id); |
|
pnode->fDisconnect = true; |
|
} |
|
else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) |
|
{ |
|
LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); |
|
pnode->fDisconnect = true; |
|
} |
|
else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60)) |
|
{ |
|
LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); |
|
pnode->fDisconnect = true; |
|
} |
|
else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros()) |
|
{ |
|
LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart)); |
|
pnode->fDisconnect = true; |
|
} |
|
else if (!pnode->fSuccessfullyConnected) |
|
{ |
|
LogPrintf("version handshake timeout from %d\n", pnode->id); |
|
pnode->fDisconnect = true; |
|
} |
|
} |
|
} |
|
{ |
|
LOCK(cs_vNodes); |
|
BOOST_FOREACH(CNode* pnode, vNodesCopy) |
|
pnode->Release(); |
|
} |
|
} |
|
} |
|
|
|
void CConnman::WakeMessageHandler() |
|
{ |
|
{ |
|
std::lock_guard<std::mutex> lock(mutexMsgProc); |
|
fMsgProcWake = true; |
|
} |
|
condMsgProc.notify_one(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef USE_UPNP |
|
void ThreadMapPort() |
|
{ |
|
std::string port = strprintf("%u", GetListenPort()); |
|
const char * multicastif = 0; |
|
const char * minissdpdpath = 0; |
|
struct UPNPDev * devlist = 0; |
|
char lanaddr[64]; |
|
|
|
#ifndef UPNPDISCOVER_SUCCESS |
|
/* miniupnpc 1.5 */ |
|
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0); |
|
#elif MINIUPNPC_API_VERSION < 14 |
|
/* miniupnpc 1.6 */ |
|
int error = 0; |
|
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error); |
|
#else |
|
/* miniupnpc 1.9.20150730 */ |
|
int error = 0; |
|
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error); |
|
#endif |
|
|
|
struct UPNPUrls urls; |
|
struct IGDdatas data; |
|
int r; |
|
|
|
r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr)); |
|
if (r == 1) |
|
{ |
|
if (fDiscover) { |
|
char externalIPAddress[40]; |
|
r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress); |
|
if(r != UPNPCOMMAND_SUCCESS) |
|
LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r); |
|
else |
|
{ |
|
if(externalIPAddress[0]) |
|
{ |
|
CNetAddr resolved; |
|
if(LookupHost(externalIPAddress, resolved, false)) { |
|
LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString().c_str()); |
|
AddLocal(resolved, LOCAL_UPNP); |
|
} |
|
} |
|
else |
|
LogPrintf("UPnP: GetExternalIPAddress failed.\n"); |
|
} |
|
} |
|
|
|
std::string strDesc = "Bitcoin " + FormatFullVersion(); |
|
|
|
try { |
|
while (true) { |
|
#ifndef UPNPDISCOVER_SUCCESS |
|
/* miniupnpc 1.5 */ |
|
r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, |
|
port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0); |
|
#else |
|
/* miniupnpc 1.6 */ |
|
r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, |
|
port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0"); |
|
#endif |
|
|
|
if(r!=UPNPCOMMAND_SUCCESS) |
|
LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", |
|
port, port, lanaddr, r, strupnperror(r)); |
|
else |
|
LogPrintf("UPnP Port Mapping successful.\n"); |
|
|
|
MilliSleep(20*60*1000); // Refresh every 20 minutes |
|
} |
|
} |
|
catch (const boost::thread_interrupted&) |
|
{ |
|
r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0); |
|
LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r); |
|
freeUPNPDevlist(devlist); devlist = 0; |
|
FreeUPNPUrls(&urls); |
|
throw; |
|
} |
|
} else { |
|
LogPrintf("No valid UPnP IGDs found\n"); |
|
freeUPNPDevlist(devlist); devlist = 0; |
|
if (r != 0) |
|
FreeUPNPUrls(&urls); |
|
} |
|
} |
|
|
|
void MapPort(bool fUseUPnP) |
|
{ |
|
static boost::thread* upnp_thread = NULL; |
|
|
|
if (fUseUPnP) |
|
{ |
|
if (upnp_thread) { |
|
upnp_thread->interrupt(); |
|
upnp_thread->join(); |
|
delete upnp_thread; |
|
} |
|
upnp_thread = new boost::thread(boost::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort)); |
|
} |
|
else if (upnp_thread) { |
|
upnp_thread->interrupt(); |
|
upnp_thread->join(); |
|
delete upnp_thread; |
|
upnp_thread = NULL; |
|
} |
|
} |
|
|
|
#else |
|
void MapPort(bool) |
|
{ |
|
// Intentionally left blank. |
|
} |
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
static std::string GetDNSHost(const CDNSSeedData& data, ServiceFlags* requiredServiceBits) |
|
{ |
|
//use default host for non-filter-capable seeds or if we use the default service bits (NODE_NETWORK) |
|
if (!data.supportsServiceBitsFiltering || *requiredServiceBits == NODE_NETWORK) { |
|
*requiredServiceBits = NODE_NETWORK; |
|
return data.host; |
|
} |
|
|
|
// See chainparams.cpp, most dnsseeds only support one or two possible servicebits hostnames |
|
return strprintf("x%x.%s", *requiredServiceBits, data.host); |
|
} |
|
|
|
|
|
void CConnman::ThreadDNSAddressSeed() |
|
{ |
|
// goal: only query DNS seeds if address need is acute |
|
// Avoiding DNS seeds when we don't need them improves user privacy by |
|
// creating fewer identifying DNS requests, reduces trust by giving seeds |
|
// less influence on the network topology, and reduces traffic to the seeds. |
|
if ((addrman.size() > 0) && |
|
(!GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) { |
|
if (!interruptNet.sleep_for(std::chrono::seconds(11))) |
|
return; |
|
|
|
LOCK(cs_vNodes); |
|
int nRelevant = 0; |
|
for (auto pnode : vNodes) { |
|
nRelevant += pnode->fSuccessfullyConnected && ((pnode->nServices & nRelevantServices) == nRelevantServices); |
|
} |
|
if (nRelevant >= 2) { |
|
LogPrintf("P2P peers available. Skipped DNS seeding.\n"); |
|
return; |
|
} |
|
} |
|
|
|
const std::vector<CDNSSeedData> &vSeeds = Params().DNSSeeds(); |
|
int found = 0; |
|
|
|
LogPrintf("Loading addresses from DNS seeds (could take a while)\n"); |
|
|
|
BOOST_FOREACH(const CDNSSeedData &seed, vSeeds) { |
|
if (HaveNameProxy()) { |
|
AddOneShot(seed.host); |
|
} else { |
|
std::vector<CNetAddr> vIPs; |
|
std::vector<CAddress> vAdd; |
|
ServiceFlags requiredServiceBits = nRelevantServices; |
|
if (LookupHost(GetDNSHost(seed, &requiredServiceBits).c_str(), vIPs, 0, true)) |
|
{ |
|
BOOST_FOREACH(const CNetAddr& ip, vIPs) |
|
{ |
|
int nOneDay = 24*3600; |
|
CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits); |
|
addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old |
|
vAdd.push_back(addr); |
|
found++; |
|
} |
|
} |
|
// TODO: The seed name resolve may fail, yielding an IP of [::], which results in |
|
// addrman assigning the same source to results from different seeds. |
|
// This should switch to a hard-coded stable dummy IP for each seed name, so that the |
|
// resolve is not required at all. |
|
if (!vIPs.empty()) { |
|
CService seedSource; |
|
Lookup(seed.name.c_str(), seedSource, 0, true); |
|
addrman.Add(vAdd, seedSource); |
|
} |
|
} |
|
} |
|
|
|
LogPrintf("%d addresses found from DNS seeds\n", found); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void CConnman::DumpAddresses() |
|
{ |
|
int64_t nStart = GetTimeMillis(); |
|
|
|
CAddrDB adb; |
|
adb.Write(addrman); |
|
|
|
LogPrint("net", "Flushed %d addresses to peers.dat %dms\n", |
|
addrman.size(), GetTimeMillis() - nStart); |
|
} |
|
|
|
void CConnman::DumpData() |
|
{ |
|
DumpAddresses(); |
|
DumpBanlist(); |
|
} |
|
|
|
void CConnman::ProcessOneShot() |
|
{ |
|
std::string strDest; |
|
{ |
|
LOCK(cs_vOneShots); |
|
if (vOneShots.empty()) |
|
return; |
|
strDest = vOneShots.front(); |
|
vOneShots.pop_front(); |
|
} |
|
CAddress addr; |
|
CSemaphoreGrant grant(*semOutbound, true); |
|
if (grant) { |
|
if (!OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true)) |
|
AddOneShot(strDest); |
|
} |
|
} |
|
|
|
void CConnman::ThreadOpenConnections() |
|
{ |
|
// Connect to specific addresses |
|
if (mapMultiArgs.count("-connect") && mapMultiArgs.at("-connect").size() > 0) |
|
{ |
|
for (int64_t nLoop = 0;; nLoop++) |
|
{ |
|
ProcessOneShot(); |
|
BOOST_FOREACH(const std::string& strAddr, mapMultiArgs.at("-connect")) |
|
{ |
|
CAddress addr(CService(), NODE_NONE); |
|
OpenNetworkConnection(addr, false, NULL, strAddr.c_str()); |
|
for (int i = 0; i < 10 && i < nLoop; i++) |
|
{ |
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) |
|
return; |
|
} |
|
} |
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) |
|
return; |
|
} |
|
} |
|
|
|
// Initiate network connections |
|
int64_t nStart = GetTime(); |
|
|
|
// Minimum time before next feeler connection (in microseconds). |
|
int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL); |
|
while (!interruptNet) |
|
{ |
|
ProcessOneShot(); |
|
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) |
|
return; |
|
|
|
CSemaphoreGrant grant(*semOutbound); |
|
if (interruptNet) |
|
return; |
|
|
|
// Add seed nodes if DNS seeds are all down (an infrastructure attack?). |
|
if (addrman.size() == 0 && (GetTime() - nStart > 60)) { |
|
static bool done = false; |
|
if (!done) { |
|
LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n"); |
|
CNetAddr local; |
|
LookupHost("127.0.0.1", local, false); |
|
addrman.Add(convertSeed6(Params().FixedSeeds()), local); |
|
done = true; |
|
} |
|
} |
|
|
|
// |
|
// Choose an address to connect to based on most recently seen |
|
// |
|
CAddress addrConnect; |
|
|
|
// Only connect out to one peer per network group (/16 for IPv4). |
|
// Do this here so we don't have to critsect vNodes inside mapAddresses critsect. |
|
int nOutbound = 0; |
|
std::set<std::vector<unsigned char> > setConnected; |
|
{ |
|
LOCK(cs_vNodes); |
|
BOOST_FOREACH(CNode* pnode, vNodes) { |
|
if (!pnode->fInbound && !pnode->fAddnode) { |
|
// Netgroups for inbound and addnode peers are not excluded because our goal here |
|
// is to not use multiple of our limited outbound slots on a single netgroup |
|
// but inbound and addnode peers do not use our outbound slots. Inbound peers |
|
// also have the added issue that they're attacker controlled and could be used |
|
// to prevent us from connecting to particular hosts if we used them here. |
|
setConnected.insert(pnode->addr.GetGroup()); |
|
nOutbound++; |
|
} |
|
} |
|
} |
|
|
|
// Feeler Connections |
|
// |
|
// Design goals: |
|
// * Increase the number of connectable addresses in the tried table. |
|
// |
|
// Method: |
|
// * Choose a random address from new and attempt to connect to it if we can connect |
|
// successfully it is added to tried. |
|
// * Start attempting feeler connections only after node finishes making outbound |
|
// connections. |
|
// * Only make a feeler connection once every few minutes. |
|
// |
|
bool fFeeler = false; |
|
if (nOutbound >= nMaxOutbound) { |
|
int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds). |
|
if (nTime > nNextFeeler) { |
|
nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL); |
|
fFeeler = true; |
|
} else { |
|
continue; |
|
} |
|
} |
|
|
|
int64_t nANow = GetAdjustedTime(); |
|
int nTries = 0; |
|
while (!interruptNet) |
|
{ |
|
CAddrInfo addr = addrman.Select(fFeeler); |
|
|
|
// if we selected an invalid address, restart |
|
if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr)) |
|
break; |
|
|
|
// If we didn't find an appropriate destination after trying 100 addresses fetched from addrman, |
|
// stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates |
|
// already-connected network ranges, ...) before trying new addrman addresses. |
|
nTries++; |
|
if (nTries > 100) |
|
break; |
|
|
|
if (IsLimited(addr)) |
|
continue; |
|
|
|
// only connect to full nodes |
|
if ((addr.nServices & REQUIRED_SERVICES) != REQUIRED_SERVICES) |
|
continue; |
|
|
|
// only consider very recently tried nodes after 30 failed attempts |
|
if (nANow - addr.nLastTry < 600 && nTries < 30) |
|
continue; |
|
|
|
// only consider nodes missing relevant services after 40 failed attempts and only if less than half the outbound are up. |
|
if ((addr.nServices & nRelevantServices) != nRelevantServices && (nTries < 40 || nOutbound >= (nMaxOutbound >> 1))) |
|
continue; |
|
|
|
// do not allow non-default ports, unless after 50 invalid addresses selected already |
|
if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50) |
|
continue; |
|
|
|
addrConnect = addr; |
|
break; |
|
} |
|
|
|
if (addrConnect.IsValid()) { |
|
|
|
if (fFeeler) { |
|
// Add small amount of random noise before connection to avoid synchronization. |
|
int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000); |
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(randsleep))) |
|
return; |
|
LogPrint("net", "Making feeler connection to %s\n", addrConnect.ToString()); |
|
} |
|
|
|
OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, NULL, false, fFeeler); |
|
} |
|
} |
|
} |
|
|
|
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo() |
|
{ |
|
std::vector<AddedNodeInfo> ret; |
|
|
|
std::list<std::string> lAddresses(0); |
|
{ |
|
LOCK(cs_vAddedNodes); |
|
ret.reserve(vAddedNodes.size()); |
|
BOOST_FOREACH(const std::string& strAddNode, vAddedNodes) |
|
lAddresses.push_back(strAddNode); |
|
} |
|
|
|
|
|
// Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService |
|
std::map<CService, bool> mapConnected; |
|
std::map<std::string, std::pair<bool, CService>> mapConnectedByName; |
|
{ |
|
LOCK(cs_vNodes); |
|
for (const CNode* pnode : vNodes) { |
|
if (pnode->addr.IsValid()) { |
|
mapConnected[pnode->addr] = pnode->fInbound; |
|
} |
|
std::string addrName = pnode->GetAddrName(); |
|
if (!addrName.empty()) { |
|
mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->fInbound, static_cast<const CService&>(pnode->addr)); |
|
} |
|
} |
|
} |
|
|
|
BOOST_FOREACH(const std::string& strAddNode, lAddresses) { |
|
CService service(LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort())); |
|
if (service.IsValid()) { |
|
// strAddNode is an IP:port |
|
auto it = mapConnected.find(service); |
|
if (it != mapConnected.end()) { |
|
ret.push_back(AddedNodeInfo{strAddNode, service, true, it->second}); |
|
} else { |
|
ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false}); |
|
} |
|
} else { |
|
// strAddNode is a name |
|
auto it = mapConnectedByName.find(strAddNode); |
|
if (it != mapConnectedByName.end()) { |
|
ret.push_back(AddedNodeInfo{strAddNode, it->second.second, true, it->second.first}); |
|
} else { |
|
ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false}); |
|
} |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
void CConnman::ThreadOpenAddedConnections() |
|
{ |
|
{ |
|
LOCK(cs_vAddedNodes); |
|
if (mapMultiArgs.count("-addnode")) |
|
vAddedNodes = mapMultiArgs.at("-addnode"); |
|
} |
|
|
|
while (true) |
|
{ |
|
CSemaphoreGrant grant(*semAddnode); |
|
std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(); |
|
bool tried = false; |
|
for (const AddedNodeInfo& info : vInfo) { |
|
if (!info.fConnected) { |
|
if (!grant.TryAcquire()) { |
|
// If we've used up our semaphore and need a new one, lets not wait here since while we are waiting |
|
// the addednodeinfo state might change. |
|
break; |
|
} |
|
// If strAddedNode is an IP/port, decode it immediately, so |
|
// OpenNetworkConnection can detect existing connections to that IP/port. |
|
tried = true; |
|
CService service(LookupNumeric(info.strAddedNode.c_str(), Params().GetDefaultPort())); |
|
OpenNetworkConnection(CAddress(service, NODE_NONE), false, &grant, info.strAddedNode.c_str(), false, false, true); |
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) |
|
return; |
|
} |
|
} |
|
// Retry every 60 seconds if a connection was attempted, otherwise two seconds |
|
if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2))) |
|
return; |
|
} |
|
} |
|
|
|
// if successful, this moves the passed grant to the constructed node |
|
bool CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler, bool fAddnode) |
|
{ |
|
// |
|
// Initiate outbound network connection |
|
// |
|
if (interruptNet) { |
|
return false; |
|
} |
|
if (!fNetworkActive) { |
|
return false; |
|
} |
|
if (!pszDest) { |
|
if (IsLocal(addrConnect) || |
|
FindNode((CNetAddr)addrConnect) || IsBanned(addrConnect) || |
|
FindNode(addrConnect.ToStringIPPort())) |
|
return false; |
|
} else if (FindNode(std::string(pszDest))) |
|
return false; |
|
|
|
CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure); |
|
|
|
if (!pnode) |
|
return false; |
|
if (grantOutbound) |
|
grantOutbound->MoveTo(pnode->grantOutbound); |
|
if (fOneShot) |
|
pnode->fOneShot = true; |
|
if (fFeeler) |
|
pnode->fFeeler = true; |
|
if (fAddnode) |
|
pnode->fAddnode = true; |
|
|
|
GetNodeSignals().InitializeNode(pnode, *this); |
|
{ |
|
LOCK(cs_vNodes); |
|
vNodes.push_back(pnode); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
void CConnman::ThreadMessageHandler() |
|
{ |
|
while (!flagInterruptMsgProc) |
|
{ |
|
std::vector<CNode*> vNodesCopy; |
|
{ |
|
LOCK(cs_vNodes); |
|
vNodesCopy = vNodes; |
|
BOOST_FOREACH(CNode* pnode, vNodesCopy) { |
|
pnode->AddRef(); |
|
} |
|
} |
|
|
|
bool fMoreWork = false; |
|
|
|
BOOST_FOREACH(CNode* pnode, vNodesCopy) |
|
{ |
|
if (pnode->fDisconnect) |
|
continue; |
|
|
|
// Receive messages |
|
bool fMoreNodeWork = GetNodeSignals().ProcessMessages(pnode, *this, flagInterruptMsgProc); |
|
fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend); |
|
if (flagInterruptMsgProc) |
|
return; |
|
|
|
// Send messages |
|
{ |
|
LOCK(pnode->cs_sendProcessing); |
|
GetNodeSignals().SendMessages(pnode, *this, flagInterruptMsgProc); |
|
} |
|
if (flagInterruptMsgProc) |
|
return; |
|
} |
|
|
|
{ |
|
LOCK(cs_vNodes); |
|
BOOST_FOREACH(CNode* pnode, vNodesCopy) |
|
pnode->Release(); |
|
} |
|
|
|
std::unique_lock<std::mutex> lock(mutexMsgProc); |
|
if (!fMoreWork) { |
|
condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this] { return fMsgProcWake; }); |
|
} |
|
fMsgProcWake = false; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
bool CConnman::BindListenPort(const CService &addrBind, std::string& strError, bool fWhitelisted) |
|
{ |
|
strError = ""; |
|
int nOne = 1; |
|
|
|
// Create socket for listening for incoming connections |
|
struct sockaddr_storage sockaddr; |
|
socklen_t len = sizeof(sockaddr); |
|
if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len)) |
|
{ |
|
strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString()); |
|
LogPrintf("%s\n", strError); |
|
return false; |
|
} |
|
|
|
SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); |
|
if (hListenSocket == INVALID_SOCKET) |
|
{ |
|
strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())); |
|
LogPrintf("%s\n", strError); |
|
return false; |
|
} |
|
if (!IsSelectableSocket(hListenSocket)) |
|
{ |
|
strError = "Error: Couldn't create a listenable socket for incoming connections"; |
|
LogPrintf("%s\n", strError); |
|
return false; |
|
} |
|
|
|
|
|
#ifndef WIN32 |
|
#ifdef SO_NOSIGPIPE |
|
// Different way of disabling SIGPIPE on BSD |
|
setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int)); |
|
#endif |
|
// Allow binding if the port is still in TIME_WAIT state after |
|
// the program was closed and restarted. |
|
setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int)); |
|
// Disable Nagle's algorithm |
|
setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&nOne, sizeof(int)); |
|
#else |
|
setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (const char*)&nOne, sizeof(int)); |
|
setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&nOne, sizeof(int)); |
|
#endif |
|
|
|
// Set to non-blocking, incoming connections will also inherit this |
|
if (!SetSocketNonBlocking(hListenSocket, true)) { |
|
strError = strprintf("BindListenPort: Setting listening socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError())); |
|
LogPrintf("%s\n", strError); |
|
return false; |
|
} |
|
|
|
// some systems don't have IPV6_V6ONLY but are always v6only; others do have the option |
|
// and enable it by default or not. Try to enable it, if possible. |
|
if (addrBind.IsIPv6()) { |
|
#ifdef IPV6_V6ONLY |
|
#ifdef WIN32 |
|
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int)); |
|
#else |
|
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int)); |
|
#endif |
|
#endif |
|
#ifdef WIN32 |
|
int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; |
|
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)); |
|
#endif |
|
} |
|
|
|
if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) |
|
{ |
|
int nErr = WSAGetLastError(); |
|
if (nErr == WSAEADDRINUSE) |
|
strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), _(PACKAGE_NAME)); |
|
else |
|
strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); |
|
LogPrintf("%s\n", strError); |
|
CloseSocket(hListenSocket); |
|
return false; |
|
} |
|
LogPrintf("Bound to %s\n", addrBind.ToString()); |
|
|
|
// Listen for incoming connections |
|
if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) |
|
{ |
|
strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); |
|
LogPrintf("%s\n", strError); |
|
CloseSocket(hListenSocket); |
|
return false; |
|
} |
|
|
|
vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted)); |
|
|
|
if (addrBind.IsRoutable() && fDiscover && !fWhitelisted) |
|
AddLocal(addrBind, LOCAL_BIND); |
|
|
|
return true; |
|
} |
|
|
|
void Discover(boost::thread_group& threadGroup) |
|
{ |
|
if (!fDiscover) |
|
return; |
|
|
|
#ifdef WIN32 |
|
// Get local host IP |
|
char pszHostName[256] = ""; |
|
if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) |
|
{ |
|
std::vector<CNetAddr> vaddr; |
|
if (LookupHost(pszHostName, vaddr, 0, true)) |
|
{ |
|
BOOST_FOREACH (const CNetAddr &addr, vaddr) |
|
{ |
|
if (AddLocal(addr, LOCAL_IF)) |
|
LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); |
|
} |
|
} |
|
} |
|
#else |
|
// Get local host ip |
|
struct ifaddrs* myaddrs; |
|
if (getifaddrs(&myaddrs) == 0) |
|
{ |
|
for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next) |
|
{ |
|
if (ifa->ifa_addr == NULL) continue; |
|
if ((ifa->ifa_flags & IFF_UP) == 0) continue; |
|
if (strcmp(ifa->ifa_name, "lo") == 0) continue; |
|
if (strcmp(ifa->ifa_name, "lo0") == 0) continue; |
|
if (ifa->ifa_addr->sa_family == AF_INET) |
|
{ |
|
struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr); |
|
CNetAddr addr(s4->sin_addr); |
|
if (AddLocal(addr, LOCAL_IF)) |
|
LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); |
|
} |
|
else if (ifa->ifa_addr->sa_family == AF_INET6) |
|
{ |
|
struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr); |
|
CNetAddr addr(s6->sin6_addr); |
|
if (AddLocal(addr, LOCAL_IF)) |
|
LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); |
|
} |
|
} |
|
freeifaddrs(myaddrs); |
|
} |
|
#endif |
|
} |
|
|
|
void CConnman::SetNetworkActive(bool active) |
|
{ |
|
if (fDebug) { |
|
LogPrint("net", "SetNetworkActive: %s\n", active); |
|
} |
|
|
|
if (!active) { |
|
fNetworkActive = false; |
|
|
|
LOCK(cs_vNodes); |
|
// Close sockets to all nodes |
|
BOOST_FOREACH(CNode* pnode, vNodes) { |
|
pnode->CloseSocketDisconnect(); |
|
} |
|
} else { |
|
fNetworkActive = true; |
|
} |
|
|
|
uiInterface.NotifyNetworkActiveChanged(fNetworkActive); |
|
} |
|
|
|
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In) : nSeed0(nSeed0In), nSeed1(nSeed1In) |
|
{ |
|
fNetworkActive = true; |
|
setBannedIsDirty = false; |
|
fAddressesInitialized = false; |
|
nLastNodeId = 0; |
|
nSendBufferMaxSize = 0; |
|
nReceiveFloodSize = 0; |
|
semOutbound = NULL; |
|
semAddnode = NULL; |
|
nMaxConnections = 0; |
|
nMaxOutbound = 0; |
|
nMaxAddnode = 0; |
|
nBestHeight = 0; |
|
clientInterface = NULL; |
|
flagInterruptMsgProc = false; |
|
} |
|
|
|
NodeId CConnman::GetNewNodeId() |
|
{ |
|
return nLastNodeId.fetch_add(1, std::memory_order_relaxed); |
|
} |
|
|
|
bool CConnman::Start(CScheduler& scheduler, std::string& strNodeError, Options connOptions) |
|
{ |
|
nTotalBytesRecv = 0; |
|
nTotalBytesSent = 0; |
|
nMaxOutboundTotalBytesSentInCycle = 0; |
|
nMaxOutboundCycleStartTime = 0; |
|
|
|
nRelevantServices = connOptions.nRelevantServices; |
|
nLocalServices = connOptions.nLocalServices; |
|
nMaxConnections = connOptions.nMaxConnections; |
|
nMaxOutbound = std::min((connOptions.nMaxOutbound), nMaxConnections); |
|
nMaxAddnode = connOptions.nMaxAddnode; |
|
nMaxFeeler = connOptions.nMaxFeeler; |
|
|
|
nSendBufferMaxSize = connOptions.nSendBufferMaxSize; |
|
nReceiveFloodSize = connOptions.nReceiveFloodSize; |
|
|
|
nMaxOutboundLimit = connOptions.nMaxOutboundLimit; |
|
nMaxOutboundTimeframe = connOptions.nMaxOutboundTimeframe; |
|
|
|
SetBestHeight(connOptions.nBestHeight); |
|
|
|
clientInterface = connOptions.uiInterface; |
|
if (clientInterface) { |
|
clientInterface->InitMessage(_("Loading P2P addresses...")); |
|
} |
|
// Load addresses from peers.dat |
|
int64_t nStart = GetTimeMillis(); |
|
{ |
|
CAddrDB adb; |
|
if (adb.Read(addrman)) |
|
LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); |
|
else { |
|
addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it |
|
LogPrintf("Invalid or missing peers.dat; recreating\n"); |
|
DumpAddresses(); |
|
} |
|
} |
|
if (clientInterface) |
|
clientInterface->InitMessage(_("Loading banlist...")); |
|
// Load addresses from banlist.dat |
|
nStart = GetTimeMillis(); |
|
CBanDB bandb; |
|
banmap_t banmap; |
|
if (bandb.Read(banmap)) { |
|
SetBanned(banmap); // thread save setter |
|
SetBannedSetDirty(false); // no need to write down, just read data |
|
SweepBanned(); // sweep out unused entries |
|
|
|
LogPrint("net", "Loaded %d banned node ips/subnets from banlist.dat %dms\n", |
|
banmap.size(), GetTimeMillis() - nStart); |
|
} else { |
|
LogPrintf("Invalid or missing banlist.dat; recreating\n"); |
|
SetBannedSetDirty(true); // force write |
|
DumpBanlist(); |
|
} |
|
|
|
uiInterface.InitMessage(_("Starting network threads...")); |
|
|
|
fAddressesInitialized = true; |
|
|
|
if (semOutbound == NULL) { |
|
// initialize semaphore |
|
semOutbound = new CSemaphore(std::min((nMaxOutbound + nMaxFeeler), nMaxConnections)); |
|
} |
|
if (semAddnode == NULL) { |
|
// initialize semaphore |
|
semAddnode = new CSemaphore(nMaxAddnode); |
|
} |
|
|
|
// |
|
// Start threads |
|
// |
|
InterruptSocks5(false); |
|
interruptNet.reset(); |
|
flagInterruptMsgProc = false; |
|
|
|
{ |
|
std::unique_lock<std::mutex> lock(mutexMsgProc); |
|
fMsgProcWake = false; |
|
} |
|
|
|
// Send and receive from sockets, accept connections |
|
threadSocketHandler = std::thread(&TraceThread<std::function<void()> >, "net", std::function<void()>(std::bind(&CConnman::ThreadSocketHandler, this))); |
|
|
|
if (!GetBoolArg("-dnsseed", true)) |
|
LogPrintf("DNS seeding disabled\n"); |
|
else |
|
threadDNSAddressSeed = std::thread(&TraceThread<std::function<void()> >, "dnsseed", std::function<void()>(std::bind(&CConnman::ThreadDNSAddressSeed, this))); |
|
|
|
// Initiate outbound connections from -addnode |
|
threadOpenAddedConnections = std::thread(&TraceThread<std::function<void()> >, "addcon", std::function<void()>(std::bind(&CConnman::ThreadOpenAddedConnections, this))); |
|
|
|
// Initiate outbound connections unless connect=0 |
|
if (!mapMultiArgs.count("-connect") || mapMultiArgs.at("-connect").size() != 1 || mapMultiArgs.at("-connect")[0] != "0") |
|
threadOpenConnections = std::thread(&TraceThread<std::function<void()> >, "opencon", std::function<void()>(std::bind(&CConnman::ThreadOpenConnections, this))); |
|
|
|
// Process messages |
|
threadMessageHandler = std::thread(&TraceThread<std::function<void()> >, "msghand", std::function<void()>(std::bind(&CConnman::ThreadMessageHandler, this))); |
|
|
|
// Dump network addresses |
|
scheduler.scheduleEvery(boost::bind(&CConnman::DumpData, this), DUMP_ADDRESSES_INTERVAL); |
|
|
|
return true; |
|
} |
|
|
|
class CNetCleanup |
|
{ |
|
public: |
|
CNetCleanup() {} |
|
|
|
~CNetCleanup() |
|
{ |
|
#ifdef WIN32 |
|
// Shutdown Windows Sockets |
|
WSACleanup(); |
|
#endif |
|
} |
|
} |
|
instance_of_cnetcleanup; |
|
|
|
void CConnman::Interrupt() |
|
{ |
|
{ |
|
std::lock_guard<std::mutex> lock(mutexMsgProc); |
|
flagInterruptMsgProc = true; |
|
} |
|
condMsgProc.notify_all(); |
|
|
|
interruptNet(); |
|
InterruptSocks5(true); |
|
|
|
if (semOutbound) |
|
for (int i=0; i<(nMaxOutbound + nMaxFeeler); i++) |
|
semOutbound->post(); |
|
} |
|
|
|
void CConnman::Stop() |
|
{ |
|
if (threadMessageHandler.joinable()) |
|
threadMessageHandler.join(); |
|
if (threadOpenConnections.joinable()) |
|
threadOpenConnections.join(); |
|
if (threadOpenAddedConnections.joinable()) |
|
threadOpenAddedConnections.join(); |
|
if (threadDNSAddressSeed.joinable()) |
|
threadDNSAddressSeed.join(); |
|
if (threadSocketHandler.joinable()) |
|
threadSocketHandler.join(); |
|
|
|
if (semAddnode) |
|
for (int i=0; i<nMaxAddnode; i++) |
|
semOutbound->post(); |
|
|
|
if (fAddressesInitialized) |
|
{ |
|
DumpData(); |
|
fAddressesInitialized = false; |
|
} |
|
|
|
// Close sockets |
|
BOOST_FOREACH(CNode* pnode, vNodes) |
|
pnode->CloseSocketDisconnect(); |
|
BOOST_FOREACH(ListenSocket& hListenSocket, vhListenSocket) |
|
if (hListenSocket.socket != INVALID_SOCKET) |
|
if (!CloseSocket(hListenSocket.socket)) |
|
LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); |
|
|
|
// clean up some globals (to help leak detection) |
|
BOOST_FOREACH(CNode *pnode, vNodes) { |
|
DeleteNode(pnode); |
|
} |
|
BOOST_FOREACH(CNode *pnode, vNodesDisconnected) { |
|
DeleteNode(pnode); |
|
} |
|
vNodes.clear(); |
|
vNodesDisconnected.clear(); |
|
vhListenSocket.clear(); |
|
delete semOutbound; |
|
semOutbound = NULL; |
|
delete semAddnode; |
|
semAddnode = NULL; |
|
} |
|
|
|
void CConnman::DeleteNode(CNode* pnode) |
|
{ |
|
assert(pnode); |
|
bool fUpdateConnectionTime = false; |
|
GetNodeSignals().FinalizeNode(pnode->GetId(), fUpdateConnectionTime); |
|
if(fUpdateConnectionTime) |
|
addrman.Connected(pnode->addr); |
|
delete pnode; |
|
} |
|
|
|
CConnman::~CConnman() |
|
{ |
|
Interrupt(); |
|
Stop(); |
|
} |
|
|
|
size_t CConnman::GetAddressCount() const |
|
{ |
|
return addrman.size(); |
|
} |
|
|
|
void CConnman::SetServices(const CService &addr, ServiceFlags nServices) |
|
{ |
|
addrman.SetServices(addr, nServices); |
|
} |
|
|
|
void CConnman::MarkAddressGood(const CAddress& addr) |
|
{ |
|
addrman.Good(addr); |
|
} |
|
|
|
void CConnman::AddNewAddress(const CAddress& addr, const CAddress& addrFrom, int64_t nTimePenalty) |
|
{ |
|
addrman.Add(addr, addrFrom, nTimePenalty); |
|
} |
|
|
|
void CConnman::AddNewAddresses(const std::vector<CAddress>& vAddr, const CAddress& addrFrom, int64_t nTimePenalty) |
|
{ |
|
addrman.Add(vAddr, addrFrom, nTimePenalty); |
|
} |
|
|
|
std::vector<CAddress> CConnman::GetAddresses() |
|
{ |
|
return addrman.GetAddr(); |
|
} |
|
|
|
bool CConnman::AddNode(const std::string& strNode) |
|
{ |
|
LOCK(cs_vAddedNodes); |
|
for(std::vector<std::string>::const_iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) { |
|
if (strNode == *it) |
|
return false; |
|
} |
|
|
|
vAddedNodes.push_back(strNode); |
|
return true; |
|
} |
|
|
|
bool CConnman::RemoveAddedNode(const std::string& strNode) |
|
{ |
|
LOCK(cs_vAddedNodes); |
|
for(std::vector<std::string>::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) { |
|
if (strNode == *it) { |
|
vAddedNodes.erase(it); |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
size_t CConnman::GetNodeCount(NumConnections flags) |
|
{ |
|
LOCK(cs_vNodes); |
|
if (flags == CConnman::CONNECTIONS_ALL) // Shortcut if we want total |
|
return vNodes.size(); |
|
|
|
int nNum = 0; |
|
for(std::vector<CNode*>::const_iterator it = vNodes.begin(); it != vNodes.end(); ++it) |
|
if (flags & ((*it)->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) |
|
nNum++; |
|
|
|
return nNum; |
|
} |
|
|
|
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) |
|
{ |
|
vstats.clear(); |
|
LOCK(cs_vNodes); |
|
vstats.reserve(vNodes.size()); |
|
for(std::vector<CNode*>::iterator it = vNodes.begin(); it != vNodes.end(); ++it) { |
|
CNode* pnode = *it; |
|
vstats.emplace_back(); |
|
pnode->copyStats(vstats.back()); |
|
} |
|
} |
|
|
|
bool CConnman::DisconnectNode(const std::string& strNode) |
|
{ |
|
LOCK(cs_vNodes); |
|
if (CNode* pnode = FindNode(strNode)) { |
|
pnode->fDisconnect = true; |
|
return true; |
|
} |
|
return false; |
|
} |
|
bool CConnman::DisconnectNode(NodeId id) |
|
{ |
|
LOCK(cs_vNodes); |
|
for(CNode* pnode : vNodes) { |
|
if (id == pnode->id) { |
|
pnode->fDisconnect = true; |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
void CConnman::RecordBytesRecv(uint64_t bytes) |
|
{ |
|
LOCK(cs_totalBytesRecv); |
|
nTotalBytesRecv += bytes; |
|
} |
|
|
|
void CConnman::RecordBytesSent(uint64_t bytes) |
|
{ |
|
LOCK(cs_totalBytesSent); |
|
nTotalBytesSent += bytes; |
|
|
|
uint64_t now = GetTime(); |
|
if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) |
|
{ |
|
// timeframe expired, reset cycle |
|
nMaxOutboundCycleStartTime = now; |
|
nMaxOutboundTotalBytesSentInCycle = 0; |
|
} |
|
|
|
// TODO, exclude whitebind peers |
|
nMaxOutboundTotalBytesSentInCycle += bytes; |
|
} |
|
|
|
void CConnman::SetMaxOutboundTarget(uint64_t limit) |
|
{ |
|
LOCK(cs_totalBytesSent); |
|
nMaxOutboundLimit = limit; |
|
} |
|
|
|
uint64_t CConnman::GetMaxOutboundTarget() |
|
{ |
|
LOCK(cs_totalBytesSent); |
|
return nMaxOutboundLimit; |
|
} |
|
|
|
uint64_t CConnman::GetMaxOutboundTimeframe() |
|
{ |
|
LOCK(cs_totalBytesSent); |
|
return nMaxOutboundTimeframe; |
|
} |
|
|
|
uint64_t CConnman::GetMaxOutboundTimeLeftInCycle() |
|
{ |
|
LOCK(cs_totalBytesSent); |
|
if (nMaxOutboundLimit == 0) |
|
return 0; |
|
|
|
if (nMaxOutboundCycleStartTime == 0) |
|
return nMaxOutboundTimeframe; |
|
|
|
uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe; |
|
uint64_t now = GetTime(); |
|
return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime(); |
|
} |
|
|
|
void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe) |
|
{ |
|
LOCK(cs_totalBytesSent); |
|
if (nMaxOutboundTimeframe != timeframe) |
|
{ |
|
// reset measure-cycle in case of changing |
|
// the timeframe |
|
nMaxOutboundCycleStartTime = GetTime(); |
|
} |
|
nMaxOutboundTimeframe = timeframe; |
|
} |
|
|
|
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) |
|
{ |
|
LOCK(cs_totalBytesSent); |
|
if (nMaxOutboundLimit == 0) |
|
return false; |
|
|
|
if (historicalBlockServingLimit) |
|
{ |
|
// keep a large enough buffer to at least relay each block once |
|
uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle(); |
|
uint64_t buffer = timeLeftInCycle / 600 * MAX_BLOCK_SERIALIZED_SIZE; |
|
if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) |
|
return true; |
|
} |
|
else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) |
|
return true; |
|
|
|
return false; |
|
} |
|
|
|
uint64_t CConnman::GetOutboundTargetBytesLeft() |
|
{ |
|
LOCK(cs_totalBytesSent); |
|
if (nMaxOutboundLimit == 0) |
|
return 0; |
|
|
|
return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle; |
|
} |
|
|
|
uint64_t CConnman::GetTotalBytesRecv() |
|
{ |
|
LOCK(cs_totalBytesRecv); |
|
return nTotalBytesRecv; |
|
} |
|
|
|
uint64_t CConnman::GetTotalBytesSent() |
|
{ |
|
LOCK(cs_totalBytesSent); |
|
return nTotalBytesSent; |
|
} |
|
|
|
ServiceFlags CConnman::GetLocalServices() const |
|
{ |
|
return nLocalServices; |
|
} |
|
|
|
void CConnman::SetBestHeight(int height) |
|
{ |
|
nBestHeight.store(height, std::memory_order_release); |
|
} |
|
|
|
int CConnman::GetBestHeight() const |
|
{ |
|
return nBestHeight.load(std::memory_order_acquire); |
|
} |
|
|
|
unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; } |
|
unsigned int CConnman::GetSendBufferSize() const{ return nSendBufferMaxSize; } |
|
|
|
CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const std::string& addrNameIn, bool fInboundIn) : |
|
nTimeConnected(GetSystemTimeInSeconds()), |
|
addr(addrIn), |
|
fInbound(fInboundIn), |
|
id(idIn), |
|
nKeyedNetGroup(nKeyedNetGroupIn), |
|
addrKnown(5000, 0.001), |
|
filterInventoryKnown(50000, 0.000001), |
|
nLocalHostNonce(nLocalHostNonceIn), |
|
nLocalServices(nLocalServicesIn), |
|
nMyStartingHeight(nMyStartingHeightIn), |
|
nSendVersion(0) |
|
{ |
|
nServices = NODE_NONE; |
|
nServicesExpected = NODE_NONE; |
|
hSocket = hSocketIn; |
|
nRecvVersion = INIT_PROTO_VERSION; |
|
nLastSend = 0; |
|
nLastRecv = 0; |
|
nSendBytes = 0; |
|
nRecvBytes = 0; |
|
nTimeOffset = 0; |
|
addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; |
|
nVersion = 0; |
|
strSubVer = ""; |
|
fWhitelisted = false; |
|
fOneShot = false; |
|
fAddnode = false; |
|
fClient = false; // set by version message |
|
fFeeler = false; |
|
fSuccessfullyConnected = false; |
|
fDisconnect = false; |
|
nRefCount = 0; |
|
nSendSize = 0; |
|
nSendOffset = 0; |
|
hashContinue = uint256(); |
|
nStartingHeight = -1; |
|
filterInventoryKnown.reset(); |
|
fSendMempool = false; |
|
fGetAddr = false; |
|
nNextLocalAddrSend = 0; |
|
nNextAddrSend = 0; |
|
nNextInvSend = 0; |
|
fRelayTxes = false; |
|
fSentAddr = false; |
|
pfilter = new CBloomFilter(); |
|
timeLastMempoolReq = 0; |
|
nLastBlockTime = 0; |
|
nLastTXTime = 0; |
|
nPingNonceSent = 0; |
|
nPingUsecStart = 0; |
|
nPingUsecTime = 0; |
|
fPingQueued = false; |
|
nMinPingUsecTime = std::numeric_limits<int64_t>::max(); |
|
minFeeFilter = 0; |
|
lastSentFeeFilter = 0; |
|
nextSendTimeFeeFilter = 0; |
|
fPauseRecv = false; |
|
fPauseSend = false; |
|
nProcessQueueSize = 0; |
|
|
|
BOOST_FOREACH(const std::string &msg, getAllNetMessageTypes()) |
|
mapRecvBytesPerMsgCmd[msg] = 0; |
|
mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0; |
|
|
|
if (fLogIPs) |
|
LogPrint("net", "Added connection to %s peer=%d\n", addrName, id); |
|
else |
|
LogPrint("net", "Added connection peer=%d\n", id); |
|
} |
|
|
|
CNode::~CNode() |
|
{ |
|
CloseSocket(hSocket); |
|
|
|
if (pfilter) |
|
delete pfilter; |
|
} |
|
|
|
void CNode::AskFor(const CInv& inv) |
|
{ |
|
if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ) |
|
return; |
|
// a peer may not have multiple non-responded queue positions for a single inv item |
|
if (!setAskFor.insert(inv.hash).second) |
|
return; |
|
|
|
// We're using mapAskFor as a priority queue, |
|
// the key is the earliest time the request can be sent |
|
int64_t nRequestTime; |
|
limitedmap<uint256, int64_t>::const_iterator it = mapAlreadyAskedFor.find(inv.hash); |
|
if (it != mapAlreadyAskedFor.end()) |
|
nRequestTime = it->second; |
|
else |
|
nRequestTime = 0; |
|
LogPrint("net", "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime/1000000), id); |
|
|
|
// Make sure not to reuse time indexes to keep things in the same order |
|
int64_t nNow = GetTimeMicros() - 1000000; |
|
static int64_t nLastTime; |
|
++nLastTime; |
|
nNow = std::max(nNow, nLastTime); |
|
nLastTime = nNow; |
|
|
|
// Each retry is 2 minutes after the last |
|
nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow); |
|
if (it != mapAlreadyAskedFor.end()) |
|
mapAlreadyAskedFor.update(it, nRequestTime); |
|
else |
|
mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime)); |
|
mapAskFor.insert(std::make_pair(nRequestTime, inv)); |
|
} |
|
|
|
bool CConnman::NodeFullyConnected(const CNode* pnode) |
|
{ |
|
return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect; |
|
} |
|
|
|
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg) |
|
{ |
|
size_t nMessageSize = msg.data.size(); |
|
size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE; |
|
LogPrint("net", "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.command.c_str()), nMessageSize, pnode->id); |
|
|
|
std::vector<unsigned char> serializedHeader; |
|
serializedHeader.reserve(CMessageHeader::HEADER_SIZE); |
|
uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize); |
|
CMessageHeader hdr(Params().MessageStart(), msg.command.c_str(), nMessageSize); |
|
memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE); |
|
|
|
CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr}; |
|
|
|
size_t nBytesSent = 0; |
|
{ |
|
LOCK(pnode->cs_vSend); |
|
bool optimisticSend(pnode->vSendMsg.empty()); |
|
|
|
//log total amount of bytes per command |
|
pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize; |
|
pnode->nSendSize += nTotalSize; |
|
|
|
if (pnode->nSendSize > nSendBufferMaxSize) |
|
pnode->fPauseSend = true; |
|
pnode->vSendMsg.push_back(std::move(serializedHeader)); |
|
if (nMessageSize) |
|
pnode->vSendMsg.push_back(std::move(msg.data)); |
|
|
|
// If write queue empty, attempt "optimistic write" |
|
if (optimisticSend == true) |
|
nBytesSent = SocketSendData(pnode); |
|
} |
|
if (nBytesSent) |
|
RecordBytesSent(nBytesSent); |
|
} |
|
|
|
bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func) |
|
{ |
|
CNode* found = nullptr; |
|
LOCK(cs_vNodes); |
|
for (auto&& pnode : vNodes) { |
|
if(pnode->id == id) { |
|
found = pnode; |
|
break; |
|
} |
|
} |
|
return found != nullptr && NodeFullyConnected(found) && func(found); |
|
} |
|
|
|
int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds) { |
|
return nNow + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5); |
|
} |
|
|
|
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const |
|
{ |
|
return CSipHasher(nSeed0, nSeed1).Write(id); |
|
} |
|
|
|
uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& ad) const |
|
{ |
|
std::vector<unsigned char> vchNetGroup(ad.GetGroup()); |
|
|
|
return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(&vchNetGroup[0], vchNetGroup.size()).Finalize(); |
|
}
|
|
|