kevacoin/test/functional/p2p-segwit.py
Jonas Schnelli d889c036cd
Merge #11403: SegWit wallet support
b224a47a1 Add address_types test (Pieter Wuille)
7ee54fd7c Support downgrading after recovered keypool witness keys (Pieter Wuille)
940a21932 SegWit wallet support (Pieter Wuille)
f37c64e47 Implicitly know about P2WPKH redeemscripts (Pieter Wuille)
57273f2b3 [test] Serialize CTransaction with witness by default (Pieter Wuille)
cf2c0b6f5 Support P2WPKH and P2SH-P2WPKH in dumpprivkey (Pieter Wuille)
37c03d3e0 Support P2WPKH addresses in create/addmultisig (Pieter Wuille)
3eaa003c8 Extend validateaddress information for P2SH-embedded witness (Pieter Wuille)
30a27dc5b Expose method to find key for a single-key destination (Pieter Wuille)
985c79552 Improve witness destination types and use them more (Pieter Wuille)
cbe197470 [refactor] GetAccount{PubKey,Address} -> GetAccountDestination (Pieter Wuille)
0c8ea6380 Abstract out IsSolvable from Witnessifier (Pieter Wuille)

Pull request description:

  This implements a minimum viable implementation of SegWit wallet support, based on top of #11389, and includes part of the functionality from #11089.

  Two new configuration options are added:
  * `-addresstype`, with options `legacy`, `p2sh`, and `bech32`. It controls what kind of addresses are produced by `getnewaddress`, `getaccountaddress`, and `createmultisigaddress`.
  * `-changetype`, with the same options, and by default equal to `-addresstype`, that controls what kind of change is used.

  All wallet private and public keys can be used for any type of address. Support for address types dependent on different derivation paths will need a major overhaul of how our internal detection of outputs work. I expect that that will happen for a next major version.

  The above also applies to imported keys, as having a distinction there but not for normal operations is a disaster for testing, and probably for comprehension of users. This has some ugly effects, like needing to associate the provided label to `importprivkey` with each style address for the corresponding key.

  To deal with witness outputs requiring a corresponding redeemscript in wallet, three approaches are used:
  * All SegWit addresses created through `getnewaddress` or multisig RPCs explicitly get their redeemscripts added to the wallet file. This means that downgrading after creating a witness address will work, as long as the wallet file is up to date.
  * All SegWit keys in the wallet get an _implicit_ redeemscript added, without it being written to the file. This means recovery of an old backup will work, as long as you use new software.
  * All keypool keys that are seen used in transactions explicitly get their redeemscripts added to the wallet files. This means that downgrading after recovering from a backup that includes a witness address will work.

  These approaches correspond to solutions 3a, 1a, and 5a respectively from https://gist.github.com/sipa/125cfa1615946d0c3f3eec2ad7f250a2. As argued there, there is no full solution for dealing with the case where you both downgrade and restore a backup, so that's also not implemented.

  `dumpwallet`, `importwallet`, `importmulti`, `signmessage` and `verifymessage` don't work with SegWit addresses yet. They're remaining TODOs, for this PR or a follow-up. Because of that, several tests unexpectedly run with `-addresstype=legacy` for now.

Tree-SHA512: d425dbe517c0422061ab8dacdc3a6ae47da071450932ed992c79559d922dff7b2574a31a8c94feccd3761c1dffb6422c50055e6dca8e3cf94a169bc95e39e959
2018-01-10 20:55:41 -10:00

1951 lines
90 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2016-2017 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test segwit transactions and blocks on P2P network."""
from test_framework.mininode import *
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
from test_framework.script import *
from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment, get_witness_script, WITNESS_COMMITMENT_HEADER
from test_framework.key import CECKey, CPubKey
import time
import random
from binascii import hexlify
# The versionbit bit used to signal activation of SegWit
VB_WITNESS_BIT = 1
VB_PERIOD = 144
VB_TOP_BITS = 0x20000000
MAX_SIGOP_COST = 80000
# Calculate the virtual size of a witness block:
# (base + witness/4)
def get_virtual_size(witness_block):
base_size = len(witness_block.serialize(with_witness=False))
total_size = len(witness_block.serialize(with_witness=True))
# the "+3" is so we round up
vsize = int((3*base_size + total_size + 3)/4)
return vsize
def test_transaction_acceptance(rpc, p2p, tx, with_witness, accepted, reason=None):
"""Send a transaction to the node and check that it's accepted to the mempool
- Submit the transaction over the p2p interface
- use the getrawmempool rpc to check for acceptance."""
tx_message = msg_tx(tx)
if with_witness:
tx_message = msg_witness_tx(tx)
p2p.send_message(tx_message)
p2p.sync_with_ping()
assert_equal(tx.hash in rpc.getrawmempool(), accepted)
if (reason != None and not accepted):
# Check the rejection reason as well.
with mininode_lock:
assert_equal(p2p.last_message["reject"].reason, reason)
def test_witness_block(rpc, p2p, block, accepted, with_witness=True):
"""Send a block to the node and check that it's accepted
- Submit the block over the p2p interface
- use the getbestblockhash rpc to check for acceptance."""
if with_witness:
p2p.send_message(msg_witness_block(block))
else:
p2p.send_message(msg_block(block))
p2p.sync_with_ping()
assert_equal(rpc.getbestblockhash() == block.hash, accepted)
class TestNode(P2PInterface):
def __init__(self):
super().__init__()
self.getdataset = set()
def on_getdata(self, message):
for inv in message.inv:
self.getdataset.add(inv.hash)
def announce_tx_and_wait_for_getdata(self, tx, timeout=60):
with mininode_lock:
self.last_message.pop("getdata", None)
self.send_message(msg_inv(inv=[CInv(1, tx.sha256)]))
self.wait_for_getdata(timeout)
def announce_block_and_wait_for_getdata(self, block, use_header, timeout=60):
with mininode_lock:
self.last_message.pop("getdata", None)
self.last_message.pop("getheaders", None)
msg = msg_headers()
msg.headers = [ CBlockHeader(block) ]
if use_header:
self.send_message(msg)
else:
self.send_message(msg_inv(inv=[CInv(2, block.sha256)]))
self.wait_for_getheaders()
self.send_message(msg)
self.wait_for_getdata()
def request_block(self, blockhash, inv_type, timeout=60):
with mininode_lock:
self.last_message.pop("block", None)
self.send_message(msg_getdata(inv=[CInv(inv_type, blockhash)]))
self.wait_for_block(blockhash, timeout)
return self.last_message["block"].block
# Used to keep track of anyone-can-spend outputs that we can use in the tests
class UTXO():
def __init__(self, sha256, n, nValue):
self.sha256 = sha256
self.n = n
self.nValue = nValue
# Helper for getting the script associated with a P2PKH
def GetP2PKHScript(pubkeyhash):
return CScript([CScriptOp(OP_DUP), CScriptOp(OP_HASH160), pubkeyhash, CScriptOp(OP_EQUALVERIFY), CScriptOp(OP_CHECKSIG)])
# Add signature for a P2PK witness program.
def sign_P2PK_witness_input(script, txTo, inIdx, hashtype, value, key):
tx_hash = SegwitVersion1SignatureHash(script, txTo, inIdx, hashtype, value)
signature = key.sign(tx_hash) + chr(hashtype).encode('latin-1')
txTo.wit.vtxinwit[inIdx].scriptWitness.stack = [signature, script]
txTo.rehash()
class SegWitTest(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 3
# This test tests SegWit both pre and post-activation, so use the normal BIP9 activation.
self.extra_args = [["-whitelist=127.0.0.1", "-vbparams=segwit:0:999999999999"], ["-whitelist=127.0.0.1", "-acceptnonstdtxn=0", "-vbparams=segwit:0:999999999999"], ["-whitelist=127.0.0.1", "-vbparams=segwit:0:0"]]
def setup_network(self):
self.setup_nodes()
connect_nodes(self.nodes[0], 1)
connect_nodes(self.nodes[0], 2)
self.sync_all()
''' Helpers '''
# Build a block on top of node0's tip.
def build_next_block(self, nVersion=4):
tip = self.nodes[0].getbestblockhash()
height = self.nodes[0].getblockcount() + 1
block_time = self.nodes[0].getblockheader(tip)["mediantime"] + 1
block = create_block(int(tip, 16), create_coinbase(height), block_time)
block.nVersion = nVersion
block.rehash()
return block
# Adds list of transactions to block, adds witness commitment, then solves.
def update_witness_block_with_transactions(self, block, tx_list, nonce=0):
block.vtx.extend(tx_list)
add_witness_commitment(block, nonce)
block.solve()
return
''' Individual tests '''
def test_witness_services(self):
self.log.info("Verifying NODE_WITNESS service bit")
assert((self.test_node.nServices & NODE_WITNESS) != 0)
# See if sending a regular transaction works, and create a utxo
# to use in later tests.
def test_non_witness_transaction(self):
# Mine a block with an anyone-can-spend coinbase,
# let it mature, then try to spend it.
self.log.info("Testing non-witness transaction")
block = self.build_next_block(nVersion=1)
block.solve()
self.test_node.send_message(msg_block(block))
self.test_node.sync_with_ping() # make sure the block was processed
txid = block.vtx[0].sha256
self.nodes[0].generate(99) # let the block mature
# Create a transaction that spends the coinbase
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(txid, 0), b""))
tx.vout.append(CTxOut(49*100000000, CScript([OP_TRUE])))
tx.calc_sha256()
# Check that serializing it with or without witness is the same
# This is a sanity check of our testing framework.
assert_equal(msg_tx(tx).serialize(), msg_witness_tx(tx).serialize())
self.test_node.send_message(msg_witness_tx(tx))
self.test_node.sync_with_ping() # make sure the tx was processed
assert(tx.hash in self.nodes[0].getrawmempool())
# Save this transaction for later
self.utxo.append(UTXO(tx.sha256, 0, 49*100000000))
self.nodes[0].generate(1)
# Verify that blocks with witnesses are rejected before activation.
def test_unnecessary_witness_before_segwit_activation(self):
self.log.info("Testing behavior of unnecessary witnesses")
# For now, rely on earlier tests to have created at least one utxo for
# us to use
assert(len(self.utxo) > 0)
assert(get_bip9_status(self.nodes[0], 'segwit')['status'] != 'active')
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE])))
tx.wit.vtxinwit.append(CTxInWitness())
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)])]
# Verify the hash with witness differs from the txid
# (otherwise our testing framework must be broken!)
tx.rehash()
assert(tx.sha256 != tx.calc_sha256(with_witness=True))
# Construct a segwit-signaling block that includes the transaction.
block = self.build_next_block(nVersion=(VB_TOP_BITS|(1 << VB_WITNESS_BIT)))
self.update_witness_block_with_transactions(block, [tx])
# Sending witness data before activation is not allowed (anti-spam
# rule).
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# TODO: fix synchronization so we can test reject reason
# Right now, bitcoind delays sending reject messages for blocks
# until the future, making synchronization here difficult.
#assert_equal(self.test_node.last_message["reject"].reason, "unexpected-witness")
# But it should not be permanently marked bad...
# Resend without witness information.
self.test_node.send_message(msg_block(block))
self.test_node.sync_with_ping()
assert_equal(self.nodes[0].getbestblockhash(), block.hash)
sync_blocks(self.nodes)
# Create a p2sh output -- this is so we can pass the standardness
# rules (an anyone-can-spend OP_TRUE would be rejected, if not wrapped
# in P2SH).
p2sh_program = CScript([OP_TRUE])
p2sh_pubkey = hash160(p2sh_program)
scriptPubKey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL])
# Now check that unnecessary witnesses can't be used to blind a node
# to a transaction, eg by violating standardness checks.
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptPubKey))
tx2.rehash()
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx2, False, True)
self.nodes[0].generate(1)
sync_blocks(self.nodes)
# We'll add an unnecessary witness to this transaction that would cause
# it to be non-standard, to test that violating policy with a witness before
# segwit activation doesn't blind a node to a transaction. Transactions
# rejected for having a witness before segwit activation shouldn't be added
# to the rejection cache.
tx3 = CTransaction()
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), CScript([p2sh_program])))
tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, scriptPubKey))
tx3.wit.vtxinwit.append(CTxInWitness())
tx3.wit.vtxinwit[0].scriptWitness.stack = [b'a'*400000]
tx3.rehash()
# Note that this should be rejected for the premature witness reason,
# rather than a policy check, since segwit hasn't activated yet.
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, tx3, True, False, b'no-witness-yet')
# If we send without witness, it should be accepted.
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, tx3, False, True)
# Now create a new anyone-can-spend utxo for the next test.
tx4 = CTransaction()
tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), CScript([p2sh_program])))
tx4.vout.append(CTxOut(tx3.vout[0].nValue-1000, CScript([OP_TRUE])))
tx4.rehash()
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx3, False, True)
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx4, False, True)
self.nodes[0].generate(1)
sync_blocks(self.nodes)
# Update our utxo list; we spent the first entry.
self.utxo.pop(0)
self.utxo.append(UTXO(tx4.sha256, 0, tx4.vout[0].nValue))
# Mine enough blocks for segwit's vb state to be 'started'.
def advance_to_segwit_started(self):
height = self.nodes[0].getblockcount()
# Will need to rewrite the tests here if we are past the first period
assert(height < VB_PERIOD - 1)
# Genesis block is 'defined'.
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'defined')
# Advance to end of period, status should now be 'started'
self.nodes[0].generate(VB_PERIOD-height-1)
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started')
# Mine enough blocks to lock in segwit, but don't activate.
# TODO: we could verify that lockin only happens at the right threshold of
# signalling blocks, rather than just at the right period boundary.
def advance_to_segwit_lockin(self):
height = self.nodes[0].getblockcount()
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started')
# Advance to end of period, and verify lock-in happens at the end
self.nodes[0].generate(VB_PERIOD-1)
height = self.nodes[0].getblockcount()
assert((height % VB_PERIOD) == VB_PERIOD - 2)
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started')
self.nodes[0].generate(1)
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in')
# Mine enough blocks to activate segwit.
# TODO: we could verify that activation only happens at the right threshold
# of signalling blocks, rather than just at the right period boundary.
def advance_to_segwit_active(self):
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in')
height = self.nodes[0].getblockcount()
self.nodes[0].generate(VB_PERIOD - (height%VB_PERIOD) - 2)
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in')
self.nodes[0].generate(1)
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'active')
# This test can only be run after segwit has activated
def test_witness_commitments(self):
self.log.info("Testing witness commitments")
# First try a correct witness commitment.
block = self.build_next_block()
add_witness_commitment(block)
block.solve()
# Test the test -- witness serialization should be different
assert(msg_witness_block(block).serialize() != msg_block(block).serialize())
# This empty block should be valid.
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Try to tweak the nonce
block_2 = self.build_next_block()
add_witness_commitment(block_2, nonce=28)
block_2.solve()
# The commitment should have changed!
assert(block_2.vtx[0].vout[-1] != block.vtx[0].vout[-1])
# This should also be valid.
test_witness_block(self.nodes[0].rpc, self.test_node, block_2, accepted=True)
# Now test commitments with actual transactions
assert (len(self.utxo) > 0)
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
# Let's construct a witness program
witness_program = CScript([OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
tx.rehash()
# tx2 will spend tx1, and send back to a regular anyone-can-spend address
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program))
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program]
tx2.rehash()
block_3 = self.build_next_block()
self.update_witness_block_with_transactions(block_3, [tx, tx2], nonce=1)
# Add an extra OP_RETURN output that matches the witness commitment template,
# even though it has extra data after the incorrect commitment.
# This block should fail.
block_3.vtx[0].vout.append(CTxOut(0, CScript([OP_RETURN, WITNESS_COMMITMENT_HEADER + ser_uint256(2), 10])))
block_3.vtx[0].rehash()
block_3.hashMerkleRoot = block_3.calc_merkle_root()
block_3.rehash()
block_3.solve()
test_witness_block(self.nodes[0].rpc, self.test_node, block_3, accepted=False)
# Add a different commitment with different nonce, but in the
# right location, and with some funds burned(!).
# This should succeed (nValue shouldn't affect finding the
# witness commitment).
add_witness_commitment(block_3, nonce=0)
block_3.vtx[0].vout[0].nValue -= 1
block_3.vtx[0].vout[-1].nValue += 1
block_3.vtx[0].rehash()
block_3.hashMerkleRoot = block_3.calc_merkle_root()
block_3.rehash()
assert(len(block_3.vtx[0].vout) == 4) # 3 OP_returns
block_3.solve()
test_witness_block(self.nodes[0].rpc, self.test_node, block_3, accepted=True)
# Finally test that a block with no witness transactions can
# omit the commitment.
block_4 = self.build_next_block()
tx3 = CTransaction()
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b""))
tx3.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program))
tx3.rehash()
block_4.vtx.append(tx3)
block_4.hashMerkleRoot = block_4.calc_merkle_root()
block_4.solve()
test_witness_block(self.nodes[0].rpc, self.test_node, block_4, with_witness=False, accepted=True)
# Update available utxo's for use in later test.
self.utxo.pop(0)
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue))
def test_block_malleability(self):
self.log.info("Testing witness block malleability")
# Make sure that a block that has too big a virtual size
# because of a too-large coinbase witness is not permanently
# marked bad.
block = self.build_next_block()
add_witness_commitment(block)
block.solve()
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.append(b'a'*5000000)
assert(get_virtual_size(block) > MAX_BLOCK_BASE_SIZE)
# We can't send over the p2p network, because this is too big to relay
# TODO: repeat this test with a block that can be relayed
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
assert(self.nodes[0].getbestblockhash() != block.hash)
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.pop()
assert(get_virtual_size(block) < MAX_BLOCK_BASE_SIZE)
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
assert(self.nodes[0].getbestblockhash() == block.hash)
# Now make sure that malleating the witness nonce doesn't
# result in a block permanently marked bad.
block = self.build_next_block()
add_witness_commitment(block)
block.solve()
# Change the nonce -- should not cause the block to be permanently
# failed
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(1) ]
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Changing the witness nonce doesn't change the block hash
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(0) ]
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
def test_witness_block_size(self):
self.log.info("Testing witness block size limit")
# TODO: Test that non-witness carrying blocks can't exceed 1MB
# Skipping this test for now; this is covered in p2p-fullblocktest.py
# Test that witness-bearing blocks are limited at ceil(base + wit/4) <= 1MB.
block = self.build_next_block()
assert(len(self.utxo) > 0)
# Create a P2WSH transaction.
# The witness program will be a bunch of OP_2DROP's, followed by OP_TRUE.
# This should give us plenty of room to tweak the spending tx's
# virtual size.
NUM_DROPS = 200 # 201 max ops per script!
NUM_OUTPUTS = 50
witness_program = CScript([OP_2DROP]*NUM_DROPS + [OP_TRUE])
witness_hash = uint256_from_str(sha256(witness_program))
scriptPubKey = CScript([OP_0, ser_uint256(witness_hash)])
prevout = COutPoint(self.utxo[0].sha256, self.utxo[0].n)
value = self.utxo[0].nValue
parent_tx = CTransaction()
parent_tx.vin.append(CTxIn(prevout, b""))
child_value = int(value/NUM_OUTPUTS)
for i in range(NUM_OUTPUTS):
parent_tx.vout.append(CTxOut(child_value, scriptPubKey))
parent_tx.vout[0].nValue -= 50000
assert(parent_tx.vout[0].nValue > 0)
parent_tx.rehash()
child_tx = CTransaction()
for i in range(NUM_OUTPUTS):
child_tx.vin.append(CTxIn(COutPoint(parent_tx.sha256, i), b""))
child_tx.vout = [CTxOut(value - 100000, CScript([OP_TRUE]))]
for i in range(NUM_OUTPUTS):
child_tx.wit.vtxinwit.append(CTxInWitness())
child_tx.wit.vtxinwit[-1].scriptWitness.stack = [b'a'*195]*(2*NUM_DROPS) + [witness_program]
child_tx.rehash()
self.update_witness_block_with_transactions(block, [parent_tx, child_tx])
vsize = get_virtual_size(block)
additional_bytes = (MAX_BLOCK_BASE_SIZE - vsize)*4
i = 0
while additional_bytes > 0:
# Add some more bytes to each input until we hit MAX_BLOCK_BASE_SIZE+1
extra_bytes = min(additional_bytes+1, 55)
block.vtx[-1].wit.vtxinwit[int(i/(2*NUM_DROPS))].scriptWitness.stack[i%(2*NUM_DROPS)] = b'a'*(195+extra_bytes)
additional_bytes -= extra_bytes
i += 1
block.vtx[0].vout.pop() # Remove old commitment
add_witness_commitment(block)
block.solve()
vsize = get_virtual_size(block)
assert_equal(vsize, MAX_BLOCK_BASE_SIZE + 1)
# Make sure that our test case would exceed the old max-network-message
# limit
assert(len(block.serialize(True)) > 2*1024*1024)
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Now resize the second transaction to make the block fit.
cur_length = len(block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0])
block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(cur_length-1)
block.vtx[0].vout.pop()
add_witness_commitment(block)
block.solve()
assert(get_virtual_size(block) == MAX_BLOCK_BASE_SIZE)
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Update available utxo's
self.utxo.pop(0)
self.utxo.append(UTXO(block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue))
# submitblock will try to add the nonce automatically, so that mining
# software doesn't need to worry about doing so itself.
def test_submit_block(self):
block = self.build_next_block()
# Try using a custom nonce and then don't supply it.
# This shouldn't possibly work.
add_witness_commitment(block, nonce=1)
block.vtx[0].wit = CTxWitness() # drop the nonce
block.solve()
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
assert(self.nodes[0].getbestblockhash() != block.hash)
# Now redo commitment with the standard nonce, but let bitcoind fill it in.
add_witness_commitment(block, nonce=0)
block.vtx[0].wit = CTxWitness()
block.solve()
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
assert_equal(self.nodes[0].getbestblockhash(), block.hash)
# This time, add a tx with non-empty witness, but don't supply
# the commitment.
block_2 = self.build_next_block()
add_witness_commitment(block_2)
block_2.solve()
# Drop commitment and nonce -- submitblock should not fill in.
block_2.vtx[0].vout.pop()
block_2.vtx[0].wit = CTxWitness()
self.nodes[0].submitblock(bytes_to_hex_str(block_2.serialize(True)))
# Tip should not advance!
assert(self.nodes[0].getbestblockhash() != block_2.hash)
# Consensus tests of extra witness data in a transaction.
def test_extra_witness_data(self):
self.log.info("Testing extra witness data in tx")
assert(len(self.utxo) > 0)
block = self.build_next_block()
witness_program = CScript([OP_DROP, OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
# First try extra witness data on a tx that doesn't require a witness
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-2000, scriptPubKey))
tx.vout.append(CTxOut(1000, CScript([OP_TRUE]))) # non-witness output
tx.wit.vtxinwit.append(CTxInWitness())
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([])]
tx.rehash()
self.update_witness_block_with_transactions(block, [tx])
# Extra witness data should not be allowed.
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Try extra signature data. Ok if we're not spending a witness output.
block.vtx[1].wit.vtxinwit = []
block.vtx[1].vin[0].scriptSig = CScript([OP_0])
block.vtx[1].rehash()
add_witness_commitment(block)
block.solve()
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Now try extra witness/signature data on an input that DOES require a
# witness
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) # witness output
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 1), b"")) # non-witness
tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE])))
tx2.wit.vtxinwit.extend([CTxInWitness(), CTxInWitness()])
tx2.wit.vtxinwit[0].scriptWitness.stack = [ CScript([CScriptNum(1)]), CScript([CScriptNum(1)]), witness_program ]
tx2.wit.vtxinwit[1].scriptWitness.stack = [ CScript([OP_TRUE]) ]
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx2])
# This has extra witness data, so it should fail.
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Now get rid of the extra witness, but add extra scriptSig data
tx2.vin[0].scriptSig = CScript([OP_TRUE])
tx2.vin[1].scriptSig = CScript([OP_TRUE])
tx2.wit.vtxinwit[0].scriptWitness.stack.pop(0)
tx2.wit.vtxinwit[1].scriptWitness.stack = []
tx2.rehash()
add_witness_commitment(block)
block.solve()
# This has extra signature data for a witness input, so it should fail.
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Now get rid of the extra scriptsig on the witness input, and verify
# success (even with extra scriptsig data in the non-witness input)
tx2.vin[0].scriptSig = b""
tx2.rehash()
add_witness_commitment(block)
block.solve()
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Update utxo for later tests
self.utxo.pop(0)
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
def test_max_witness_push_length(self):
''' Should only allow up to 520 byte pushes in witness stack '''
self.log.info("Testing maximum witness push size")
MAX_SCRIPT_ELEMENT_SIZE = 520
assert(len(self.utxo))
block = self.build_next_block()
witness_program = CScript([OP_DROP, OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
tx.rehash()
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE])))
tx2.wit.vtxinwit.append(CTxInWitness())
# First try a 521-byte stack element
tx2.wit.vtxinwit[0].scriptWitness.stack = [ b'a'*(MAX_SCRIPT_ELEMENT_SIZE+1), witness_program ]
tx2.rehash()
self.update_witness_block_with_transactions(block, [tx, tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Now reduce the length of the stack element
tx2.wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(MAX_SCRIPT_ELEMENT_SIZE)
add_witness_commitment(block)
block.solve()
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Update the utxo for later tests
self.utxo.pop()
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
def test_max_witness_program_length(self):
# Can create witness outputs that are long, but can't be greater than
# 10k bytes to successfully spend
self.log.info("Testing maximum witness program length")
assert(len(self.utxo))
MAX_PROGRAM_LENGTH = 10000
# This program is 19 max pushes (9937 bytes), then 64 more opcode-bytes.
long_witness_program = CScript([b'a'*520]*19 + [OP_DROP]*63 + [OP_TRUE])
assert(len(long_witness_program) == MAX_PROGRAM_LENGTH+1)
long_witness_hash = sha256(long_witness_program)
long_scriptPubKey = CScript([OP_0, long_witness_hash])
block = self.build_next_block()
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, long_scriptPubKey))
tx.rehash()
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE])))
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*44 + [long_witness_program]
tx2.rehash()
self.update_witness_block_with_transactions(block, [tx, tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Try again with one less byte in the witness program
witness_program = CScript([b'a'*520]*19 + [OP_DROP]*62 + [OP_TRUE])
assert(len(witness_program) == MAX_PROGRAM_LENGTH)
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
tx.vout[0] = CTxOut(tx.vout[0].nValue, scriptPubKey)
tx.rehash()
tx2.vin[0].prevout.hash = tx.sha256
tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*43 + [witness_program]
tx2.rehash()
block.vtx = [block.vtx[0]]
self.update_witness_block_with_transactions(block, [tx, tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
self.utxo.pop()
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
def test_witness_input_length(self):
''' Ensure that vin length must match vtxinwit length '''
self.log.info("Testing witness input length")
assert(len(self.utxo))
witness_program = CScript([OP_DROP, OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
# Create a transaction that splits our utxo into many outputs
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
nValue = self.utxo[0].nValue
for i in range(10):
tx.vout.append(CTxOut(int(nValue/10), scriptPubKey))
tx.vout[0].nValue -= 1000
assert(tx.vout[0].nValue >= 0)
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Try various ways to spend tx that should all break.
# This "broken" transaction serializer will not normalize
# the length of vtxinwit.
class BrokenCTransaction(CTransaction):
def serialize_with_witness(self):
flags = 0
if not self.wit.is_null():
flags |= 1
r = b""
r += struct.pack("<i", self.nVersion)
if flags:
dummy = []
r += ser_vector(dummy)
r += struct.pack("<B", flags)
r += ser_vector(self.vin)
r += ser_vector(self.vout)
if flags & 1:
r += self.wit.serialize()
r += struct.pack("<I", self.nLockTime)
return r
tx2 = BrokenCTransaction()
for i in range(10):
tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b""))
tx2.vout.append(CTxOut(nValue-3000, CScript([OP_TRUE])))
# First try using a too long vtxinwit
for i in range(11):
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[i].scriptWitness.stack = [b'a', witness_program]
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Now try using a too short vtxinwit
tx2.wit.vtxinwit.pop()
tx2.wit.vtxinwit.pop()
block.vtx = [block.vtx[0]]
self.update_witness_block_with_transactions(block, [tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Now make one of the intermediate witnesses be incorrect
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[-1].scriptWitness.stack = [b'a', witness_program]
tx2.wit.vtxinwit[5].scriptWitness.stack = [ witness_program ]
block.vtx = [block.vtx[0]]
self.update_witness_block_with_transactions(block, [tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Fix the broken witness and the block should be accepted.
tx2.wit.vtxinwit[5].scriptWitness.stack = [b'a', witness_program]
block.vtx = [block.vtx[0]]
self.update_witness_block_with_transactions(block, [tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
self.utxo.pop()
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
def test_witness_tx_relay_before_segwit_activation(self):
self.log.info("Testing relay of witness transactions")
# Generate a transaction that doesn't require a witness, but send it
# with a witness. Should be rejected for premature-witness, but should
# not be added to recently rejected list.
assert(len(self.utxo))
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE])))
tx.wit.vtxinwit.append(CTxInWitness())
tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ]
tx.rehash()
tx_hash = tx.sha256
tx_value = tx.vout[0].nValue
# Verify that if a peer doesn't set nServices to include NODE_WITNESS,
# the getdata is just for the non-witness portion.
self.old_node.announce_tx_and_wait_for_getdata(tx)
assert(self.old_node.last_message["getdata"].inv[0].type == 1)
# Since we haven't delivered the tx yet, inv'ing the same tx from
# a witness transaction ought not result in a getdata.
try:
self.test_node.announce_tx_and_wait_for_getdata(tx, timeout=2)
self.log.error("Error: duplicate tx getdata!")
assert(False)
except AssertionError as e:
pass
# Delivering this transaction with witness should fail (no matter who
# its from)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
assert_equal(len(self.nodes[1].getrawmempool()), 0)
test_transaction_acceptance(self.nodes[0].rpc, self.old_node, tx, with_witness=True, accepted=False)
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx, with_witness=True, accepted=False)
# But eliminating the witness should fix it
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx, with_witness=False, accepted=True)
# Cleanup: mine the first transaction and update utxo
self.nodes[0].generate(1)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
self.utxo.pop(0)
self.utxo.append(UTXO(tx_hash, 0, tx_value))
# After segwit activates, verify that mempool:
# - rejects transactions with unnecessary/extra witnesses
# - accepts transactions with valid witnesses
# and that witness transactions are relayed to non-upgraded peers.
def test_tx_relay_after_segwit_activation(self):
self.log.info("Testing relay of witness transactions")
# Generate a transaction that doesn't require a witness, but send it
# with a witness. Should be rejected because we can't use a witness
# when spending a non-witness output.
assert(len(self.utxo))
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE])))
tx.wit.vtxinwit.append(CTxInWitness())
tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ]
tx.rehash()
tx_hash = tx.sha256
# Verify that unnecessary witnesses are rejected.
self.test_node.announce_tx_and_wait_for_getdata(tx)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx, with_witness=True, accepted=False)
# Verify that removing the witness succeeds.
self.test_node.announce_tx_and_wait_for_getdata(tx)
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx, with_witness=False, accepted=True)
# Now try to add extra witness data to a valid witness tx.
witness_program = CScript([OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx_hash, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptPubKey))
tx2.rehash()
tx3 = CTransaction()
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b""))
tx3.wit.vtxinwit.append(CTxInWitness())
# Add too-large for IsStandard witness and check that it does not enter reject filter
p2sh_program = CScript([OP_TRUE])
p2sh_pubkey = hash160(p2sh_program)
witness_program2 = CScript([b'a'*400000])
tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL])))
tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program2]
tx3.rehash()
# Node will not be blinded to the transaction
self.std_node.announce_tx_and_wait_for_getdata(tx3)
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, tx3, True, False, b'tx-size')
self.std_node.announce_tx_and_wait_for_getdata(tx3)
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, tx3, True, False, b'tx-size')
# Remove witness stuffing, instead add extra witness push on stack
tx3.vout[0] = CTxOut(tx2.vout[0].nValue-1000, CScript([OP_TRUE]))
tx3.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)]), witness_program ]
tx3.rehash()
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx2, with_witness=True, accepted=True)
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx3, with_witness=True, accepted=False)
# Get rid of the extra witness, and verify acceptance.
tx3.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ]
# Also check that old_node gets a tx announcement, even though this is
# a witness transaction.
self.old_node.wait_for_inv([CInv(1, tx2.sha256)]) # wait until tx2 was inv'ed
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx3, with_witness=True, accepted=True)
self.old_node.wait_for_inv([CInv(1, tx3.sha256)])
# Test that getrawtransaction returns correct witness information
# hash, size, vsize
raw_tx = self.nodes[0].getrawtransaction(tx3.hash, 1)
assert_equal(int(raw_tx["hash"], 16), tx3.calc_sha256(True))
assert_equal(raw_tx["size"], len(tx3.serialize_with_witness()))
vsize = (len(tx3.serialize_with_witness()) + 3*len(tx3.serialize_without_witness()) + 3) / 4
assert_equal(raw_tx["vsize"], vsize)
assert_equal(len(raw_tx["vin"][0]["txinwitness"]), 1)
assert_equal(raw_tx["vin"][0]["txinwitness"][0], hexlify(witness_program).decode('ascii'))
assert(vsize != raw_tx["size"])
# Cleanup: mine the transactions and update utxo for next test
self.nodes[0].generate(1)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
self.utxo.pop(0)
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue))
# Test that block requests to NODE_WITNESS peer are with MSG_WITNESS_FLAG
# This is true regardless of segwit activation.
# Also test that we don't ask for blocks from unupgraded peers
def test_block_relay(self, segwit_activated):
self.log.info("Testing block relay")
blocktype = 2|MSG_WITNESS_FLAG
# test_node has set NODE_WITNESS, so all getdata requests should be for
# witness blocks.
# Test announcing a block via inv results in a getdata, and that
# announcing a version 4 or random VB block with a header results in a getdata
block1 = self.build_next_block()
block1.solve()
self.test_node.announce_block_and_wait_for_getdata(block1, use_header=False)
assert(self.test_node.last_message["getdata"].inv[0].type == blocktype)
test_witness_block(self.nodes[0].rpc, self.test_node, block1, True)
block2 = self.build_next_block(nVersion=4)
block2.solve()
self.test_node.announce_block_and_wait_for_getdata(block2, use_header=True)
assert(self.test_node.last_message["getdata"].inv[0].type == blocktype)
test_witness_block(self.nodes[0].rpc, self.test_node, block2, True)
block3 = self.build_next_block(nVersion=(VB_TOP_BITS | (1<<15)))
block3.solve()
self.test_node.announce_block_and_wait_for_getdata(block3, use_header=True)
assert(self.test_node.last_message["getdata"].inv[0].type == blocktype)
test_witness_block(self.nodes[0].rpc, self.test_node, block3, True)
# Check that we can getdata for witness blocks or regular blocks,
# and the right thing happens.
if segwit_activated == False:
# Before activation, we should be able to request old blocks with
# or without witness, and they should be the same.
chain_height = self.nodes[0].getblockcount()
# Pick 10 random blocks on main chain, and verify that getdata's
# for MSG_BLOCK, MSG_WITNESS_BLOCK, and rpc getblock() are equal.
all_heights = list(range(chain_height+1))
random.shuffle(all_heights)
all_heights = all_heights[0:10]
for height in all_heights:
block_hash = self.nodes[0].getblockhash(height)
rpc_block = self.nodes[0].getblock(block_hash, False)
block_hash = int(block_hash, 16)
block = self.test_node.request_block(block_hash, 2)
wit_block = self.test_node.request_block(block_hash, 2|MSG_WITNESS_FLAG)
assert_equal(block.serialize(True), wit_block.serialize(True))
assert_equal(block.serialize(), hex_str_to_bytes(rpc_block))
else:
# After activation, witness blocks and non-witness blocks should
# be different. Verify rpc getblock() returns witness blocks, while
# getdata respects the requested type.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [])
# This gives us a witness commitment.
assert(len(block.vtx[0].wit.vtxinwit) == 1)
assert(len(block.vtx[0].wit.vtxinwit[0].scriptWitness.stack) == 1)
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Now try to retrieve it...
rpc_block = self.nodes[0].getblock(block.hash, False)
non_wit_block = self.test_node.request_block(block.sha256, 2)
wit_block = self.test_node.request_block(block.sha256, 2|MSG_WITNESS_FLAG)
assert_equal(wit_block.serialize(True), hex_str_to_bytes(rpc_block))
assert_equal(wit_block.serialize(False), non_wit_block.serialize())
assert_equal(wit_block.serialize(True), block.serialize(True))
# Test size, vsize, weight
rpc_details = self.nodes[0].getblock(block.hash, True)
assert_equal(rpc_details["size"], len(block.serialize(True)))
assert_equal(rpc_details["strippedsize"], len(block.serialize(False)))
weight = 3*len(block.serialize(False)) + len(block.serialize(True))
assert_equal(rpc_details["weight"], weight)
# Upgraded node should not ask for blocks from unupgraded
block4 = self.build_next_block(nVersion=4)
block4.solve()
self.old_node.getdataset = set()
# Blocks can be requested via direct-fetch (immediately upon processing the announcement)
# or via parallel download (with an indeterminate delay from processing the announcement)
# so to test that a block is NOT requested, we could guess a time period to sleep for,
# and then check. We can avoid the sleep() by taking advantage of transaction getdata's
# being processed after block getdata's, and announce a transaction as well,
# and then check to see if that particular getdata has been received.
# Since 0.14, inv's will only be responded to with a getheaders, so send a header
# to announce this block.
msg = msg_headers()
msg.headers = [ CBlockHeader(block4) ]
self.old_node.send_message(msg)
self.old_node.announce_tx_and_wait_for_getdata(block4.vtx[0])
assert(block4.sha256 not in self.old_node.getdataset)
# V0 segwit outputs should be standard after activation, but not before.
def test_standardness_v0(self, segwit_activated):
self.log.info("Testing standardness of v0 outputs (%s activation)" % ("after" if segwit_activated else "before"))
assert(len(self.utxo))
witness_program = CScript([OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
p2sh_pubkey = hash160(witness_program)
p2sh_scriptPubKey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL])
# First prepare a p2sh output (so that spending it will pass standardness)
p2sh_tx = CTransaction()
p2sh_tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")]
p2sh_tx.vout = [CTxOut(self.utxo[0].nValue-1000, p2sh_scriptPubKey)]
p2sh_tx.rehash()
# Mine it on test_node to create the confirmed output.
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, p2sh_tx, with_witness=True, accepted=True)
self.nodes[0].generate(1)
sync_blocks(self.nodes)
# Now test standardness of v0 P2WSH outputs.
# Start by creating a transaction with two outputs.
tx = CTransaction()
tx.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))]
tx.vout = [CTxOut(p2sh_tx.vout[0].nValue-10000, scriptPubKey)]
tx.vout.append(CTxOut(8000, scriptPubKey)) # Might burn this later
tx.rehash()
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, tx, with_witness=True, accepted=segwit_activated)
# Now create something that looks like a P2PKH output. This won't be spendable.
scriptPubKey = CScript([OP_0, hash160(witness_hash)])
tx2 = CTransaction()
if segwit_activated:
# if tx was accepted, then we spend the second output.
tx2.vin = [CTxIn(COutPoint(tx.sha256, 1), b"")]
tx2.vout = [CTxOut(7000, scriptPubKey)]
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program]
else:
# if tx wasn't accepted, we just re-spend the p2sh output we started with.
tx2.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))]
tx2.vout = [CTxOut(p2sh_tx.vout[0].nValue-1000, scriptPubKey)]
tx2.rehash()
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, tx2, with_witness=True, accepted=segwit_activated)
# Now update self.utxo for later tests.
tx3 = CTransaction()
if segwit_activated:
# tx and tx2 were both accepted. Don't bother trying to reclaim the
# P2PKH output; just send tx's first output back to an anyone-can-spend.
sync_mempools([self.nodes[0], self.nodes[1]])
tx3.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")]
tx3.vout = [CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))]
tx3.wit.vtxinwit.append(CTxInWitness())
tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program]
tx3.rehash()
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx3, with_witness=True, accepted=True)
else:
# tx and tx2 didn't go anywhere; just clean up the p2sh_tx output.
tx3.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))]
tx3.vout = [CTxOut(p2sh_tx.vout[0].nValue-1000, witness_program)]
tx3.rehash()
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx3, with_witness=True, accepted=True)
self.nodes[0].generate(1)
sync_blocks(self.nodes)
self.utxo.pop(0)
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue))
assert_equal(len(self.nodes[1].getrawmempool()), 0)
# Verify that future segwit upgraded transactions are non-standard,
# but valid in blocks. Can run this before and after segwit activation.
def test_segwit_versions(self):
self.log.info("Testing standardness/consensus for segwit versions (0-16)")
assert(len(self.utxo))
NUM_TESTS = 17 # will test OP_0, OP1, ..., OP_16
if (len(self.utxo) < NUM_TESTS):
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
split_value = (self.utxo[0].nValue - 4000) // NUM_TESTS
for i in range(NUM_TESTS):
tx.vout.append(CTxOut(split_value, CScript([OP_TRUE])))
tx.rehash()
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
self.utxo.pop(0)
for i in range(NUM_TESTS):
self.utxo.append(UTXO(tx.sha256, i, split_value))
sync_blocks(self.nodes)
temp_utxo = []
tx = CTransaction()
count = 0
witness_program = CScript([OP_TRUE])
witness_hash = sha256(witness_program)
assert_equal(len(self.nodes[1].getrawmempool()), 0)
for version in list(range(OP_1, OP_16+1)) + [OP_0]:
count += 1
# First try to spend to a future version segwit scriptPubKey.
scriptPubKey = CScript([CScriptOp(version), witness_hash])
tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")]
tx.vout = [CTxOut(self.utxo[0].nValue-1000, scriptPubKey)]
tx.rehash()
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, tx, with_witness=True, accepted=False)
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx, with_witness=True, accepted=True)
self.utxo.pop(0)
temp_utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue))
self.nodes[0].generate(1) # Mine all the transactions
sync_blocks(self.nodes)
assert(len(self.nodes[0].getrawmempool()) == 0)
# Finally, verify that version 0 -> version 1 transactions
# are non-standard
scriptPubKey = CScript([CScriptOp(OP_1), witness_hash])
tx2 = CTransaction()
tx2.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")]
tx2.vout = [CTxOut(tx.vout[0].nValue-1000, scriptPubKey)]
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ]
tx2.rehash()
# Gets accepted to test_node, because standardness of outputs isn't
# checked with fRequireStandard
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx2, with_witness=True, accepted=True)
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, tx2, with_witness=True, accepted=False)
temp_utxo.pop() # last entry in temp_utxo was the output we just spent
temp_utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
# Spend everything in temp_utxo back to an OP_TRUE output.
tx3 = CTransaction()
total_value = 0
for i in temp_utxo:
tx3.vin.append(CTxIn(COutPoint(i.sha256, i.n), b""))
tx3.wit.vtxinwit.append(CTxInWitness())
total_value += i.nValue
tx3.wit.vtxinwit[-1].scriptWitness.stack = [witness_program]
tx3.vout.append(CTxOut(total_value - 1000, CScript([OP_TRUE])))
tx3.rehash()
# Spending a higher version witness output is not allowed by policy,
# even with fRequireStandard=false.
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx3, with_witness=True, accepted=False)
self.test_node.sync_with_ping()
with mininode_lock:
assert(b"reserved for soft-fork upgrades" in self.test_node.last_message["reject"].reason)
# Building a block with the transaction must be valid, however.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx2, tx3])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
sync_blocks(self.nodes)
# Add utxo to our list
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue))
def test_premature_coinbase_witness_spend(self):
self.log.info("Testing premature coinbase witness spend")
block = self.build_next_block()
# Change the output of the block to be a witness output.
witness_program = CScript([OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
block.vtx[0].vout[0].scriptPubKey = scriptPubKey
# This next line will rehash the coinbase and update the merkle
# root, and solve.
self.update_witness_block_with_transactions(block, [])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
spend_tx = CTransaction()
spend_tx.vin = [CTxIn(COutPoint(block.vtx[0].sha256, 0), b"")]
spend_tx.vout = [CTxOut(block.vtx[0].vout[0].nValue, witness_program)]
spend_tx.wit.vtxinwit.append(CTxInWitness())
spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ]
spend_tx.rehash()
# Now test a premature spend.
self.nodes[0].generate(98)
sync_blocks(self.nodes)
block2 = self.build_next_block()
self.update_witness_block_with_transactions(block2, [spend_tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block2, accepted=False)
# Advancing one more block should allow the spend.
self.nodes[0].generate(1)
block2 = self.build_next_block()
self.update_witness_block_with_transactions(block2, [spend_tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block2, accepted=True)
sync_blocks(self.nodes)
def test_signature_version_1(self):
self.log.info("Testing segwit signature hash version 1")
key = CECKey()
key.set_secretbytes(b"9")
pubkey = CPubKey(key.get_pubkey())
witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
# First create a witness output for use in the tests.
assert(len(self.utxo))
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
tx.rehash()
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx, with_witness=True, accepted=True)
# Mine this transaction in preparation for following tests.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
sync_blocks(self.nodes)
self.utxo.pop(0)
# Test each hashtype
prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue)
for sigflag in [ 0, SIGHASH_ANYONECANPAY ]:
for hashtype in [SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE]:
hashtype |= sigflag
block = self.build_next_block()
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b""))
tx.vout.append(CTxOut(prev_utxo.nValue - 1000, scriptPubKey))
tx.wit.vtxinwit.append(CTxInWitness())
# Too-large input value
sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue+1, key)
self.update_witness_block_with_transactions(block, [tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Too-small input value
sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue-1, key)
block.vtx.pop() # remove last tx
self.update_witness_block_with_transactions(block, [tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Now try correct value
sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue, key)
block.vtx.pop()
self.update_witness_block_with_transactions(block, [tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue)
# Test combinations of signature hashes.
# Split the utxo into a lot of outputs.
# Randomly choose up to 10 to spend, sign with different hashtypes, and
# output to a random number of outputs. Repeat NUM_TESTS times.
# Ensure that we've tested a situation where we use SIGHASH_SINGLE with
# an input index > number of outputs.
NUM_TESTS = 500
temp_utxos = []
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b""))
split_value = prev_utxo.nValue // NUM_TESTS
for i in range(NUM_TESTS):
tx.vout.append(CTxOut(split_value, scriptPubKey))
tx.wit.vtxinwit.append(CTxInWitness())
sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, prev_utxo.nValue, key)
for i in range(NUM_TESTS):
temp_utxos.append(UTXO(tx.sha256, i, split_value))
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
block = self.build_next_block()
used_sighash_single_out_of_bounds = False
for i in range(NUM_TESTS):
# Ping regularly to keep the connection alive
if (not i % 100):
self.test_node.sync_with_ping()
# Choose random number of inputs to use.
num_inputs = random.randint(1, 10)
# Create a slight bias for producing more utxos
num_outputs = random.randint(1, 11)
random.shuffle(temp_utxos)
assert(len(temp_utxos) > num_inputs)
tx = CTransaction()
total_value = 0
for i in range(num_inputs):
tx.vin.append(CTxIn(COutPoint(temp_utxos[i].sha256, temp_utxos[i].n), b""))
tx.wit.vtxinwit.append(CTxInWitness())
total_value += temp_utxos[i].nValue
split_value = total_value // num_outputs
for i in range(num_outputs):
tx.vout.append(CTxOut(split_value, scriptPubKey))
for i in range(num_inputs):
# Now try to sign each input, using a random hashtype.
anyonecanpay = 0
if random.randint(0, 1):
anyonecanpay = SIGHASH_ANYONECANPAY
hashtype = random.randint(1, 3) | anyonecanpay
sign_P2PK_witness_input(witness_program, tx, i, hashtype, temp_utxos[i].nValue, key)
if (hashtype == SIGHASH_SINGLE and i >= num_outputs):
used_sighash_single_out_of_bounds = True
tx.rehash()
for i in range(num_outputs):
temp_utxos.append(UTXO(tx.sha256, i, split_value))
temp_utxos = temp_utxos[num_inputs:]
block.vtx.append(tx)
# Test the block periodically, if we're close to maxblocksize
if (get_virtual_size(block) > MAX_BLOCK_BASE_SIZE - 1000):
self.update_witness_block_with_transactions(block, [])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
block = self.build_next_block()
if (not used_sighash_single_out_of_bounds):
self.log.info("WARNING: this test run didn't attempt SIGHASH_SINGLE with out-of-bounds index value")
# Test the transactions we've added to the block
if (len(block.vtx) > 1):
self.update_witness_block_with_transactions(block, [])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Now test witness version 0 P2PKH transactions
pubkeyhash = hash160(pubkey)
scriptPKH = CScript([OP_0, pubkeyhash])
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(temp_utxos[0].sha256, temp_utxos[0].n), b""))
tx.vout.append(CTxOut(temp_utxos[0].nValue, scriptPKH))
tx.wit.vtxinwit.append(CTxInWitness())
sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, temp_utxos[0].nValue, key)
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE])))
script = GetP2PKHScript(pubkeyhash)
sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue)
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
# Check that we can't have a scriptSig
tx2.vin[0].scriptSig = CScript([signature, pubkey])
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx, tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=False)
# Move the signature to the witness.
block.vtx.pop()
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey]
tx2.vin[0].scriptSig = b""
tx2.rehash()
self.update_witness_block_with_transactions(block, [tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
temp_utxos.pop(0)
# Update self.utxos for later tests. Just spend everything in
# temp_utxos to a corresponding entry in self.utxos
tx = CTransaction()
index = 0
for i in temp_utxos:
# Just spend to our usual anyone-can-spend output
# Use SIGHASH_SINGLE|SIGHASH_ANYONECANPAY so we can build up
# the signatures as we go.
tx.vin.append(CTxIn(COutPoint(i.sha256, i.n), b""))
tx.vout.append(CTxOut(i.nValue, CScript([OP_TRUE])))
tx.wit.vtxinwit.append(CTxInWitness())
sign_P2PK_witness_input(witness_program, tx, index, SIGHASH_SINGLE|SIGHASH_ANYONECANPAY, i.nValue, key)
index += 1
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
for i in range(len(tx.vout)):
self.utxo.append(UTXO(tx.sha256, i, tx.vout[i].nValue))
# Test P2SH wrapped witness programs.
def test_p2sh_witness(self, segwit_activated):
self.log.info("Testing P2SH witness transactions")
assert(len(self.utxo))
# Prepare the p2sh-wrapped witness output
witness_program = CScript([OP_DROP, OP_TRUE])
witness_hash = sha256(witness_program)
p2wsh_pubkey = CScript([OP_0, witness_hash])
p2sh_witness_hash = hash160(p2wsh_pubkey)
scriptPubKey = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL])
scriptSig = CScript([p2wsh_pubkey]) # a push of the redeem script
# Fund the P2SH output
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
tx.rehash()
# Verify mempool acceptance and block validity
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx, with_witness=False, accepted=True)
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True, with_witness=segwit_activated)
sync_blocks(self.nodes)
# Now test attempts to spend the output.
spend_tx = CTransaction()
spend_tx.vin.append(CTxIn(COutPoint(tx.sha256, 0), scriptSig))
spend_tx.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE])))
spend_tx.rehash()
# This transaction should not be accepted into the mempool pre- or
# post-segwit. Mempool acceptance will use SCRIPT_VERIFY_WITNESS which
# will require a witness to spend a witness program regardless of
# segwit activation. Note that older bitcoind's that are not
# segwit-aware would also reject this for failing CLEANSTACK.
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, spend_tx, with_witness=False, accepted=False)
# Try to put the witness script in the scriptSig, should also fail.
spend_tx.vin[0].scriptSig = CScript([p2wsh_pubkey, b'a'])
spend_tx.rehash()
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, spend_tx, with_witness=False, accepted=False)
# Now put the witness script in the witness, should succeed after
# segwit activates.
spend_tx.vin[0].scriptSig = scriptSig
spend_tx.rehash()
spend_tx.wit.vtxinwit.append(CTxInWitness())
spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a', witness_program ]
# Verify mempool acceptance
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, spend_tx, with_witness=True, accepted=segwit_activated)
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [spend_tx])
# If we're before activation, then sending this without witnesses
# should be valid. If we're after activation, then sending this with
# witnesses should be valid.
if segwit_activated:
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
else:
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True, with_witness=False)
# Update self.utxo
self.utxo.pop(0)
self.utxo.append(UTXO(spend_tx.sha256, 0, spend_tx.vout[0].nValue))
# Test the behavior of starting up a segwit-aware node after the softfork
# has activated. As segwit requires different block data than pre-segwit
# nodes would have stored, this requires special handling.
# To enable this test, pass --oldbinary=<path-to-pre-segwit-bitcoind> to
# the test.
def test_upgrade_after_activation(self, node_id):
self.log.info("Testing software upgrade after softfork activation")
assert(node_id != 0) # node0 is assumed to be a segwit-active bitcoind
# Make sure the nodes are all up
sync_blocks(self.nodes)
# Restart with the new binary
self.stop_node(node_id)
self.start_node(node_id, extra_args=["-vbparams=segwit:0:999999999999"])
connect_nodes(self.nodes[0], node_id)
sync_blocks(self.nodes)
# Make sure that this peer thinks segwit has activated.
assert(get_bip9_status(self.nodes[node_id], 'segwit')['status'] == "active")
# Make sure this peers blocks match those of node0.
height = self.nodes[node_id].getblockcount()
while height >= 0:
block_hash = self.nodes[node_id].getblockhash(height)
assert_equal(block_hash, self.nodes[0].getblockhash(height))
assert_equal(self.nodes[0].getblock(block_hash), self.nodes[node_id].getblock(block_hash))
height -= 1
def test_witness_sigops(self):
'''Ensure sigop counting is correct inside witnesses.'''
self.log.info("Testing sigops limit")
assert(len(self.utxo))
# Keep this under MAX_OPS_PER_SCRIPT (201)
witness_program = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKMULTISIG]*5 + [OP_CHECKSIG]*193 + [OP_ENDIF])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
sigops_per_script = 20*5 + 193*1
# We'll produce 2 extra outputs, one with a program that would take us
# over max sig ops, and one with a program that would exactly reach max
# sig ops
outputs = (MAX_SIGOP_COST // sigops_per_script) + 2
extra_sigops_available = MAX_SIGOP_COST % sigops_per_script
# We chose the number of checkmultisigs/checksigs to make this work:
assert(extra_sigops_available < 100) # steer clear of MAX_OPS_PER_SCRIPT
# This script, when spent with the first
# N(=MAX_SIGOP_COST//sigops_per_script) outputs of our transaction,
# would push us just over the block sigop limit.
witness_program_toomany = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available + 1) + [OP_ENDIF])
witness_hash_toomany = sha256(witness_program_toomany)
scriptPubKey_toomany = CScript([OP_0, witness_hash_toomany])
# If we spend this script instead, we would exactly reach our sigop
# limit (for witness sigops).
witness_program_justright = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available) + [OP_ENDIF])
witness_hash_justright = sha256(witness_program_justright)
scriptPubKey_justright = CScript([OP_0, witness_hash_justright])
# First split our available utxo into a bunch of outputs
split_value = self.utxo[0].nValue // outputs
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
for i in range(outputs):
tx.vout.append(CTxOut(split_value, scriptPubKey))
tx.vout[-2].scriptPubKey = scriptPubKey_toomany
tx.vout[-1].scriptPubKey = scriptPubKey_justright
tx.rehash()
block_1 = self.build_next_block()
self.update_witness_block_with_transactions(block_1, [tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block_1, accepted=True)
tx2 = CTransaction()
# If we try to spend the first n-1 outputs from tx, that should be
# too many sigops.
total_value = 0
for i in range(outputs-1):
tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b""))
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program ]
total_value += tx.vout[i].nValue
tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_toomany ]
tx2.vout.append(CTxOut(total_value, CScript([OP_TRUE])))
tx2.rehash()
block_2 = self.build_next_block()
self.update_witness_block_with_transactions(block_2, [tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block_2, accepted=False)
# Try dropping the last input in tx2, and add an output that has
# too many sigops (contributing to legacy sigop count).
checksig_count = (extra_sigops_available // 4) + 1
scriptPubKey_checksigs = CScript([OP_CHECKSIG]*checksig_count)
tx2.vout.append(CTxOut(0, scriptPubKey_checksigs))
tx2.vin.pop()
tx2.wit.vtxinwit.pop()
tx2.vout[0].nValue -= tx.vout[-2].nValue
tx2.rehash()
block_3 = self.build_next_block()
self.update_witness_block_with_transactions(block_3, [tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block_3, accepted=False)
# If we drop the last checksig in this output, the tx should succeed.
block_4 = self.build_next_block()
tx2.vout[-1].scriptPubKey = CScript([OP_CHECKSIG]*(checksig_count-1))
tx2.rehash()
self.update_witness_block_with_transactions(block_4, [tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block_4, accepted=True)
# Reset the tip back down for the next test
sync_blocks(self.nodes)
for x in self.nodes:
x.invalidateblock(block_4.hash)
# Try replacing the last input of tx2 to be spending the last
# output of tx
block_5 = self.build_next_block()
tx2.vout.pop()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, outputs-1), b""))
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_justright ]
tx2.rehash()
self.update_witness_block_with_transactions(block_5, [tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block_5, accepted=True)
# TODO: test p2sh sigop counting
def test_getblocktemplate_before_lockin(self):
self.log.info("Testing getblocktemplate setting of segwit versionbit (before lockin)")
# Node0 is segwit aware, node2 is not.
for node in [self.nodes[0], self.nodes[2]]:
gbt_results = node.getblocktemplate()
block_version = gbt_results['version']
# If we're not indicating segwit support, we will still be
# signalling for segwit activation.
assert_equal((block_version & (1 << VB_WITNESS_BIT) != 0), node == self.nodes[0])
# If we don't specify the segwit rule, then we won't get a default
# commitment.
assert('default_witness_commitment' not in gbt_results)
# Workaround:
# Can either change the tip, or change the mempool and wait 5 seconds
# to trigger a recomputation of getblocktemplate.
txid = int(self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1), 16)
# Using mocktime lets us avoid sleep()
sync_mempools(self.nodes)
self.nodes[0].setmocktime(int(time.time())+10)
self.nodes[2].setmocktime(int(time.time())+10)
for node in [self.nodes[0], self.nodes[2]]:
gbt_results = node.getblocktemplate({"rules" : ["segwit"]})
block_version = gbt_results['version']
if node == self.nodes[2]:
# If this is a non-segwit node, we should still not get a witness
# commitment, nor a version bit signalling segwit.
assert_equal(block_version & (1 << VB_WITNESS_BIT), 0)
assert('default_witness_commitment' not in gbt_results)
else:
# For segwit-aware nodes, check the version bit and the witness
# commitment are correct.
assert(block_version & (1 << VB_WITNESS_BIT) != 0)
assert('default_witness_commitment' in gbt_results)
witness_commitment = gbt_results['default_witness_commitment']
# Check that default_witness_commitment is present.
witness_root = CBlock.get_merkle_root([ser_uint256(0),
ser_uint256(txid)])
script = get_witness_script(witness_root, 0)
assert_equal(witness_commitment, bytes_to_hex_str(script))
# undo mocktime
self.nodes[0].setmocktime(0)
self.nodes[2].setmocktime(0)
# Uncompressed pubkeys are no longer supported in default relay policy,
# but (for now) are still valid in blocks.
def test_uncompressed_pubkey(self):
self.log.info("Testing uncompressed pubkeys")
# Segwit transactions using uncompressed pubkeys are not accepted
# under default policy, but should still pass consensus.
key = CECKey()
key.set_secretbytes(b"9")
key.set_compressed(False)
pubkey = CPubKey(key.get_pubkey())
assert_equal(len(pubkey), 65) # This should be an uncompressed pubkey
assert(len(self.utxo) > 0)
utxo = self.utxo.pop(0)
# Test 1: P2WPKH
# First create a P2WPKH output that uses an uncompressed pubkey
pubkeyhash = hash160(pubkey)
scriptPKH = CScript([OP_0, pubkeyhash])
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(utxo.sha256, utxo.n), b""))
tx.vout.append(CTxOut(utxo.nValue-1000, scriptPKH))
tx.rehash()
# Confirm it in a block.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Now try to spend it. Send it to a P2WSH output, which we'll
# use in the next test.
witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)])
witness_hash = sha256(witness_program)
scriptWSH = CScript([OP_0, witness_hash])
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptWSH))
script = GetP2PKHScript(pubkeyhash)
sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue)
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [ signature, pubkey ]
tx2.rehash()
# Should fail policy test.
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx2, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)')
# But passes consensus.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx2])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Test 2: P2WSH
# Try to spend the P2WSH output created in last test.
# Send it to a P2SH(P2WSH) output, which we'll use in the next test.
p2sh_witness_hash = hash160(scriptWSH)
scriptP2SH = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL])
scriptSig = CScript([scriptWSH])
tx3 = CTransaction()
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b""))
tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, scriptP2SH))
tx3.wit.vtxinwit.append(CTxInWitness())
sign_P2PK_witness_input(witness_program, tx3, 0, SIGHASH_ALL, tx2.vout[0].nValue, key)
# Should fail policy test.
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx3, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)')
# But passes consensus.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx3])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Test 3: P2SH(P2WSH)
# Try to spend the P2SH output created in the last test.
# Send it to a P2PKH output, which we'll use in the next test.
scriptPubKey = GetP2PKHScript(pubkeyhash)
tx4 = CTransaction()
tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), scriptSig))
tx4.vout.append(CTxOut(tx3.vout[0].nValue-1000, scriptPubKey))
tx4.wit.vtxinwit.append(CTxInWitness())
sign_P2PK_witness_input(witness_program, tx4, 0, SIGHASH_ALL, tx3.vout[0].nValue, key)
# Should fail policy test.
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx4, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)')
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx4])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
# Test 4: Uncompressed pubkeys should still be valid in non-segwit
# transactions.
tx5 = CTransaction()
tx5.vin.append(CTxIn(COutPoint(tx4.sha256, 0), b""))
tx5.vout.append(CTxOut(tx4.vout[0].nValue-1000, CScript([OP_TRUE])))
(sig_hash, err) = SignatureHash(scriptPubKey, tx5, 0, SIGHASH_ALL)
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
tx5.vin[0].scriptSig = CScript([signature, pubkey])
tx5.rehash()
# Should pass policy and consensus.
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx5, True, True)
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx5])
test_witness_block(self.nodes[0].rpc, self.test_node, block, accepted=True)
self.utxo.append(UTXO(tx5.sha256, 0, tx5.vout[0].nValue))
def test_non_standard_witness(self):
self.log.info("Testing detection of non-standard P2WSH witness")
pad = chr(1).encode('latin-1')
# Create scripts for tests
scripts = []
scripts.append(CScript([OP_DROP] * 100))
scripts.append(CScript([OP_DROP] * 99))
scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 60))
scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 61))
p2wsh_scripts = []
assert(len(self.utxo))
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
# For each script, generate a pair of P2WSH and P2SH-P2WSH output.
outputvalue = (self.utxo[0].nValue - 1000) // (len(scripts) * 2)
for i in scripts:
p2wsh = CScript([OP_0, sha256(i)])
p2sh = hash160(p2wsh)
p2wsh_scripts.append(p2wsh)
tx.vout.append(CTxOut(outputvalue, p2wsh))
tx.vout.append(CTxOut(outputvalue, CScript([OP_HASH160, p2sh, OP_EQUAL])))
tx.rehash()
txid = tx.sha256
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, tx, with_witness=False, accepted=True)
self.nodes[0].generate(1)
sync_blocks(self.nodes)
# Creating transactions for tests
p2wsh_txs = []
p2sh_txs = []
for i in range(len(scripts)):
p2wsh_tx = CTransaction()
p2wsh_tx.vin.append(CTxIn(COutPoint(txid,i*2)))
p2wsh_tx.vout.append(CTxOut(outputvalue - 5000, CScript([OP_0, hash160(hex_str_to_bytes(""))])))
p2wsh_tx.wit.vtxinwit.append(CTxInWitness())
p2wsh_tx.rehash()
p2wsh_txs.append(p2wsh_tx)
p2sh_tx = CTransaction()
p2sh_tx.vin.append(CTxIn(COutPoint(txid,i*2+1), CScript([p2wsh_scripts[i]])))
p2sh_tx.vout.append(CTxOut(outputvalue - 5000, CScript([OP_0, hash160(hex_str_to_bytes(""))])))
p2sh_tx.wit.vtxinwit.append(CTxInWitness())
p2sh_tx.rehash()
p2sh_txs.append(p2sh_tx)
# Testing native P2WSH
# Witness stack size, excluding witnessScript, over 100 is non-standard
p2wsh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]]
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, p2wsh_txs[0], True, False, b'bad-witness-nonstandard')
# Non-standard nodes should accept
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, p2wsh_txs[0], True, True)
# Stack element size over 80 bytes is non-standard
p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]]
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, p2wsh_txs[1], True, False, b'bad-witness-nonstandard')
# Non-standard nodes should accept
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, p2wsh_txs[1], True, True)
# Standard nodes should accept if element size is not over 80 bytes
p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]]
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, p2wsh_txs[1], True, True)
# witnessScript size at 3600 bytes is standard
p2wsh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]]
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, p2wsh_txs[2], True, True)
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, p2wsh_txs[2], True, True)
# witnessScript size at 3601 bytes is non-standard
p2wsh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]]
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, p2wsh_txs[3], True, False, b'bad-witness-nonstandard')
# Non-standard nodes should accept
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, p2wsh_txs[3], True, True)
# Repeating the same tests with P2SH-P2WSH
p2sh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]]
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, p2sh_txs[0], True, False, b'bad-witness-nonstandard')
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, p2sh_txs[0], True, True)
p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]]
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, p2sh_txs[1], True, False, b'bad-witness-nonstandard')
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, p2sh_txs[1], True, True)
p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]]
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, p2sh_txs[1], True, True)
p2sh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]]
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, p2sh_txs[2], True, True)
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, p2sh_txs[2], True, True)
p2sh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]]
test_transaction_acceptance(self.nodes[1].rpc, self.std_node, p2sh_txs[3], True, False, b'bad-witness-nonstandard')
test_transaction_acceptance(self.nodes[0].rpc, self.test_node, p2sh_txs[3], True, True)
self.nodes[0].generate(1) # Mine and clean up the mempool of non-standard node
# Valid but non-standard transactions in a block should be accepted by standard node
sync_blocks(self.nodes)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
assert_equal(len(self.nodes[1].getrawmempool()), 0)
self.utxo.pop(0)
def run_test(self):
# Setup the p2p connections and start up the network thread.
# self.test_node sets NODE_WITNESS|NODE_NETWORK
self.test_node = self.nodes[0].add_p2p_connection(TestNode(), services=NODE_NETWORK|NODE_WITNESS)
# self.old_node sets only NODE_NETWORK
self.old_node = self.nodes[0].add_p2p_connection(TestNode(), services=NODE_NETWORK)
# self.std_node is for testing node1 (fRequireStandard=true)
self.std_node = self.nodes[1].add_p2p_connection(TestNode(), services=NODE_NETWORK|NODE_WITNESS)
network_thread_start()
# Keep a place to store utxo's that can be used in later tests
self.utxo = []
# Test logic begins here
self.test_node.wait_for_verack()
self.log.info("Starting tests before segwit lock in:")
self.test_witness_services() # Verifies NODE_WITNESS
self.test_non_witness_transaction() # non-witness tx's are accepted
self.test_unnecessary_witness_before_segwit_activation()
self.test_block_relay(segwit_activated=False)
# Advance to segwit being 'started'
self.advance_to_segwit_started()
sync_blocks(self.nodes)
self.test_getblocktemplate_before_lockin()
sync_blocks(self.nodes)
# At lockin, nothing should change.
self.log.info("Testing behavior post lockin, pre-activation")
self.advance_to_segwit_lockin()
# Retest unnecessary witnesses
self.test_unnecessary_witness_before_segwit_activation()
self.test_witness_tx_relay_before_segwit_activation()
self.test_block_relay(segwit_activated=False)
self.test_p2sh_witness(segwit_activated=False)
self.test_standardness_v0(segwit_activated=False)
sync_blocks(self.nodes)
# Now activate segwit
self.log.info("Testing behavior after segwit activation")
self.advance_to_segwit_active()
sync_blocks(self.nodes)
# Test P2SH witness handling again
self.test_p2sh_witness(segwit_activated=True)
self.test_witness_commitments()
self.test_block_malleability()
self.test_witness_block_size()
self.test_submit_block()
self.test_extra_witness_data()
self.test_max_witness_push_length()
self.test_max_witness_program_length()
self.test_witness_input_length()
self.test_block_relay(segwit_activated=True)
self.test_tx_relay_after_segwit_activation()
self.test_standardness_v0(segwit_activated=True)
self.test_segwit_versions()
self.test_premature_coinbase_witness_spend()
self.test_uncompressed_pubkey()
self.test_signature_version_1()
self.test_non_standard_witness()
sync_blocks(self.nodes)
self.test_upgrade_after_activation(node_id=2)
self.test_witness_sigops()
if __name__ == '__main__':
SegWitTest().main()