You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
555 lines
15 KiB
555 lines
15 KiB
// Copyright (c) 2009-2010 Satoshi Nakamoto |
|
// Copyright (c) 2009-2014 The Bitcoin developers |
|
// Distributed under the MIT/X11 software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#ifndef BITCOIN_UINT256_H |
|
#define BITCOIN_UINT256_H |
|
|
|
#include <assert.h> |
|
#include <stdexcept> |
|
#include <stdint.h> |
|
#include <stdio.h> |
|
#include <string> |
|
#include <string.h> |
|
#include <vector> |
|
|
|
extern const signed char p_util_hexdigit[256]; // defined in util.cpp |
|
|
|
inline signed char HexDigit(char c) |
|
{ |
|
return p_util_hexdigit[(unsigned char)c]; |
|
} |
|
|
|
class uint_error : public std::runtime_error { |
|
public: |
|
explicit uint_error(const std::string& str) : std::runtime_error(str) {} |
|
}; |
|
|
|
/** Template base class for unsigned big integers. */ |
|
template<unsigned int BITS> |
|
class base_uint |
|
{ |
|
private: |
|
enum { WIDTH=BITS/32 }; |
|
uint32_t pn[WIDTH]; |
|
public: |
|
|
|
base_uint() |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] = 0; |
|
} |
|
|
|
base_uint(const base_uint& b) |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] = b.pn[i]; |
|
} |
|
|
|
base_uint& operator=(const base_uint& b) |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] = b.pn[i]; |
|
return *this; |
|
} |
|
|
|
base_uint(uint64_t b) |
|
{ |
|
pn[0] = (unsigned int)b; |
|
pn[1] = (unsigned int)(b >> 32); |
|
for (int i = 2; i < WIDTH; i++) |
|
pn[i] = 0; |
|
} |
|
|
|
explicit base_uint(const std::string& str) |
|
{ |
|
SetHex(str); |
|
} |
|
|
|
explicit base_uint(const std::vector<unsigned char>& vch) |
|
{ |
|
if (vch.size() != sizeof(pn)) |
|
throw uint_error("Converting vector of wrong size to base_uint"); |
|
memcpy(pn, &vch[0], sizeof(pn)); |
|
} |
|
|
|
bool operator!() const |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
if (pn[i] != 0) |
|
return false; |
|
return true; |
|
} |
|
|
|
const base_uint operator~() const |
|
{ |
|
base_uint ret; |
|
for (int i = 0; i < WIDTH; i++) |
|
ret.pn[i] = ~pn[i]; |
|
return ret; |
|
} |
|
|
|
const base_uint operator-() const |
|
{ |
|
base_uint ret; |
|
for (int i = 0; i < WIDTH; i++) |
|
ret.pn[i] = ~pn[i]; |
|
ret++; |
|
return ret; |
|
} |
|
|
|
double getdouble() const |
|
{ |
|
double ret = 0.0; |
|
double fact = 1.0; |
|
for (int i = 0; i < WIDTH; i++) { |
|
ret += fact * pn[i]; |
|
fact *= 4294967296.0; |
|
} |
|
return ret; |
|
} |
|
|
|
base_uint& operator=(uint64_t b) |
|
{ |
|
pn[0] = (unsigned int)b; |
|
pn[1] = (unsigned int)(b >> 32); |
|
for (int i = 2; i < WIDTH; i++) |
|
pn[i] = 0; |
|
return *this; |
|
} |
|
|
|
base_uint& operator^=(const base_uint& b) |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] ^= b.pn[i]; |
|
return *this; |
|
} |
|
|
|
base_uint& operator&=(const base_uint& b) |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] &= b.pn[i]; |
|
return *this; |
|
} |
|
|
|
base_uint& operator|=(const base_uint& b) |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] |= b.pn[i]; |
|
return *this; |
|
} |
|
|
|
base_uint& operator^=(uint64_t b) |
|
{ |
|
pn[0] ^= (unsigned int)b; |
|
pn[1] ^= (unsigned int)(b >> 32); |
|
return *this; |
|
} |
|
|
|
base_uint& operator|=(uint64_t b) |
|
{ |
|
pn[0] |= (unsigned int)b; |
|
pn[1] |= (unsigned int)(b >> 32); |
|
return *this; |
|
} |
|
|
|
base_uint& operator<<=(unsigned int shift) |
|
{ |
|
base_uint a(*this); |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] = 0; |
|
int k = shift / 32; |
|
shift = shift % 32; |
|
for (int i = 0; i < WIDTH; i++) |
|
{ |
|
if (i+k+1 < WIDTH && shift != 0) |
|
pn[i+k+1] |= (a.pn[i] >> (32-shift)); |
|
if (i+k < WIDTH) |
|
pn[i+k] |= (a.pn[i] << shift); |
|
} |
|
return *this; |
|
} |
|
|
|
base_uint& operator>>=(unsigned int shift) |
|
{ |
|
base_uint a(*this); |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] = 0; |
|
int k = shift / 32; |
|
shift = shift % 32; |
|
for (int i = 0; i < WIDTH; i++) |
|
{ |
|
if (i-k-1 >= 0 && shift != 0) |
|
pn[i-k-1] |= (a.pn[i] << (32-shift)); |
|
if (i-k >= 0) |
|
pn[i-k] |= (a.pn[i] >> shift); |
|
} |
|
return *this; |
|
} |
|
|
|
base_uint& operator+=(const base_uint& b) |
|
{ |
|
uint64_t carry = 0; |
|
for (int i = 0; i < WIDTH; i++) |
|
{ |
|
uint64_t n = carry + pn[i] + b.pn[i]; |
|
pn[i] = n & 0xffffffff; |
|
carry = n >> 32; |
|
} |
|
return *this; |
|
} |
|
|
|
base_uint& operator-=(const base_uint& b) |
|
{ |
|
*this += -b; |
|
return *this; |
|
} |
|
|
|
base_uint& operator+=(uint64_t b64) |
|
{ |
|
base_uint b; |
|
b = b64; |
|
*this += b; |
|
return *this; |
|
} |
|
|
|
base_uint& operator-=(uint64_t b64) |
|
{ |
|
base_uint b; |
|
b = b64; |
|
*this += -b; |
|
return *this; |
|
} |
|
|
|
base_uint& operator*=(uint32_t b32) |
|
{ |
|
uint64_t carry = 0; |
|
for (int i = 0; i < WIDTH; i++) |
|
{ |
|
uint64_t n = carry + (uint64_t)b32 * pn[i]; |
|
pn[i] = n & 0xffffffff; |
|
carry = n >> 32; |
|
} |
|
return *this; |
|
} |
|
|
|
base_uint& operator*=(const base_uint& b) |
|
{ |
|
base_uint a = *this; |
|
*this = 0; |
|
for (int j = 0; j < WIDTH; j++) { |
|
uint64_t carry = 0; |
|
for (int i = 0; i + j < WIDTH; i++) { |
|
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i]; |
|
pn[i + j] = n & 0xffffffff; |
|
carry = n >> 32; |
|
} |
|
} |
|
return *this; |
|
} |
|
|
|
base_uint& operator/=(const base_uint& b) |
|
{ |
|
base_uint div = b; // make a copy, so we can shift. |
|
base_uint num = *this; // make a copy, so we can subtract. |
|
*this = 0; // the quotient. |
|
int num_bits = num.bits(); |
|
int div_bits = div.bits(); |
|
if (div_bits == 0) |
|
throw uint_error("Division by zero"); |
|
if (div_bits > num_bits) // the result is certainly 0. |
|
return *this; |
|
int shift = num_bits - div_bits; |
|
div <<= shift; // shift so that div and nun align. |
|
while (shift >= 0) { |
|
if (num >= div) { |
|
num -= div; |
|
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result. |
|
} |
|
div >>= 1; // shift back. |
|
shift--; |
|
} |
|
// num now contains the remainder of the division. |
|
return *this; |
|
} |
|
|
|
base_uint& operator++() |
|
{ |
|
// prefix operator |
|
int i = 0; |
|
while (++pn[i] == 0 && i < WIDTH-1) |
|
i++; |
|
return *this; |
|
} |
|
|
|
const base_uint operator++(int) |
|
{ |
|
// postfix operator |
|
const base_uint ret = *this; |
|
++(*this); |
|
return ret; |
|
} |
|
|
|
base_uint& operator--() |
|
{ |
|
// prefix operator |
|
int i = 0; |
|
while (--pn[i] == (uint32_t)-1 && i < WIDTH-1) |
|
i++; |
|
return *this; |
|
} |
|
|
|
const base_uint operator--(int) |
|
{ |
|
// postfix operator |
|
const base_uint ret = *this; |
|
--(*this); |
|
return ret; |
|
} |
|
|
|
int CompareTo(const base_uint& b) const { |
|
for (int i = base_uint::WIDTH-1; i >= 0; i--) { |
|
if (pn[i] < b.pn[i]) |
|
return -1; |
|
if (pn[i] > b.pn[i]) |
|
return 1; |
|
} |
|
return 0; |
|
} |
|
|
|
bool EqualTo(uint64_t b) const { |
|
for (int i = base_uint::WIDTH-1; i >= 2; i--) { |
|
if (pn[i]) |
|
return false; |
|
} |
|
if (pn[1] != (b >> 32)) |
|
return false; |
|
if (pn[0] != (b & 0xfffffffful)) |
|
return false; |
|
return true; |
|
} |
|
|
|
friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; } |
|
friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; } |
|
friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; } |
|
friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; } |
|
friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; } |
|
friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; } |
|
friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; } |
|
friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; } |
|
friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; } |
|
friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; } |
|
friend inline bool operator==(const base_uint& a, const base_uint& b) { return a.CompareTo(b) == 0; } |
|
friend inline bool operator!=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) != 0; } |
|
friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; } |
|
friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; } |
|
friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; } |
|
friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; } |
|
friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); } |
|
friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); } |
|
|
|
std::string GetHex() const |
|
{ |
|
char psz[sizeof(pn)*2 + 1]; |
|
for (unsigned int i = 0; i < sizeof(pn); i++) |
|
sprintf(psz + i*2, "%02x", ((unsigned char*)pn)[sizeof(pn) - i - 1]); |
|
return std::string(psz, psz + sizeof(pn)*2); |
|
} |
|
|
|
void SetHex(const char* psz) |
|
{ |
|
memset(pn,0,sizeof(pn)); |
|
|
|
// skip leading spaces |
|
while (isspace(*psz)) |
|
psz++; |
|
|
|
// skip 0x |
|
if (psz[0] == '0' && tolower(psz[1]) == 'x') |
|
psz += 2; |
|
|
|
// hex string to uint |
|
const char* pbegin = psz; |
|
while (::HexDigit(*psz) != -1) |
|
psz++; |
|
psz--; |
|
unsigned char* p1 = (unsigned char*)pn; |
|
unsigned char* pend = p1 + WIDTH * 4; |
|
while (psz >= pbegin && p1 < pend) |
|
{ |
|
*p1 = ::HexDigit(*psz--); |
|
if (psz >= pbegin) |
|
{ |
|
*p1 |= ((unsigned char)::HexDigit(*psz--) << 4); |
|
p1++; |
|
} |
|
} |
|
} |
|
|
|
void SetHex(const std::string& str) |
|
{ |
|
SetHex(str.c_str()); |
|
} |
|
|
|
std::string ToString() const |
|
{ |
|
return (GetHex()); |
|
} |
|
|
|
unsigned char* begin() |
|
{ |
|
return (unsigned char*)&pn[0]; |
|
} |
|
|
|
unsigned char* end() |
|
{ |
|
return (unsigned char*)&pn[WIDTH]; |
|
} |
|
|
|
const unsigned char* begin() const |
|
{ |
|
return (unsigned char*)&pn[0]; |
|
} |
|
|
|
const unsigned char* end() const |
|
{ |
|
return (unsigned char*)&pn[WIDTH]; |
|
} |
|
|
|
unsigned int size() const |
|
{ |
|
return sizeof(pn); |
|
} |
|
|
|
// Returns the position of the highest bit set plus one, or zero if the |
|
// value is zero. |
|
unsigned int bits() const |
|
{ |
|
for (int pos = WIDTH-1; pos >= 0; pos--) { |
|
if (pn[pos]) { |
|
for (int bits = 31; bits > 0; bits--) { |
|
if (pn[pos] & 1<<bits) |
|
return 32*pos + bits + 1; |
|
} |
|
return 32*pos + 1; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
uint64_t GetLow64() const |
|
{ |
|
assert(WIDTH >= 2); |
|
return pn[0] | (uint64_t)pn[1] << 32; |
|
} |
|
|
|
unsigned int GetSerializeSize(int nType, int nVersion) const |
|
{ |
|
return sizeof(pn); |
|
} |
|
|
|
template<typename Stream> |
|
void Serialize(Stream& s, int nType, int nVersion) const |
|
{ |
|
s.write((char*)pn, sizeof(pn)); |
|
} |
|
|
|
template<typename Stream> |
|
void Unserialize(Stream& s, int nType, int nVersion) |
|
{ |
|
s.read((char*)pn, sizeof(pn)); |
|
} |
|
}; |
|
|
|
/** 160-bit unsigned big integer. */ |
|
class uint160 : public base_uint<160> { |
|
public: |
|
uint160() {} |
|
uint160(const base_uint<160>& b) : base_uint<160>(b) {} |
|
uint160(uint64_t b) : base_uint<160>(b) {} |
|
explicit uint160(const std::string& str) : base_uint<160>(str) {} |
|
explicit uint160(const std::vector<unsigned char>& vch) : base_uint<160>(vch) {} |
|
}; |
|
|
|
/** 256-bit unsigned big integer. */ |
|
class uint256 : public base_uint<256> { |
|
public: |
|
uint256() {} |
|
uint256(const base_uint<256>& b) : base_uint<256>(b) {} |
|
uint256(uint64_t b) : base_uint<256>(b) {} |
|
explicit uint256(const std::string& str) : base_uint<256>(str) {} |
|
explicit uint256(const std::vector<unsigned char>& vch) : base_uint<256>(vch) {} |
|
|
|
// The "compact" format is a representation of a whole |
|
// number N using an unsigned 32bit number similar to a |
|
// floating point format. |
|
// The most significant 8 bits are the unsigned exponent of base 256. |
|
// This exponent can be thought of as "number of bytes of N". |
|
// The lower 23 bits are the mantissa. |
|
// Bit number 24 (0x800000) represents the sign of N. |
|
// N = (-1^sign) * mantissa * 256^(exponent-3) |
|
// |
|
// Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn(). |
|
// MPI uses the most significant bit of the first byte as sign. |
|
// Thus 0x1234560000 is compact (0x05123456) |
|
// and 0xc0de000000 is compact (0x0600c0de) |
|
// (0x05c0de00) would be -0x40de000000 |
|
// |
|
// Bitcoin only uses this "compact" format for encoding difficulty |
|
// targets, which are unsigned 256bit quantities. Thus, all the |
|
// complexities of the sign bit and using base 256 are probably an |
|
// implementation accident. |
|
// |
|
// This implementation directly uses shifts instead of going |
|
// through an intermediate MPI representation. |
|
uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL) |
|
{ |
|
int nSize = nCompact >> 24; |
|
uint32_t nWord = nCompact & 0x007fffff; |
|
if (nSize <= 3) |
|
{ |
|
nWord >>= 8*(3-nSize); |
|
*this = nWord; |
|
} |
|
else |
|
{ |
|
*this = nWord; |
|
*this <<= 8*(nSize-3); |
|
} |
|
if (pfNegative) |
|
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0; |
|
if (pfOverflow) |
|
*pfOverflow = nWord != 0 && ((nSize > 34) || |
|
(nWord > 0xff && nSize > 33) || |
|
(nWord > 0xffff && nSize > 32)); |
|
return *this; |
|
} |
|
|
|
uint32_t GetCompact(bool fNegative = false) const |
|
{ |
|
int nSize = (bits() + 7) / 8; |
|
uint32_t nCompact = 0; |
|
if (nSize <= 3) |
|
nCompact = GetLow64() << 8*(3-nSize); |
|
else |
|
{ |
|
uint256 bn = *this >> 8*(nSize-3); |
|
nCompact = bn.GetLow64(); |
|
} |
|
// The 0x00800000 bit denotes the sign. |
|
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent. |
|
if (nCompact & 0x00800000) |
|
{ |
|
nCompact >>= 8; |
|
nSize++; |
|
} |
|
assert((nCompact & ~0x007fffff) == 0); |
|
assert(nSize < 256); |
|
nCompact |= nSize << 24; |
|
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0); |
|
return nCompact; |
|
} |
|
}; |
|
|
|
#endif
|
|
|