You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
457 lines
14 KiB
457 lines
14 KiB
// Copyright (c) 2009-2010 Satoshi Nakamoto |
|
// Copyright (c) 2009-2016 The Bitcoin Core developers |
|
// Distributed under the MIT software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#include "random.h" |
|
|
|
#include "crypto/sha512.h" |
|
#include "support/cleanse.h" |
|
#ifdef WIN32 |
|
#include "compat.h" // for Windows API |
|
#include <wincrypt.h> |
|
#endif |
|
#include "util.h" // for LogPrint() |
|
#include "utilstrencodings.h" // for GetTime() |
|
|
|
#include <stdlib.h> |
|
#include <limits> |
|
#include <chrono> |
|
#include <thread> |
|
|
|
#ifndef WIN32 |
|
#include <sys/time.h> |
|
#endif |
|
|
|
#ifdef HAVE_SYS_GETRANDOM |
|
#include <sys/syscall.h> |
|
#include <linux/random.h> |
|
#endif |
|
#ifdef HAVE_GETENTROPY |
|
#include <unistd.h> |
|
#endif |
|
#ifdef HAVE_SYSCTL_ARND |
|
#include <sys/sysctl.h> |
|
#endif |
|
|
|
#include <mutex> |
|
|
|
#include <openssl/err.h> |
|
#include <openssl/rand.h> |
|
|
|
static void RandFailure() |
|
{ |
|
LogPrintf("Failed to read randomness, aborting\n"); |
|
abort(); |
|
} |
|
|
|
static inline int64_t GetPerformanceCounter() |
|
{ |
|
// Read the hardware time stamp counter when available. |
|
// See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information. |
|
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64)) |
|
return __rdtsc(); |
|
#elif !defined(_MSC_VER) && defined(__i386__) |
|
uint64_t r = 0; |
|
__asm__ volatile ("rdtsc" : "=A"(r)); // Constrain the r variable to the eax:edx pair. |
|
return r; |
|
#elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__)) |
|
uint64_t r1 = 0, r2 = 0; |
|
__asm__ volatile ("rdtsc" : "=a"(r1), "=d"(r2)); // Constrain r1 to rax and r2 to rdx. |
|
return (r2 << 32) | r1; |
|
#else |
|
// Fall back to using C++11 clock (usually microsecond or nanosecond precision) |
|
return std::chrono::high_resolution_clock::now().time_since_epoch().count(); |
|
#endif |
|
} |
|
|
|
|
|
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) |
|
static std::atomic<bool> hwrand_initialized{false}; |
|
static bool rdrand_supported = false; |
|
static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000; |
|
static void RDRandInit() |
|
{ |
|
uint32_t eax, ecx, edx; |
|
#if defined(__i386__) && ( defined(__PIC__) || defined(__PIE__)) |
|
// Avoid clobbering ebx, as that is used for PIC on x86. |
|
uint32_t tmp; |
|
__asm__ ("mov %%ebx, %1; cpuid; mov %1, %%ebx": "=a"(eax), "=g"(tmp), "=c"(ecx), "=d"(edx) : "a"(1)); |
|
#else |
|
uint32_t ebx; |
|
__asm__ ("cpuid": "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) : "a"(1)); |
|
#endif |
|
//! When calling cpuid function #1, ecx register will have this set if RDRAND is available. |
|
if (ecx & CPUID_F1_ECX_RDRAND) { |
|
LogPrintf("Using RdRand as entropy source\n"); |
|
rdrand_supported = true; |
|
} |
|
hwrand_initialized.store(true); |
|
} |
|
#else |
|
static void RDRandInit() {} |
|
#endif |
|
|
|
static bool GetHWRand(unsigned char* ent32) { |
|
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) |
|
assert(hwrand_initialized.load(std::memory_order_relaxed)); |
|
if (rdrand_supported) { |
|
uint8_t ok; |
|
// Not all assemblers support the rdrand instruction, write it in hex. |
|
#ifdef __i386__ |
|
for (int iter = 0; iter < 4; ++iter) { |
|
uint32_t r1, r2; |
|
__asm__ volatile (".byte 0x0f, 0xc7, 0xf0;" // rdrand %eax |
|
".byte 0x0f, 0xc7, 0xf2;" // rdrand %edx |
|
"setc %2" : |
|
"=a"(r1), "=d"(r2), "=q"(ok) :: "cc"); |
|
if (!ok) return false; |
|
WriteLE32(ent32 + 8 * iter, r1); |
|
WriteLE32(ent32 + 8 * iter + 4, r2); |
|
} |
|
#else |
|
uint64_t r1, r2, r3, r4; |
|
__asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0, " // rdrand %rax |
|
"0x48, 0x0f, 0xc7, 0xf3, " // rdrand %rbx |
|
"0x48, 0x0f, 0xc7, 0xf1, " // rdrand %rcx |
|
"0x48, 0x0f, 0xc7, 0xf2; " // rdrand %rdx |
|
"setc %4" : |
|
"=a"(r1), "=b"(r2), "=c"(r3), "=d"(r4), "=q"(ok) :: "cc"); |
|
if (!ok) return false; |
|
WriteLE64(ent32, r1); |
|
WriteLE64(ent32 + 8, r2); |
|
WriteLE64(ent32 + 16, r3); |
|
WriteLE64(ent32 + 24, r4); |
|
#endif |
|
return true; |
|
} |
|
#endif |
|
return false; |
|
} |
|
|
|
void RandAddSeed() |
|
{ |
|
// Seed with CPU performance counter |
|
int64_t nCounter = GetPerformanceCounter(); |
|
RAND_add(&nCounter, sizeof(nCounter), 1.5); |
|
memory_cleanse((void*)&nCounter, sizeof(nCounter)); |
|
} |
|
|
|
static void RandAddSeedPerfmon() |
|
{ |
|
RandAddSeed(); |
|
|
|
#ifdef WIN32 |
|
// Don't need this on Linux, OpenSSL automatically uses /dev/urandom |
|
// Seed with the entire set of perfmon data |
|
|
|
// This can take up to 2 seconds, so only do it every 10 minutes |
|
static int64_t nLastPerfmon; |
|
if (GetTime() < nLastPerfmon + 10 * 60) |
|
return; |
|
nLastPerfmon = GetTime(); |
|
|
|
std::vector<unsigned char> vData(250000, 0); |
|
long ret = 0; |
|
unsigned long nSize = 0; |
|
const size_t nMaxSize = 10000000; // Bail out at more than 10MB of performance data |
|
while (true) { |
|
nSize = vData.size(); |
|
ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", NULL, NULL, vData.data(), &nSize); |
|
if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize) |
|
break; |
|
vData.resize(std::max((vData.size() * 3) / 2, nMaxSize)); // Grow size of buffer exponentially |
|
} |
|
RegCloseKey(HKEY_PERFORMANCE_DATA); |
|
if (ret == ERROR_SUCCESS) { |
|
RAND_add(vData.data(), nSize, nSize / 100.0); |
|
memory_cleanse(vData.data(), nSize); |
|
LogPrint(BCLog::RAND, "%s: %lu bytes\n", __func__, nSize); |
|
} else { |
|
static bool warned = false; // Warn only once |
|
if (!warned) { |
|
LogPrintf("%s: Warning: RegQueryValueExA(HKEY_PERFORMANCE_DATA) failed with code %i\n", __func__, ret); |
|
warned = true; |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
#ifndef WIN32 |
|
/** Fallback: get 32 bytes of system entropy from /dev/urandom. The most |
|
* compatible way to get cryptographic randomness on UNIX-ish platforms. |
|
*/ |
|
void GetDevURandom(unsigned char *ent32) |
|
{ |
|
int f = open("/dev/urandom", O_RDONLY); |
|
if (f == -1) { |
|
RandFailure(); |
|
} |
|
int have = 0; |
|
do { |
|
ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have); |
|
if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) { |
|
RandFailure(); |
|
} |
|
have += n; |
|
} while (have < NUM_OS_RANDOM_BYTES); |
|
close(f); |
|
} |
|
#endif |
|
|
|
/** Get 32 bytes of system entropy. */ |
|
void GetOSRand(unsigned char *ent32) |
|
{ |
|
#if defined(WIN32) |
|
HCRYPTPROV hProvider; |
|
int ret = CryptAcquireContextW(&hProvider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT); |
|
if (!ret) { |
|
RandFailure(); |
|
} |
|
ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32); |
|
if (!ret) { |
|
RandFailure(); |
|
} |
|
CryptReleaseContext(hProvider, 0); |
|
#elif defined(HAVE_SYS_GETRANDOM) |
|
/* Linux. From the getrandom(2) man page: |
|
* "If the urandom source has been initialized, reads of up to 256 bytes |
|
* will always return as many bytes as requested and will not be |
|
* interrupted by signals." |
|
*/ |
|
int rv = syscall(SYS_getrandom, ent32, NUM_OS_RANDOM_BYTES, 0); |
|
if (rv != NUM_OS_RANDOM_BYTES) { |
|
if (rv < 0 && errno == ENOSYS) { |
|
/* Fallback for kernel <3.17: the return value will be -1 and errno |
|
* ENOSYS if the syscall is not available, in that case fall back |
|
* to /dev/urandom. |
|
*/ |
|
GetDevURandom(ent32); |
|
} else { |
|
RandFailure(); |
|
} |
|
} |
|
#elif defined(HAVE_GETENTROPY) |
|
/* On OpenBSD this can return up to 256 bytes of entropy, will return an |
|
* error if more are requested. |
|
* The call cannot return less than the requested number of bytes. |
|
*/ |
|
if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) { |
|
RandFailure(); |
|
} |
|
#elif defined(HAVE_SYSCTL_ARND) |
|
/* FreeBSD and similar. It is possible for the call to return less |
|
* bytes than requested, so need to read in a loop. |
|
*/ |
|
static const int name[2] = {CTL_KERN, KERN_ARND}; |
|
int have = 0; |
|
do { |
|
size_t len = NUM_OS_RANDOM_BYTES - have; |
|
if (sysctl(name, ARRAYLEN(name), ent32 + have, &len, NULL, 0) != 0) { |
|
RandFailure(); |
|
} |
|
have += len; |
|
} while (have < NUM_OS_RANDOM_BYTES); |
|
#else |
|
/* Fall back to /dev/urandom if there is no specific method implemented to |
|
* get system entropy for this OS. |
|
*/ |
|
GetDevURandom(ent32); |
|
#endif |
|
} |
|
|
|
void GetRandBytes(unsigned char* buf, int num) |
|
{ |
|
if (RAND_bytes(buf, num) != 1) { |
|
RandFailure(); |
|
} |
|
} |
|
|
|
static void AddDataToRng(void* data, size_t len); |
|
|
|
void RandAddSeedSleep() |
|
{ |
|
int64_t nPerfCounter1 = GetPerformanceCounter(); |
|
std::this_thread::sleep_for(std::chrono::milliseconds(1)); |
|
int64_t nPerfCounter2 = GetPerformanceCounter(); |
|
|
|
// Combine with and update state |
|
AddDataToRng(&nPerfCounter1, sizeof(nPerfCounter1)); |
|
AddDataToRng(&nPerfCounter2, sizeof(nPerfCounter2)); |
|
|
|
memory_cleanse(&nPerfCounter1, sizeof(nPerfCounter1)); |
|
memory_cleanse(&nPerfCounter2, sizeof(nPerfCounter2)); |
|
} |
|
|
|
|
|
static std::mutex cs_rng_state; |
|
static unsigned char rng_state[32] = {0}; |
|
static uint64_t rng_counter = 0; |
|
|
|
static void AddDataToRng(void* data, size_t len) { |
|
CSHA512 hasher; |
|
hasher.Write((const unsigned char*)&len, sizeof(len)); |
|
hasher.Write((const unsigned char*)data, len); |
|
unsigned char buf[64]; |
|
{ |
|
std::unique_lock<std::mutex> lock(cs_rng_state); |
|
hasher.Write(rng_state, sizeof(rng_state)); |
|
hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter)); |
|
++rng_counter; |
|
hasher.Finalize(buf); |
|
memcpy(rng_state, buf + 32, 32); |
|
} |
|
memory_cleanse(buf, 64); |
|
} |
|
|
|
void GetStrongRandBytes(unsigned char* out, int num) |
|
{ |
|
assert(num <= 32); |
|
CSHA512 hasher; |
|
unsigned char buf[64]; |
|
|
|
// First source: OpenSSL's RNG |
|
RandAddSeedPerfmon(); |
|
GetRandBytes(buf, 32); |
|
hasher.Write(buf, 32); |
|
|
|
// Second source: OS RNG |
|
GetOSRand(buf); |
|
hasher.Write(buf, 32); |
|
|
|
// Third source: HW RNG, if available. |
|
if (GetHWRand(buf)) { |
|
hasher.Write(buf, 32); |
|
} |
|
|
|
// Combine with and update state |
|
{ |
|
std::unique_lock<std::mutex> lock(cs_rng_state); |
|
hasher.Write(rng_state, sizeof(rng_state)); |
|
hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter)); |
|
++rng_counter; |
|
hasher.Finalize(buf); |
|
memcpy(rng_state, buf + 32, 32); |
|
} |
|
|
|
// Produce output |
|
memcpy(out, buf, num); |
|
memory_cleanse(buf, 64); |
|
} |
|
|
|
uint64_t GetRand(uint64_t nMax) |
|
{ |
|
if (nMax == 0) |
|
return 0; |
|
|
|
// The range of the random source must be a multiple of the modulus |
|
// to give every possible output value an equal possibility |
|
uint64_t nRange = (std::numeric_limits<uint64_t>::max() / nMax) * nMax; |
|
uint64_t nRand = 0; |
|
do { |
|
GetRandBytes((unsigned char*)&nRand, sizeof(nRand)); |
|
} while (nRand >= nRange); |
|
return (nRand % nMax); |
|
} |
|
|
|
int GetRandInt(int nMax) |
|
{ |
|
return GetRand(nMax); |
|
} |
|
|
|
uint256 GetRandHash() |
|
{ |
|
uint256 hash; |
|
GetRandBytes((unsigned char*)&hash, sizeof(hash)); |
|
return hash; |
|
} |
|
|
|
void FastRandomContext::RandomSeed() |
|
{ |
|
uint256 seed = GetRandHash(); |
|
rng.SetKey(seed.begin(), 32); |
|
requires_seed = false; |
|
} |
|
|
|
uint256 FastRandomContext::rand256() |
|
{ |
|
if (bytebuf_size < 32) { |
|
FillByteBuffer(); |
|
} |
|
uint256 ret; |
|
memcpy(ret.begin(), bytebuf + 64 - bytebuf_size, 32); |
|
bytebuf_size -= 32; |
|
return ret; |
|
} |
|
|
|
std::vector<unsigned char> FastRandomContext::randbytes(size_t len) |
|
{ |
|
std::vector<unsigned char> ret(len); |
|
if (len > 0) { |
|
rng.Output(&ret[0], len); |
|
} |
|
return ret; |
|
} |
|
|
|
FastRandomContext::FastRandomContext(const uint256& seed) : requires_seed(false), bytebuf_size(0), bitbuf_size(0) |
|
{ |
|
rng.SetKey(seed.begin(), 32); |
|
} |
|
|
|
bool Random_SanityCheck() |
|
{ |
|
uint64_t start = GetPerformanceCounter(); |
|
|
|
/* This does not measure the quality of randomness, but it does test that |
|
* OSRandom() overwrites all 32 bytes of the output given a maximum |
|
* number of tries. |
|
*/ |
|
static const ssize_t MAX_TRIES = 1024; |
|
uint8_t data[NUM_OS_RANDOM_BYTES]; |
|
bool overwritten[NUM_OS_RANDOM_BYTES] = {}; /* Tracks which bytes have been overwritten at least once */ |
|
int num_overwritten; |
|
int tries = 0; |
|
/* Loop until all bytes have been overwritten at least once, or max number tries reached */ |
|
do { |
|
memset(data, 0, NUM_OS_RANDOM_BYTES); |
|
GetOSRand(data); |
|
for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) { |
|
overwritten[x] |= (data[x] != 0); |
|
} |
|
|
|
num_overwritten = 0; |
|
for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) { |
|
if (overwritten[x]) { |
|
num_overwritten += 1; |
|
} |
|
} |
|
|
|
tries += 1; |
|
} while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES); |
|
if (num_overwritten != NUM_OS_RANDOM_BYTES) return false; /* If this failed, bailed out after too many tries */ |
|
|
|
// Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep. |
|
std::this_thread::sleep_for(std::chrono::milliseconds(1)); |
|
uint64_t stop = GetPerformanceCounter(); |
|
if (stop == start) return false; |
|
|
|
// We called GetPerformanceCounter. Use it as entropy. |
|
RAND_add((const unsigned char*)&start, sizeof(start), 1); |
|
RAND_add((const unsigned char*)&stop, sizeof(stop), 1); |
|
|
|
return true; |
|
} |
|
|
|
FastRandomContext::FastRandomContext(bool fDeterministic) : requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0) |
|
{ |
|
if (!fDeterministic) { |
|
return; |
|
} |
|
uint256 seed; |
|
rng.SetKey(seed.begin(), 32); |
|
} |
|
|
|
void RandomInit() |
|
{ |
|
RDRandInit(); |
|
}
|
|
|