You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1479 lines
43 KiB
1479 lines
43 KiB
// Copyright (c) 2009-2010 Satoshi Nakamoto |
|
// Copyright (c) 2009-2015 The Bitcoin Core developers |
|
// Distributed under the MIT software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#ifdef HAVE_CONFIG_H |
|
#include "config/bitcoin-config.h" |
|
#endif |
|
|
|
#include "netbase.h" |
|
|
|
#include "hash.h" |
|
#include "sync.h" |
|
#include "uint256.h" |
|
#include "random.h" |
|
#include "util.h" |
|
#include "utilstrencodings.h" |
|
|
|
#ifdef HAVE_GETADDRINFO_A |
|
#include <netdb.h> |
|
#endif |
|
|
|
#ifndef WIN32 |
|
#if HAVE_INET_PTON |
|
#include <arpa/inet.h> |
|
#endif |
|
#include <fcntl.h> |
|
#endif |
|
|
|
#include <boost/algorithm/string/case_conv.hpp> // for to_lower() |
|
#include <boost/algorithm/string/predicate.hpp> // for startswith() and endswith() |
|
#include <boost/thread.hpp> |
|
|
|
#if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL) |
|
#define MSG_NOSIGNAL 0 |
|
#endif |
|
|
|
// Settings |
|
static proxyType proxyInfo[NET_MAX]; |
|
static proxyType nameProxy; |
|
static CCriticalSection cs_proxyInfos; |
|
int nConnectTimeout = DEFAULT_CONNECT_TIMEOUT; |
|
bool fNameLookup = DEFAULT_NAME_LOOKUP; |
|
|
|
static const unsigned char pchIPv4[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff }; |
|
|
|
// Need ample time for negotiation for very slow proxies such as Tor (milliseconds) |
|
static const int SOCKS5_RECV_TIMEOUT = 20 * 1000; |
|
|
|
enum Network ParseNetwork(std::string net) { |
|
boost::to_lower(net); |
|
if (net == "ipv4") return NET_IPV4; |
|
if (net == "ipv6") return NET_IPV6; |
|
if (net == "tor" || net == "onion") return NET_TOR; |
|
return NET_UNROUTABLE; |
|
} |
|
|
|
std::string GetNetworkName(enum Network net) { |
|
switch(net) |
|
{ |
|
case NET_IPV4: return "ipv4"; |
|
case NET_IPV6: return "ipv6"; |
|
case NET_TOR: return "onion"; |
|
default: return ""; |
|
} |
|
} |
|
|
|
void SplitHostPort(std::string in, int &portOut, std::string &hostOut) { |
|
size_t colon = in.find_last_of(':'); |
|
// if a : is found, and it either follows a [...], or no other : is in the string, treat it as port separator |
|
bool fHaveColon = colon != in.npos; |
|
bool fBracketed = fHaveColon && (in[0]=='[' && in[colon-1]==']'); // if there is a colon, and in[0]=='[', colon is not 0, so in[colon-1] is safe |
|
bool fMultiColon = fHaveColon && (in.find_last_of(':',colon-1) != in.npos); |
|
if (fHaveColon && (colon==0 || fBracketed || !fMultiColon)) { |
|
int32_t n; |
|
if (ParseInt32(in.substr(colon + 1), &n) && n > 0 && n < 0x10000) { |
|
in = in.substr(0, colon); |
|
portOut = n; |
|
} |
|
} |
|
if (in.size()>0 && in[0] == '[' && in[in.size()-1] == ']') |
|
hostOut = in.substr(1, in.size()-2); |
|
else |
|
hostOut = in; |
|
} |
|
|
|
bool static LookupIntern(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup) |
|
{ |
|
vIP.clear(); |
|
|
|
{ |
|
CNetAddr addr; |
|
if (addr.SetSpecial(std::string(pszName))) { |
|
vIP.push_back(addr); |
|
return true; |
|
} |
|
} |
|
|
|
#ifdef HAVE_GETADDRINFO_A |
|
struct in_addr ipv4_addr; |
|
#ifdef HAVE_INET_PTON |
|
if (inet_pton(AF_INET, pszName, &ipv4_addr) > 0) { |
|
vIP.push_back(CNetAddr(ipv4_addr)); |
|
return true; |
|
} |
|
|
|
struct in6_addr ipv6_addr; |
|
if (inet_pton(AF_INET6, pszName, &ipv6_addr) > 0) { |
|
vIP.push_back(CNetAddr(ipv6_addr)); |
|
return true; |
|
} |
|
#else |
|
ipv4_addr.s_addr = inet_addr(pszName); |
|
if (ipv4_addr.s_addr != INADDR_NONE) { |
|
vIP.push_back(CNetAddr(ipv4_addr)); |
|
return true; |
|
} |
|
#endif |
|
#endif |
|
|
|
struct addrinfo aiHint; |
|
memset(&aiHint, 0, sizeof(struct addrinfo)); |
|
aiHint.ai_socktype = SOCK_STREAM; |
|
aiHint.ai_protocol = IPPROTO_TCP; |
|
aiHint.ai_family = AF_UNSPEC; |
|
#ifdef WIN32 |
|
aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST; |
|
#else |
|
aiHint.ai_flags = fAllowLookup ? AI_ADDRCONFIG : AI_NUMERICHOST; |
|
#endif |
|
|
|
struct addrinfo *aiRes = NULL; |
|
#ifdef HAVE_GETADDRINFO_A |
|
struct gaicb gcb, *query = &gcb; |
|
memset(query, 0, sizeof(struct gaicb)); |
|
gcb.ar_name = pszName; |
|
gcb.ar_request = &aiHint; |
|
int nErr = getaddrinfo_a(GAI_NOWAIT, &query, 1, NULL); |
|
if (nErr) |
|
return false; |
|
|
|
do { |
|
// Should set the timeout limit to a reasonable value to avoid |
|
// generating unnecessary checking call during the polling loop, |
|
// while it can still response to stop request quick enough. |
|
// 2 seconds looks fine in our situation. |
|
struct timespec ts = { 2, 0 }; |
|
gai_suspend(&query, 1, &ts); |
|
boost::this_thread::interruption_point(); |
|
|
|
nErr = gai_error(query); |
|
if (0 == nErr) |
|
aiRes = query->ar_result; |
|
} while (nErr == EAI_INPROGRESS); |
|
#else |
|
int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes); |
|
#endif |
|
if (nErr) |
|
return false; |
|
|
|
struct addrinfo *aiTrav = aiRes; |
|
while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions)) |
|
{ |
|
if (aiTrav->ai_family == AF_INET) |
|
{ |
|
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in)); |
|
vIP.push_back(CNetAddr(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr)); |
|
} |
|
|
|
if (aiTrav->ai_family == AF_INET6) |
|
{ |
|
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6)); |
|
struct sockaddr_in6* s6 = (struct sockaddr_in6*) aiTrav->ai_addr; |
|
vIP.push_back(CNetAddr(s6->sin6_addr, s6->sin6_scope_id)); |
|
} |
|
|
|
aiTrav = aiTrav->ai_next; |
|
} |
|
|
|
freeaddrinfo(aiRes); |
|
|
|
return (vIP.size() > 0); |
|
} |
|
|
|
bool LookupHost(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup) |
|
{ |
|
std::string strHost(pszName); |
|
if (strHost.empty()) |
|
return false; |
|
if (boost::algorithm::starts_with(strHost, "[") && boost::algorithm::ends_with(strHost, "]")) |
|
{ |
|
strHost = strHost.substr(1, strHost.size() - 2); |
|
} |
|
|
|
return LookupIntern(strHost.c_str(), vIP, nMaxSolutions, fAllowLookup); |
|
} |
|
|
|
bool Lookup(const char *pszName, std::vector<CService>& vAddr, int portDefault, bool fAllowLookup, unsigned int nMaxSolutions) |
|
{ |
|
if (pszName[0] == 0) |
|
return false; |
|
int port = portDefault; |
|
std::string hostname = ""; |
|
SplitHostPort(std::string(pszName), port, hostname); |
|
|
|
std::vector<CNetAddr> vIP; |
|
bool fRet = LookupIntern(hostname.c_str(), vIP, nMaxSolutions, fAllowLookup); |
|
if (!fRet) |
|
return false; |
|
vAddr.resize(vIP.size()); |
|
for (unsigned int i = 0; i < vIP.size(); i++) |
|
vAddr[i] = CService(vIP[i], port); |
|
return true; |
|
} |
|
|
|
bool Lookup(const char *pszName, CService& addr, int portDefault, bool fAllowLookup) |
|
{ |
|
std::vector<CService> vService; |
|
bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1); |
|
if (!fRet) |
|
return false; |
|
addr = vService[0]; |
|
return true; |
|
} |
|
|
|
bool LookupNumeric(const char *pszName, CService& addr, int portDefault) |
|
{ |
|
return Lookup(pszName, addr, portDefault, false); |
|
} |
|
|
|
struct timeval MillisToTimeval(int64_t nTimeout) |
|
{ |
|
struct timeval timeout; |
|
timeout.tv_sec = nTimeout / 1000; |
|
timeout.tv_usec = (nTimeout % 1000) * 1000; |
|
return timeout; |
|
} |
|
|
|
/** |
|
* Read bytes from socket. This will either read the full number of bytes requested |
|
* or return False on error or timeout. |
|
* This function can be interrupted by boost thread interrupt. |
|
* |
|
* @param data Buffer to receive into |
|
* @param len Length of data to receive |
|
* @param timeout Timeout in milliseconds for receive operation |
|
* |
|
* @note This function requires that hSocket is in non-blocking mode. |
|
*/ |
|
bool static InterruptibleRecv(char* data, size_t len, int timeout, SOCKET& hSocket) |
|
{ |
|
int64_t curTime = GetTimeMillis(); |
|
int64_t endTime = curTime + timeout; |
|
// Maximum time to wait in one select call. It will take up until this time (in millis) |
|
// to break off in case of an interruption. |
|
const int64_t maxWait = 1000; |
|
while (len > 0 && curTime < endTime) { |
|
ssize_t ret = recv(hSocket, data, len, 0); // Optimistically try the recv first |
|
if (ret > 0) { |
|
len -= ret; |
|
data += ret; |
|
} else if (ret == 0) { // Unexpected disconnection |
|
return false; |
|
} else { // Other error or blocking |
|
int nErr = WSAGetLastError(); |
|
if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) { |
|
if (!IsSelectableSocket(hSocket)) { |
|
return false; |
|
} |
|
struct timeval tval = MillisToTimeval(std::min(endTime - curTime, maxWait)); |
|
fd_set fdset; |
|
FD_ZERO(&fdset); |
|
FD_SET(hSocket, &fdset); |
|
int nRet = select(hSocket + 1, &fdset, NULL, NULL, &tval); |
|
if (nRet == SOCKET_ERROR) { |
|
return false; |
|
} |
|
} else { |
|
return false; |
|
} |
|
} |
|
boost::this_thread::interruption_point(); |
|
curTime = GetTimeMillis(); |
|
} |
|
return len == 0; |
|
} |
|
|
|
struct ProxyCredentials |
|
{ |
|
std::string username; |
|
std::string password; |
|
}; |
|
|
|
std::string Socks5ErrorString(int err) |
|
{ |
|
switch(err) { |
|
case 0x01: return "general failure"; |
|
case 0x02: return "connection not allowed"; |
|
case 0x03: return "network unreachable"; |
|
case 0x04: return "host unreachable"; |
|
case 0x05: return "connection refused"; |
|
case 0x06: return "TTL expired"; |
|
case 0x07: return "protocol error"; |
|
case 0x08: return "address type not supported"; |
|
default: return "unknown"; |
|
} |
|
} |
|
|
|
/** Connect using SOCKS5 (as described in RFC1928) */ |
|
static bool Socks5(const std::string& strDest, int port, const ProxyCredentials *auth, SOCKET& hSocket) |
|
{ |
|
LogPrint("net", "SOCKS5 connecting %s\n", strDest); |
|
if (strDest.size() > 255) { |
|
CloseSocket(hSocket); |
|
return error("Hostname too long"); |
|
} |
|
// Accepted authentication methods |
|
std::vector<uint8_t> vSocks5Init; |
|
vSocks5Init.push_back(0x05); |
|
if (auth) { |
|
vSocks5Init.push_back(0x02); // # METHODS |
|
vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED |
|
vSocks5Init.push_back(0x02); // X'02' USERNAME/PASSWORD (RFC1929) |
|
} else { |
|
vSocks5Init.push_back(0x01); // # METHODS |
|
vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED |
|
} |
|
ssize_t ret = send(hSocket, (const char*)begin_ptr(vSocks5Init), vSocks5Init.size(), MSG_NOSIGNAL); |
|
if (ret != (ssize_t)vSocks5Init.size()) { |
|
CloseSocket(hSocket); |
|
return error("Error sending to proxy"); |
|
} |
|
char pchRet1[2]; |
|
if (!InterruptibleRecv(pchRet1, 2, SOCKS5_RECV_TIMEOUT, hSocket)) { |
|
CloseSocket(hSocket); |
|
LogPrintf("Socks5() connect to %s:%d failed: InterruptibleRecv() timeout or other failure\n", strDest, port); |
|
return false; |
|
} |
|
if (pchRet1[0] != 0x05) { |
|
CloseSocket(hSocket); |
|
return error("Proxy failed to initialize"); |
|
} |
|
if (pchRet1[1] == 0x02 && auth) { |
|
// Perform username/password authentication (as described in RFC1929) |
|
std::vector<uint8_t> vAuth; |
|
vAuth.push_back(0x01); |
|
if (auth->username.size() > 255 || auth->password.size() > 255) |
|
return error("Proxy username or password too long"); |
|
vAuth.push_back(auth->username.size()); |
|
vAuth.insert(vAuth.end(), auth->username.begin(), auth->username.end()); |
|
vAuth.push_back(auth->password.size()); |
|
vAuth.insert(vAuth.end(), auth->password.begin(), auth->password.end()); |
|
ret = send(hSocket, (const char*)begin_ptr(vAuth), vAuth.size(), MSG_NOSIGNAL); |
|
if (ret != (ssize_t)vAuth.size()) { |
|
CloseSocket(hSocket); |
|
return error("Error sending authentication to proxy"); |
|
} |
|
LogPrint("proxy", "SOCKS5 sending proxy authentication %s:%s\n", auth->username, auth->password); |
|
char pchRetA[2]; |
|
if (!InterruptibleRecv(pchRetA, 2, SOCKS5_RECV_TIMEOUT, hSocket)) { |
|
CloseSocket(hSocket); |
|
return error("Error reading proxy authentication response"); |
|
} |
|
if (pchRetA[0] != 0x01 || pchRetA[1] != 0x00) { |
|
CloseSocket(hSocket); |
|
return error("Proxy authentication unsuccessful"); |
|
} |
|
} else if (pchRet1[1] == 0x00) { |
|
// Perform no authentication |
|
} else { |
|
CloseSocket(hSocket); |
|
return error("Proxy requested wrong authentication method %02x", pchRet1[1]); |
|
} |
|
std::vector<uint8_t> vSocks5; |
|
vSocks5.push_back(0x05); // VER protocol version |
|
vSocks5.push_back(0x01); // CMD CONNECT |
|
vSocks5.push_back(0x00); // RSV Reserved |
|
vSocks5.push_back(0x03); // ATYP DOMAINNAME |
|
vSocks5.push_back(strDest.size()); // Length<=255 is checked at beginning of function |
|
vSocks5.insert(vSocks5.end(), strDest.begin(), strDest.end()); |
|
vSocks5.push_back((port >> 8) & 0xFF); |
|
vSocks5.push_back((port >> 0) & 0xFF); |
|
ret = send(hSocket, (const char*)begin_ptr(vSocks5), vSocks5.size(), MSG_NOSIGNAL); |
|
if (ret != (ssize_t)vSocks5.size()) { |
|
CloseSocket(hSocket); |
|
return error("Error sending to proxy"); |
|
} |
|
char pchRet2[4]; |
|
if (!InterruptibleRecv(pchRet2, 4, SOCKS5_RECV_TIMEOUT, hSocket)) { |
|
CloseSocket(hSocket); |
|
return error("Error reading proxy response"); |
|
} |
|
if (pchRet2[0] != 0x05) { |
|
CloseSocket(hSocket); |
|
return error("Proxy failed to accept request"); |
|
} |
|
if (pchRet2[1] != 0x00) { |
|
// Failures to connect to a peer that are not proxy errors |
|
CloseSocket(hSocket); |
|
LogPrintf("Socks5() connect to %s:%d failed: %s\n", strDest, port, Socks5ErrorString(pchRet2[1])); |
|
return false; |
|
} |
|
if (pchRet2[2] != 0x00) { |
|
CloseSocket(hSocket); |
|
return error("Error: malformed proxy response"); |
|
} |
|
char pchRet3[256]; |
|
switch (pchRet2[3]) |
|
{ |
|
case 0x01: ret = InterruptibleRecv(pchRet3, 4, SOCKS5_RECV_TIMEOUT, hSocket); break; |
|
case 0x04: ret = InterruptibleRecv(pchRet3, 16, SOCKS5_RECV_TIMEOUT, hSocket); break; |
|
case 0x03: |
|
{ |
|
ret = InterruptibleRecv(pchRet3, 1, SOCKS5_RECV_TIMEOUT, hSocket); |
|
if (!ret) { |
|
CloseSocket(hSocket); |
|
return error("Error reading from proxy"); |
|
} |
|
int nRecv = pchRet3[0]; |
|
ret = InterruptibleRecv(pchRet3, nRecv, SOCKS5_RECV_TIMEOUT, hSocket); |
|
break; |
|
} |
|
default: CloseSocket(hSocket); return error("Error: malformed proxy response"); |
|
} |
|
if (!ret) { |
|
CloseSocket(hSocket); |
|
return error("Error reading from proxy"); |
|
} |
|
if (!InterruptibleRecv(pchRet3, 2, SOCKS5_RECV_TIMEOUT, hSocket)) { |
|
CloseSocket(hSocket); |
|
return error("Error reading from proxy"); |
|
} |
|
LogPrint("net", "SOCKS5 connected %s\n", strDest); |
|
return true; |
|
} |
|
|
|
bool static ConnectSocketDirectly(const CService &addrConnect, SOCKET& hSocketRet, int nTimeout) |
|
{ |
|
hSocketRet = INVALID_SOCKET; |
|
|
|
struct sockaddr_storage sockaddr; |
|
socklen_t len = sizeof(sockaddr); |
|
if (!addrConnect.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { |
|
LogPrintf("Cannot connect to %s: unsupported network\n", addrConnect.ToString()); |
|
return false; |
|
} |
|
|
|
SOCKET hSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); |
|
if (hSocket == INVALID_SOCKET) |
|
return false; |
|
|
|
int set = 1; |
|
#ifdef SO_NOSIGPIPE |
|
// Different way of disabling SIGPIPE on BSD |
|
setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int)); |
|
#endif |
|
|
|
//Disable Nagle's algorithm |
|
#ifdef WIN32 |
|
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int)); |
|
#else |
|
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int)); |
|
#endif |
|
|
|
// Set to non-blocking |
|
if (!SetSocketNonBlocking(hSocket, true)) |
|
return error("ConnectSocketDirectly: Setting socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError())); |
|
|
|
if (connect(hSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) |
|
{ |
|
int nErr = WSAGetLastError(); |
|
// WSAEINVAL is here because some legacy version of winsock uses it |
|
if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) |
|
{ |
|
struct timeval timeout = MillisToTimeval(nTimeout); |
|
fd_set fdset; |
|
FD_ZERO(&fdset); |
|
FD_SET(hSocket, &fdset); |
|
int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout); |
|
if (nRet == 0) |
|
{ |
|
LogPrint("net", "connection to %s timeout\n", addrConnect.ToString()); |
|
CloseSocket(hSocket); |
|
return false; |
|
} |
|
if (nRet == SOCKET_ERROR) |
|
{ |
|
LogPrintf("select() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); |
|
CloseSocket(hSocket); |
|
return false; |
|
} |
|
socklen_t nRetSize = sizeof(nRet); |
|
#ifdef WIN32 |
|
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR) |
|
#else |
|
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR) |
|
#endif |
|
{ |
|
LogPrintf("getsockopt() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); |
|
CloseSocket(hSocket); |
|
return false; |
|
} |
|
if (nRet != 0) |
|
{ |
|
LogPrintf("connect() to %s failed after select(): %s\n", addrConnect.ToString(), NetworkErrorString(nRet)); |
|
CloseSocket(hSocket); |
|
return false; |
|
} |
|
} |
|
#ifdef WIN32 |
|
else if (WSAGetLastError() != WSAEISCONN) |
|
#else |
|
else |
|
#endif |
|
{ |
|
LogPrintf("connect() to %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); |
|
CloseSocket(hSocket); |
|
return false; |
|
} |
|
} |
|
|
|
hSocketRet = hSocket; |
|
return true; |
|
} |
|
|
|
bool SetProxy(enum Network net, const proxyType &addrProxy) { |
|
assert(net >= 0 && net < NET_MAX); |
|
if (!addrProxy.IsValid()) |
|
return false; |
|
LOCK(cs_proxyInfos); |
|
proxyInfo[net] = addrProxy; |
|
return true; |
|
} |
|
|
|
bool GetProxy(enum Network net, proxyType &proxyInfoOut) { |
|
assert(net >= 0 && net < NET_MAX); |
|
LOCK(cs_proxyInfos); |
|
if (!proxyInfo[net].IsValid()) |
|
return false; |
|
proxyInfoOut = proxyInfo[net]; |
|
return true; |
|
} |
|
|
|
bool SetNameProxy(const proxyType &addrProxy) { |
|
if (!addrProxy.IsValid()) |
|
return false; |
|
LOCK(cs_proxyInfos); |
|
nameProxy = addrProxy; |
|
return true; |
|
} |
|
|
|
bool GetNameProxy(proxyType &nameProxyOut) { |
|
LOCK(cs_proxyInfos); |
|
if(!nameProxy.IsValid()) |
|
return false; |
|
nameProxyOut = nameProxy; |
|
return true; |
|
} |
|
|
|
bool HaveNameProxy() { |
|
LOCK(cs_proxyInfos); |
|
return nameProxy.IsValid(); |
|
} |
|
|
|
bool IsProxy(const CNetAddr &addr) { |
|
LOCK(cs_proxyInfos); |
|
for (int i = 0; i < NET_MAX; i++) { |
|
if (addr == (CNetAddr)proxyInfo[i].proxy) |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
static bool ConnectThroughProxy(const proxyType &proxy, const std::string& strDest, int port, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed) |
|
{ |
|
SOCKET hSocket = INVALID_SOCKET; |
|
// first connect to proxy server |
|
if (!ConnectSocketDirectly(proxy.proxy, hSocket, nTimeout)) { |
|
if (outProxyConnectionFailed) |
|
*outProxyConnectionFailed = true; |
|
return false; |
|
} |
|
// do socks negotiation |
|
if (proxy.randomize_credentials) { |
|
ProxyCredentials random_auth; |
|
random_auth.username = strprintf("%i", insecure_rand()); |
|
random_auth.password = strprintf("%i", insecure_rand()); |
|
if (!Socks5(strDest, (unsigned short)port, &random_auth, hSocket)) |
|
return false; |
|
} else { |
|
if (!Socks5(strDest, (unsigned short)port, 0, hSocket)) |
|
return false; |
|
} |
|
|
|
hSocketRet = hSocket; |
|
return true; |
|
} |
|
|
|
bool ConnectSocket(const CService &addrDest, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed) |
|
{ |
|
proxyType proxy; |
|
if (outProxyConnectionFailed) |
|
*outProxyConnectionFailed = false; |
|
|
|
if (GetProxy(addrDest.GetNetwork(), proxy)) |
|
return ConnectThroughProxy(proxy, addrDest.ToStringIP(), addrDest.GetPort(), hSocketRet, nTimeout, outProxyConnectionFailed); |
|
else // no proxy needed (none set for target network) |
|
return ConnectSocketDirectly(addrDest, hSocketRet, nTimeout); |
|
} |
|
|
|
bool ConnectSocketByName(CService &addr, SOCKET& hSocketRet, const char *pszDest, int portDefault, int nTimeout, bool *outProxyConnectionFailed) |
|
{ |
|
std::string strDest; |
|
int port = portDefault; |
|
|
|
if (outProxyConnectionFailed) |
|
*outProxyConnectionFailed = false; |
|
|
|
SplitHostPort(std::string(pszDest), port, strDest); |
|
|
|
proxyType nameProxy; |
|
GetNameProxy(nameProxy); |
|
|
|
CService addrResolved; |
|
if (Lookup(strDest.c_str(), addrResolved, port, fNameLookup && !HaveNameProxy())) { |
|
if (addrResolved.IsValid()) { |
|
addr = addrResolved; |
|
return ConnectSocket(addr, hSocketRet, nTimeout); |
|
} |
|
} |
|
|
|
addr = CService("0.0.0.0:0"); |
|
|
|
if (!HaveNameProxy()) |
|
return false; |
|
return ConnectThroughProxy(nameProxy, strDest, port, hSocketRet, nTimeout, outProxyConnectionFailed); |
|
} |
|
|
|
void CNetAddr::Init() |
|
{ |
|
memset(ip, 0, sizeof(ip)); |
|
scopeId = 0; |
|
} |
|
|
|
void CNetAddr::SetIP(const CNetAddr& ipIn) |
|
{ |
|
memcpy(ip, ipIn.ip, sizeof(ip)); |
|
} |
|
|
|
void CNetAddr::SetRaw(Network network, const uint8_t *ip_in) |
|
{ |
|
switch(network) |
|
{ |
|
case NET_IPV4: |
|
memcpy(ip, pchIPv4, 12); |
|
memcpy(ip+12, ip_in, 4); |
|
break; |
|
case NET_IPV6: |
|
memcpy(ip, ip_in, 16); |
|
break; |
|
default: |
|
assert(!"invalid network"); |
|
} |
|
} |
|
|
|
static const unsigned char pchOnionCat[] = {0xFD,0x87,0xD8,0x7E,0xEB,0x43}; |
|
|
|
bool CNetAddr::SetSpecial(const std::string &strName) |
|
{ |
|
if (strName.size()>6 && strName.substr(strName.size() - 6, 6) == ".onion") { |
|
std::vector<unsigned char> vchAddr = DecodeBase32(strName.substr(0, strName.size() - 6).c_str()); |
|
if (vchAddr.size() != 16-sizeof(pchOnionCat)) |
|
return false; |
|
memcpy(ip, pchOnionCat, sizeof(pchOnionCat)); |
|
for (unsigned int i=0; i<16-sizeof(pchOnionCat); i++) |
|
ip[i + sizeof(pchOnionCat)] = vchAddr[i]; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
CNetAddr::CNetAddr() |
|
{ |
|
Init(); |
|
} |
|
|
|
CNetAddr::CNetAddr(const struct in_addr& ipv4Addr) |
|
{ |
|
SetRaw(NET_IPV4, (const uint8_t*)&ipv4Addr); |
|
} |
|
|
|
CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope) |
|
{ |
|
SetRaw(NET_IPV6, (const uint8_t*)&ipv6Addr); |
|
scopeId = scope; |
|
} |
|
|
|
CNetAddr::CNetAddr(const char *pszIp) |
|
{ |
|
Init(); |
|
std::vector<CNetAddr> vIP; |
|
if (LookupHost(pszIp, vIP, 1, false)) |
|
*this = vIP[0]; |
|
} |
|
|
|
CNetAddr::CNetAddr(const std::string &strIp) |
|
{ |
|
Init(); |
|
std::vector<CNetAddr> vIP; |
|
if (LookupHost(strIp.c_str(), vIP, 1, false)) |
|
*this = vIP[0]; |
|
} |
|
|
|
unsigned int CNetAddr::GetByte(int n) const |
|
{ |
|
return ip[15-n]; |
|
} |
|
|
|
bool CNetAddr::IsIPv4() const |
|
{ |
|
return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0); |
|
} |
|
|
|
bool CNetAddr::IsIPv6() const |
|
{ |
|
return (!IsIPv4() && !IsTor()); |
|
} |
|
|
|
bool CNetAddr::IsRFC1918() const |
|
{ |
|
return IsIPv4() && ( |
|
GetByte(3) == 10 || |
|
(GetByte(3) == 192 && GetByte(2) == 168) || |
|
(GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31))); |
|
} |
|
|
|
bool CNetAddr::IsRFC2544() const |
|
{ |
|
return IsIPv4() && GetByte(3) == 198 && (GetByte(2) == 18 || GetByte(2) == 19); |
|
} |
|
|
|
bool CNetAddr::IsRFC3927() const |
|
{ |
|
return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254); |
|
} |
|
|
|
bool CNetAddr::IsRFC6598() const |
|
{ |
|
return IsIPv4() && GetByte(3) == 100 && GetByte(2) >= 64 && GetByte(2) <= 127; |
|
} |
|
|
|
bool CNetAddr::IsRFC5737() const |
|
{ |
|
return IsIPv4() && ((GetByte(3) == 192 && GetByte(2) == 0 && GetByte(1) == 2) || |
|
(GetByte(3) == 198 && GetByte(2) == 51 && GetByte(1) == 100) || |
|
(GetByte(3) == 203 && GetByte(2) == 0 && GetByte(1) == 113)); |
|
} |
|
|
|
bool CNetAddr::IsRFC3849() const |
|
{ |
|
return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8; |
|
} |
|
|
|
bool CNetAddr::IsRFC3964() const |
|
{ |
|
return (GetByte(15) == 0x20 && GetByte(14) == 0x02); |
|
} |
|
|
|
bool CNetAddr::IsRFC6052() const |
|
{ |
|
static const unsigned char pchRFC6052[] = {0,0x64,0xFF,0x9B,0,0,0,0,0,0,0,0}; |
|
return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0); |
|
} |
|
|
|
bool CNetAddr::IsRFC4380() const |
|
{ |
|
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0); |
|
} |
|
|
|
bool CNetAddr::IsRFC4862() const |
|
{ |
|
static const unsigned char pchRFC4862[] = {0xFE,0x80,0,0,0,0,0,0}; |
|
return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0); |
|
} |
|
|
|
bool CNetAddr::IsRFC4193() const |
|
{ |
|
return ((GetByte(15) & 0xFE) == 0xFC); |
|
} |
|
|
|
bool CNetAddr::IsRFC6145() const |
|
{ |
|
static const unsigned char pchRFC6145[] = {0,0,0,0,0,0,0,0,0xFF,0xFF,0,0}; |
|
return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0); |
|
} |
|
|
|
bool CNetAddr::IsRFC4843() const |
|
{ |
|
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10); |
|
} |
|
|
|
bool CNetAddr::IsTor() const |
|
{ |
|
return (memcmp(ip, pchOnionCat, sizeof(pchOnionCat)) == 0); |
|
} |
|
|
|
bool CNetAddr::IsLocal() const |
|
{ |
|
// IPv4 loopback |
|
if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0)) |
|
return true; |
|
|
|
// IPv6 loopback (::1/128) |
|
static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; |
|
if (memcmp(ip, pchLocal, 16) == 0) |
|
return true; |
|
|
|
return false; |
|
} |
|
|
|
bool CNetAddr::IsMulticast() const |
|
{ |
|
return (IsIPv4() && (GetByte(3) & 0xF0) == 0xE0) |
|
|| (GetByte(15) == 0xFF); |
|
} |
|
|
|
bool CNetAddr::IsValid() const |
|
{ |
|
// Cleanup 3-byte shifted addresses caused by garbage in size field |
|
// of addr messages from versions before 0.2.9 checksum. |
|
// Two consecutive addr messages look like this: |
|
// header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26... |
|
// so if the first length field is garbled, it reads the second batch |
|
// of addr misaligned by 3 bytes. |
|
if (memcmp(ip, pchIPv4+3, sizeof(pchIPv4)-3) == 0) |
|
return false; |
|
|
|
// unspecified IPv6 address (::/128) |
|
unsigned char ipNone[16] = {}; |
|
if (memcmp(ip, ipNone, 16) == 0) |
|
return false; |
|
|
|
// documentation IPv6 address |
|
if (IsRFC3849()) |
|
return false; |
|
|
|
if (IsIPv4()) |
|
{ |
|
// INADDR_NONE |
|
uint32_t ipNone = INADDR_NONE; |
|
if (memcmp(ip+12, &ipNone, 4) == 0) |
|
return false; |
|
|
|
// 0 |
|
ipNone = 0; |
|
if (memcmp(ip+12, &ipNone, 4) == 0) |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool CNetAddr::IsRoutable() const |
|
{ |
|
return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) || IsRFC4843() || IsLocal()); |
|
} |
|
|
|
enum Network CNetAddr::GetNetwork() const |
|
{ |
|
if (!IsRoutable()) |
|
return NET_UNROUTABLE; |
|
|
|
if (IsIPv4()) |
|
return NET_IPV4; |
|
|
|
if (IsTor()) |
|
return NET_TOR; |
|
|
|
return NET_IPV6; |
|
} |
|
|
|
std::string CNetAddr::ToStringIP() const |
|
{ |
|
if (IsTor()) |
|
return EncodeBase32(&ip[6], 10) + ".onion"; |
|
CService serv(*this, 0); |
|
struct sockaddr_storage sockaddr; |
|
socklen_t socklen = sizeof(sockaddr); |
|
if (serv.GetSockAddr((struct sockaddr*)&sockaddr, &socklen)) { |
|
char name[1025] = ""; |
|
if (!getnameinfo((const struct sockaddr*)&sockaddr, socklen, name, sizeof(name), NULL, 0, NI_NUMERICHOST)) |
|
return std::string(name); |
|
} |
|
if (IsIPv4()) |
|
return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0)); |
|
else |
|
return strprintf("%x:%x:%x:%x:%x:%x:%x:%x", |
|
GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12), |
|
GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8), |
|
GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4), |
|
GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0)); |
|
} |
|
|
|
std::string CNetAddr::ToString() const |
|
{ |
|
return ToStringIP(); |
|
} |
|
|
|
bool operator==(const CNetAddr& a, const CNetAddr& b) |
|
{ |
|
return (memcmp(a.ip, b.ip, 16) == 0); |
|
} |
|
|
|
bool operator!=(const CNetAddr& a, const CNetAddr& b) |
|
{ |
|
return (memcmp(a.ip, b.ip, 16) != 0); |
|
} |
|
|
|
bool operator<(const CNetAddr& a, const CNetAddr& b) |
|
{ |
|
return (memcmp(a.ip, b.ip, 16) < 0); |
|
} |
|
|
|
bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const |
|
{ |
|
if (!IsIPv4()) |
|
return false; |
|
memcpy(pipv4Addr, ip+12, 4); |
|
return true; |
|
} |
|
|
|
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const |
|
{ |
|
memcpy(pipv6Addr, ip, 16); |
|
return true; |
|
} |
|
|
|
// get canonical identifier of an address' group |
|
// no two connections will be attempted to addresses with the same group |
|
std::vector<unsigned char> CNetAddr::GetGroup() const |
|
{ |
|
std::vector<unsigned char> vchRet; |
|
int nClass = NET_IPV6; |
|
int nStartByte = 0; |
|
int nBits = 16; |
|
|
|
// all local addresses belong to the same group |
|
if (IsLocal()) |
|
{ |
|
nClass = 255; |
|
nBits = 0; |
|
} |
|
|
|
// all unroutable addresses belong to the same group |
|
if (!IsRoutable()) |
|
{ |
|
nClass = NET_UNROUTABLE; |
|
nBits = 0; |
|
} |
|
// for IPv4 addresses, '1' + the 16 higher-order bits of the IP |
|
// includes mapped IPv4, SIIT translated IPv4, and the well-known prefix |
|
else if (IsIPv4() || IsRFC6145() || IsRFC6052()) |
|
{ |
|
nClass = NET_IPV4; |
|
nStartByte = 12; |
|
} |
|
// for 6to4 tunnelled addresses, use the encapsulated IPv4 address |
|
else if (IsRFC3964()) |
|
{ |
|
nClass = NET_IPV4; |
|
nStartByte = 2; |
|
} |
|
// for Teredo-tunnelled IPv6 addresses, use the encapsulated IPv4 address |
|
else if (IsRFC4380()) |
|
{ |
|
vchRet.push_back(NET_IPV4); |
|
vchRet.push_back(GetByte(3) ^ 0xFF); |
|
vchRet.push_back(GetByte(2) ^ 0xFF); |
|
return vchRet; |
|
} |
|
else if (IsTor()) |
|
{ |
|
nClass = NET_TOR; |
|
nStartByte = 6; |
|
nBits = 4; |
|
} |
|
// for he.net, use /36 groups |
|
else if (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x04 && GetByte(12) == 0x70) |
|
nBits = 36; |
|
// for the rest of the IPv6 network, use /32 groups |
|
else |
|
nBits = 32; |
|
|
|
vchRet.push_back(nClass); |
|
while (nBits >= 8) |
|
{ |
|
vchRet.push_back(GetByte(15 - nStartByte)); |
|
nStartByte++; |
|
nBits -= 8; |
|
} |
|
if (nBits > 0) |
|
vchRet.push_back(GetByte(15 - nStartByte) | ((1 << (8 - nBits)) - 1)); |
|
|
|
return vchRet; |
|
} |
|
|
|
uint64_t CNetAddr::GetHash() const |
|
{ |
|
uint256 hash = Hash(&ip[0], &ip[16]); |
|
uint64_t nRet; |
|
memcpy(&nRet, &hash, sizeof(nRet)); |
|
return nRet; |
|
} |
|
|
|
// private extensions to enum Network, only returned by GetExtNetwork, |
|
// and only used in GetReachabilityFrom |
|
static const int NET_UNKNOWN = NET_MAX + 0; |
|
static const int NET_TEREDO = NET_MAX + 1; |
|
int static GetExtNetwork(const CNetAddr *addr) |
|
{ |
|
if (addr == NULL) |
|
return NET_UNKNOWN; |
|
if (addr->IsRFC4380()) |
|
return NET_TEREDO; |
|
return addr->GetNetwork(); |
|
} |
|
|
|
/** Calculates a metric for how reachable (*this) is from a given partner */ |
|
int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const |
|
{ |
|
enum Reachability { |
|
REACH_UNREACHABLE, |
|
REACH_DEFAULT, |
|
REACH_TEREDO, |
|
REACH_IPV6_WEAK, |
|
REACH_IPV4, |
|
REACH_IPV6_STRONG, |
|
REACH_PRIVATE |
|
}; |
|
|
|
if (!IsRoutable()) |
|
return REACH_UNREACHABLE; |
|
|
|
int ourNet = GetExtNetwork(this); |
|
int theirNet = GetExtNetwork(paddrPartner); |
|
bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145(); |
|
|
|
switch(theirNet) { |
|
case NET_IPV4: |
|
switch(ourNet) { |
|
default: return REACH_DEFAULT; |
|
case NET_IPV4: return REACH_IPV4; |
|
} |
|
case NET_IPV6: |
|
switch(ourNet) { |
|
default: return REACH_DEFAULT; |
|
case NET_TEREDO: return REACH_TEREDO; |
|
case NET_IPV4: return REACH_IPV4; |
|
case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled |
|
} |
|
case NET_TOR: |
|
switch(ourNet) { |
|
default: return REACH_DEFAULT; |
|
case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well |
|
case NET_TOR: return REACH_PRIVATE; |
|
} |
|
case NET_TEREDO: |
|
switch(ourNet) { |
|
default: return REACH_DEFAULT; |
|
case NET_TEREDO: return REACH_TEREDO; |
|
case NET_IPV6: return REACH_IPV6_WEAK; |
|
case NET_IPV4: return REACH_IPV4; |
|
} |
|
case NET_UNKNOWN: |
|
case NET_UNROUTABLE: |
|
default: |
|
switch(ourNet) { |
|
default: return REACH_DEFAULT; |
|
case NET_TEREDO: return REACH_TEREDO; |
|
case NET_IPV6: return REACH_IPV6_WEAK; |
|
case NET_IPV4: return REACH_IPV4; |
|
case NET_TOR: return REACH_PRIVATE; // either from Tor, or don't care about our address |
|
} |
|
} |
|
} |
|
|
|
void CService::Init() |
|
{ |
|
port = 0; |
|
} |
|
|
|
CService::CService() |
|
{ |
|
Init(); |
|
} |
|
|
|
CService::CService(const CNetAddr& cip, unsigned short portIn) : CNetAddr(cip), port(portIn) |
|
{ |
|
} |
|
|
|
CService::CService(const struct in_addr& ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn) |
|
{ |
|
} |
|
|
|
CService::CService(const struct in6_addr& ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn) |
|
{ |
|
} |
|
|
|
CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port)) |
|
{ |
|
assert(addr.sin_family == AF_INET); |
|
} |
|
|
|
CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port)) |
|
{ |
|
assert(addr.sin6_family == AF_INET6); |
|
} |
|
|
|
bool CService::SetSockAddr(const struct sockaddr *paddr) |
|
{ |
|
switch (paddr->sa_family) { |
|
case AF_INET: |
|
*this = CService(*(const struct sockaddr_in*)paddr); |
|
return true; |
|
case AF_INET6: |
|
*this = CService(*(const struct sockaddr_in6*)paddr); |
|
return true; |
|
default: |
|
return false; |
|
} |
|
} |
|
|
|
CService::CService(const char *pszIpPort) |
|
{ |
|
Init(); |
|
CService ip; |
|
if (Lookup(pszIpPort, ip, 0, false)) |
|
*this = ip; |
|
} |
|
|
|
CService::CService(const char *pszIpPort, int portDefault) |
|
{ |
|
Init(); |
|
CService ip; |
|
if (Lookup(pszIpPort, ip, portDefault, false)) |
|
*this = ip; |
|
} |
|
|
|
CService::CService(const std::string &strIpPort) |
|
{ |
|
Init(); |
|
CService ip; |
|
if (Lookup(strIpPort.c_str(), ip, 0, false)) |
|
*this = ip; |
|
} |
|
|
|
CService::CService(const std::string &strIpPort, int portDefault) |
|
{ |
|
Init(); |
|
CService ip; |
|
if (Lookup(strIpPort.c_str(), ip, portDefault, false)) |
|
*this = ip; |
|
} |
|
|
|
unsigned short CService::GetPort() const |
|
{ |
|
return port; |
|
} |
|
|
|
bool operator==(const CService& a, const CService& b) |
|
{ |
|
return (CNetAddr)a == (CNetAddr)b && a.port == b.port; |
|
} |
|
|
|
bool operator!=(const CService& a, const CService& b) |
|
{ |
|
return (CNetAddr)a != (CNetAddr)b || a.port != b.port; |
|
} |
|
|
|
bool operator<(const CService& a, const CService& b) |
|
{ |
|
return (CNetAddr)a < (CNetAddr)b || ((CNetAddr)a == (CNetAddr)b && a.port < b.port); |
|
} |
|
|
|
bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const |
|
{ |
|
if (IsIPv4()) { |
|
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in)) |
|
return false; |
|
*addrlen = sizeof(struct sockaddr_in); |
|
struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr; |
|
memset(paddrin, 0, *addrlen); |
|
if (!GetInAddr(&paddrin->sin_addr)) |
|
return false; |
|
paddrin->sin_family = AF_INET; |
|
paddrin->sin_port = htons(port); |
|
return true; |
|
} |
|
if (IsIPv6()) { |
|
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6)) |
|
return false; |
|
*addrlen = sizeof(struct sockaddr_in6); |
|
struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr; |
|
memset(paddrin6, 0, *addrlen); |
|
if (!GetIn6Addr(&paddrin6->sin6_addr)) |
|
return false; |
|
paddrin6->sin6_scope_id = scopeId; |
|
paddrin6->sin6_family = AF_INET6; |
|
paddrin6->sin6_port = htons(port); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
std::vector<unsigned char> CService::GetKey() const |
|
{ |
|
std::vector<unsigned char> vKey; |
|
vKey.resize(18); |
|
memcpy(&vKey[0], ip, 16); |
|
vKey[16] = port / 0x100; |
|
vKey[17] = port & 0x0FF; |
|
return vKey; |
|
} |
|
|
|
std::string CService::ToStringPort() const |
|
{ |
|
return strprintf("%u", port); |
|
} |
|
|
|
std::string CService::ToStringIPPort() const |
|
{ |
|
if (IsIPv4() || IsTor()) { |
|
return ToStringIP() + ":" + ToStringPort(); |
|
} else { |
|
return "[" + ToStringIP() + "]:" + ToStringPort(); |
|
} |
|
} |
|
|
|
std::string CService::ToString() const |
|
{ |
|
return ToStringIPPort(); |
|
} |
|
|
|
void CService::SetPort(unsigned short portIn) |
|
{ |
|
port = portIn; |
|
} |
|
|
|
CSubNet::CSubNet(): |
|
valid(false) |
|
{ |
|
memset(netmask, 0, sizeof(netmask)); |
|
} |
|
|
|
CSubNet::CSubNet(const std::string &strSubnet) |
|
{ |
|
size_t slash = strSubnet.find_last_of('/'); |
|
std::vector<CNetAddr> vIP; |
|
|
|
valid = true; |
|
// Default to /32 (IPv4) or /128 (IPv6), i.e. match single address |
|
memset(netmask, 255, sizeof(netmask)); |
|
|
|
std::string strAddress = strSubnet.substr(0, slash); |
|
if (LookupHost(strAddress.c_str(), vIP, 1, false)) |
|
{ |
|
network = vIP[0]; |
|
if (slash != strSubnet.npos) |
|
{ |
|
std::string strNetmask = strSubnet.substr(slash + 1); |
|
int32_t n; |
|
// IPv4 addresses start at offset 12, and first 12 bytes must match, so just offset n |
|
const int astartofs = network.IsIPv4() ? 12 : 0; |
|
if (ParseInt32(strNetmask, &n)) // If valid number, assume /24 symtex |
|
{ |
|
if(n >= 0 && n <= (128 - astartofs*8)) // Only valid if in range of bits of address |
|
{ |
|
n += astartofs*8; |
|
// Clear bits [n..127] |
|
for (; n < 128; ++n) |
|
netmask[n>>3] &= ~(1<<(7-(n&7))); |
|
} |
|
else |
|
{ |
|
valid = false; |
|
} |
|
} |
|
else // If not a valid number, try full netmask syntax |
|
{ |
|
if (LookupHost(strNetmask.c_str(), vIP, 1, false)) // Never allow lookup for netmask |
|
{ |
|
// Copy only the *last* four bytes in case of IPv4, the rest of the mask should stay 1's as |
|
// we don't want pchIPv4 to be part of the mask. |
|
for(int x=astartofs; x<16; ++x) |
|
netmask[x] = vIP[0].ip[x]; |
|
} |
|
else |
|
{ |
|
valid = false; |
|
} |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
valid = false; |
|
} |
|
|
|
// Normalize network according to netmask |
|
for(int x=0; x<16; ++x) |
|
network.ip[x] &= netmask[x]; |
|
} |
|
|
|
CSubNet::CSubNet(const CNetAddr &addr): |
|
valid(addr.IsValid()) |
|
{ |
|
memset(netmask, 255, sizeof(netmask)); |
|
network = addr; |
|
} |
|
|
|
bool CSubNet::Match(const CNetAddr &addr) const |
|
{ |
|
if (!valid || !addr.IsValid()) |
|
return false; |
|
for(int x=0; x<16; ++x) |
|
if ((addr.ip[x] & netmask[x]) != network.ip[x]) |
|
return false; |
|
return true; |
|
} |
|
|
|
static inline int NetmaskBits(uint8_t x) |
|
{ |
|
switch(x) { |
|
case 0x00: return 0; break; |
|
case 0x80: return 1; break; |
|
case 0xc0: return 2; break; |
|
case 0xe0: return 3; break; |
|
case 0xf0: return 4; break; |
|
case 0xf8: return 5; break; |
|
case 0xfc: return 6; break; |
|
case 0xfe: return 7; break; |
|
case 0xff: return 8; break; |
|
default: return -1; break; |
|
} |
|
} |
|
|
|
std::string CSubNet::ToString() const |
|
{ |
|
/* Parse binary 1{n}0{N-n} to see if mask can be represented as /n */ |
|
int cidr = 0; |
|
bool valid_cidr = true; |
|
int n = network.IsIPv4() ? 12 : 0; |
|
for (; n < 16 && netmask[n] == 0xff; ++n) |
|
cidr += 8; |
|
if (n < 16) { |
|
int bits = NetmaskBits(netmask[n]); |
|
if (bits < 0) |
|
valid_cidr = false; |
|
else |
|
cidr += bits; |
|
++n; |
|
} |
|
for (; n < 16 && valid_cidr; ++n) |
|
if (netmask[n] != 0x00) |
|
valid_cidr = false; |
|
|
|
/* Format output */ |
|
std::string strNetmask; |
|
if (valid_cidr) { |
|
strNetmask = strprintf("%u", cidr); |
|
} else { |
|
if (network.IsIPv4()) |
|
strNetmask = strprintf("%u.%u.%u.%u", netmask[12], netmask[13], netmask[14], netmask[15]); |
|
else |
|
strNetmask = strprintf("%x:%x:%x:%x:%x:%x:%x:%x", |
|
netmask[0] << 8 | netmask[1], netmask[2] << 8 | netmask[3], |
|
netmask[4] << 8 | netmask[5], netmask[6] << 8 | netmask[7], |
|
netmask[8] << 8 | netmask[9], netmask[10] << 8 | netmask[11], |
|
netmask[12] << 8 | netmask[13], netmask[14] << 8 | netmask[15]); |
|
} |
|
|
|
return network.ToString() + "/" + strNetmask; |
|
} |
|
|
|
bool CSubNet::IsValid() const |
|
{ |
|
return valid; |
|
} |
|
|
|
bool operator==(const CSubNet& a, const CSubNet& b) |
|
{ |
|
return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16); |
|
} |
|
|
|
bool operator!=(const CSubNet& a, const CSubNet& b) |
|
{ |
|
return !(a==b); |
|
} |
|
|
|
bool operator<(const CSubNet& a, const CSubNet& b) |
|
{ |
|
return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0)); |
|
} |
|
|
|
#ifdef WIN32 |
|
std::string NetworkErrorString(int err) |
|
{ |
|
char buf[256]; |
|
buf[0] = 0; |
|
if(FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_MAX_WIDTH_MASK, |
|
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), |
|
buf, sizeof(buf), NULL)) |
|
{ |
|
return strprintf("%s (%d)", buf, err); |
|
} |
|
else |
|
{ |
|
return strprintf("Unknown error (%d)", err); |
|
} |
|
} |
|
#else |
|
std::string NetworkErrorString(int err) |
|
{ |
|
char buf[256]; |
|
const char *s = buf; |
|
buf[0] = 0; |
|
/* Too bad there are two incompatible implementations of the |
|
* thread-safe strerror. */ |
|
#ifdef STRERROR_R_CHAR_P /* GNU variant can return a pointer outside the passed buffer */ |
|
s = strerror_r(err, buf, sizeof(buf)); |
|
#else /* POSIX variant always returns message in buffer */ |
|
if (strerror_r(err, buf, sizeof(buf))) |
|
buf[0] = 0; |
|
#endif |
|
return strprintf("%s (%d)", s, err); |
|
} |
|
#endif |
|
|
|
bool CloseSocket(SOCKET& hSocket) |
|
{ |
|
if (hSocket == INVALID_SOCKET) |
|
return false; |
|
#ifdef WIN32 |
|
int ret = closesocket(hSocket); |
|
#else |
|
int ret = close(hSocket); |
|
#endif |
|
hSocket = INVALID_SOCKET; |
|
return ret != SOCKET_ERROR; |
|
} |
|
|
|
bool SetSocketNonBlocking(SOCKET& hSocket, bool fNonBlocking) |
|
{ |
|
if (fNonBlocking) { |
|
#ifdef WIN32 |
|
u_long nOne = 1; |
|
if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR) { |
|
#else |
|
int fFlags = fcntl(hSocket, F_GETFL, 0); |
|
if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == SOCKET_ERROR) { |
|
#endif |
|
CloseSocket(hSocket); |
|
return false; |
|
} |
|
} else { |
|
#ifdef WIN32 |
|
u_long nZero = 0; |
|
if (ioctlsocket(hSocket, FIONBIO, &nZero) == SOCKET_ERROR) { |
|
#else |
|
int fFlags = fcntl(hSocket, F_GETFL, 0); |
|
if (fcntl(hSocket, F_SETFL, fFlags & ~O_NONBLOCK) == SOCKET_ERROR) { |
|
#endif |
|
CloseSocket(hSocket); |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
}
|
|
|