Kevacoin source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

6176 lines
261 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "main.h"
#include "addrman.h"
#include "arith_uint256.h"
#include "chainparams.h"
#include "checkpoints.h"
#include "checkqueue.h"
#include "consensus/consensus.h"
#include "consensus/merkle.h"
#include "consensus/validation.h"
#include "hash.h"
#include "init.h"
#include "merkleblock.h"
#include "net.h"
#include "policy/fees.h"
#include "policy/policy.h"
#include "pow.h"
#include "primitives/block.h"
#include "primitives/transaction.h"
#include "random.h"
#include "script/script.h"
#include "script/sigcache.h"
#include "script/standard.h"
#include "tinyformat.h"
#include "txdb.h"
#include "txmempool.h"
#include "ui_interface.h"
#include "undo.h"
#include "util.h"
#include "utilmoneystr.h"
#include "utilstrencodings.h"
#include "validationinterface.h"
#include "versionbits.h"
#include <atomic>
#include <sstream>
#include <boost/algorithm/string/replace.hpp>
#include <boost/algorithm/string/join.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
#include <boost/math/distributions/poisson.hpp>
#include <boost/thread.hpp>
using namespace std;
#if defined(NDEBUG)
# error "Bitcoin cannot be compiled without assertions."
#endif
/**
* Global state
*/
CCriticalSection cs_main;
BlockMap mapBlockIndex;
CChain chainActive;
CBlockIndex *pindexBestHeader = NULL;
int64_t nTimeBestReceived = 0;
CWaitableCriticalSection csBestBlock;
CConditionVariable cvBlockChange;
int nScriptCheckThreads = 0;
bool fImporting = false;
bool fReindex = false;
bool fTxIndex = false;
bool fHavePruned = false;
bool fPruneMode = false;
bool fIsBareMultisigStd = DEFAULT_PERMIT_BAREMULTISIG;
bool fRequireStandard = true;
unsigned int nBytesPerSigOp = DEFAULT_BYTES_PER_SIGOP;
bool fCheckBlockIndex = false;
bool fCheckpointsEnabled = DEFAULT_CHECKPOINTS_ENABLED;
size_t nCoinCacheUsage = 5000 * 300;
uint64_t nPruneTarget = 0;
int64_t nMaxTipAge = DEFAULT_MAX_TIP_AGE;
bool fEnableReplacement = DEFAULT_ENABLE_REPLACEMENT;
CFeeRate minRelayTxFee = CFeeRate(DEFAULT_MIN_RELAY_TX_FEE);
CAmount maxTxFee = DEFAULT_TRANSACTION_MAXFEE;
CTxMemPool mempool(::minRelayTxFee);
FeeFilterRounder filterRounder(::minRelayTxFee);
struct COrphanTx {
CTransaction tx;
NodeId fromPeer;
};
map<uint256, COrphanTx> mapOrphanTransactions GUARDED_BY(cs_main);
map<uint256, set<uint256> > mapOrphanTransactionsByPrev GUARDED_BY(cs_main);
void EraseOrphansFor(NodeId peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
/**
* Returns true if there are nRequired or more blocks of minVersion or above
* in the last Consensus::Params::nMajorityWindow blocks, starting at pstart and going backwards.
*/
static bool IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned nRequired, const Consensus::Params& consensusParams);
static void CheckBlockIndex(const Consensus::Params& consensusParams);
/** Constant stuff for coinbase transactions we create: */
CScript COINBASE_FLAGS;
const string strMessageMagic = "Bitcoin Signed Message:\n";
// Internal stuff
namespace {
struct CBlockIndexWorkComparator
{
bool operator()(CBlockIndex *pa, CBlockIndex *pb) const {
// First sort by most total work, ...
if (pa->nChainWork > pb->nChainWork) return false;
if (pa->nChainWork < pb->nChainWork) return true;
// ... then by earliest time received, ...
if (pa->nSequenceId < pb->nSequenceId) return false;
if (pa->nSequenceId > pb->nSequenceId) return true;
// Use pointer address as tie breaker (should only happen with blocks
// loaded from disk, as those all have id 0).
if (pa < pb) return false;
if (pa > pb) return true;
// Identical blocks.
return false;
}
};
CBlockIndex *pindexBestInvalid;
/**
* The set of all CBlockIndex entries with BLOCK_VALID_TRANSACTIONS (for itself and all ancestors) and
* as good as our current tip or better. Entries may be failed, though, and pruning nodes may be
* missing the data for the block.
*/
set<CBlockIndex*, CBlockIndexWorkComparator> setBlockIndexCandidates;
/** Number of nodes with fSyncStarted. */
int nSyncStarted = 0;
/** All pairs A->B, where A (or one of its ancestors) misses transactions, but B has transactions.
* Pruned nodes may have entries where B is missing data.
*/
multimap<CBlockIndex*, CBlockIndex*> mapBlocksUnlinked;
CCriticalSection cs_LastBlockFile;
std::vector<CBlockFileInfo> vinfoBlockFile;
int nLastBlockFile = 0;
/** Global flag to indicate we should check to see if there are
* block/undo files that should be deleted. Set on startup
* or if we allocate more file space when we're in prune mode
*/
bool fCheckForPruning = false;
/**
* Every received block is assigned a unique and increasing identifier, so we
* know which one to give priority in case of a fork.
*/
CCriticalSection cs_nBlockSequenceId;
/** Blocks loaded from disk are assigned id 0, so start the counter at 1. */
uint32_t nBlockSequenceId = 1;
/**
* Sources of received blocks, saved to be able to send them reject
* messages or ban them when processing happens afterwards. Protected by
* cs_main.
*/
map<uint256, NodeId> mapBlockSource;
/**
* Filter for transactions that were recently rejected by
* AcceptToMemoryPool. These are not rerequested until the chain tip
* changes, at which point the entire filter is reset. Protected by
* cs_main.
*
* Without this filter we'd be re-requesting txs from each of our peers,
* increasing bandwidth consumption considerably. For instance, with 100
* peers, half of which relay a tx we don't accept, that might be a 50x
* bandwidth increase. A flooding attacker attempting to roll-over the
* filter using minimum-sized, 60byte, transactions might manage to send
* 1000/sec if we have fast peers, so we pick 120,000 to give our peers a
* two minute window to send invs to us.
*
* Decreasing the false positive rate is fairly cheap, so we pick one in a
* million to make it highly unlikely for users to have issues with this
* filter.
*
* Memory used: 1.3 MB
*/
boost::scoped_ptr<CRollingBloomFilter> recentRejects;
uint256 hashRecentRejectsChainTip;
/** Blocks that are in flight, and that are in the queue to be downloaded. Protected by cs_main. */
struct QueuedBlock {
uint256 hash;
CBlockIndex* pindex; //!< Optional.
bool fValidatedHeaders; //!< Whether this block has validated headers at the time of request.
};
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> > mapBlocksInFlight;
/** Number of preferable block download peers. */
int nPreferredDownload = 0;
/** Dirty block index entries. */
set<CBlockIndex*> setDirtyBlockIndex;
/** Dirty block file entries. */
set<int> setDirtyFileInfo;
/** Number of peers from which we're downloading blocks. */
int nPeersWithValidatedDownloads = 0;
/** Relay map, protected by cs_main. */
typedef std::map<uint256, std::shared_ptr<const CTransaction>> MapRelay;
MapRelay mapRelay;
/** Expiration-time ordered list of (expire time, relay map entry) pairs, protected by cs_main). */
std::deque<std::pair<int64_t, MapRelay::iterator>> vRelayExpiration;
} // anon namespace
//////////////////////////////////////////////////////////////////////////////
//
// Registration of network node signals.
//
namespace {
struct CBlockReject {
unsigned char chRejectCode;
string strRejectReason;
uint256 hashBlock;
};
/**
* Maintain validation-specific state about nodes, protected by cs_main, instead
* by CNode's own locks. This simplifies asynchronous operation, where
* processing of incoming data is done after the ProcessMessage call returns,
* and we're no longer holding the node's locks.
*/
struct CNodeState {
//! The peer's address
CService address;
//! Whether we have a fully established connection.
bool fCurrentlyConnected;
//! Accumulated misbehaviour score for this peer.
int nMisbehavior;
//! Whether this peer should be disconnected and banned (unless whitelisted).
bool fShouldBan;
//! String name of this peer (debugging/logging purposes).
std::string name;
//! List of asynchronously-determined block rejections to notify this peer about.
std::vector<CBlockReject> rejects;
//! The best known block we know this peer has announced.
CBlockIndex *pindexBestKnownBlock;
//! The hash of the last unknown block this peer has announced.
uint256 hashLastUnknownBlock;
//! The last full block we both have.
CBlockIndex *pindexLastCommonBlock;
//! The best header we have sent our peer.
CBlockIndex *pindexBestHeaderSent;
//! Whether we've started headers synchronization with this peer.
bool fSyncStarted;
//! Since when we're stalling block download progress (in microseconds), or 0.
int64_t nStallingSince;
list<QueuedBlock> vBlocksInFlight;
//! When the first entry in vBlocksInFlight started downloading. Don't care when vBlocksInFlight is empty.
int64_t nDownloadingSince;
int nBlocksInFlight;
int nBlocksInFlightValidHeaders;
//! Whether we consider this a preferred download peer.
bool fPreferredDownload;
//! Whether this peer wants invs or headers (when possible) for block announcements.
bool fPreferHeaders;
CNodeState() {
fCurrentlyConnected = false;
nMisbehavior = 0;
fShouldBan = false;
pindexBestKnownBlock = NULL;
hashLastUnknownBlock.SetNull();
pindexLastCommonBlock = NULL;
pindexBestHeaderSent = NULL;
fSyncStarted = false;
nStallingSince = 0;
nDownloadingSince = 0;
nBlocksInFlight = 0;
nBlocksInFlightValidHeaders = 0;
fPreferredDownload = false;
fPreferHeaders = false;
}
};
/** Map maintaining per-node state. Requires cs_main. */
map<NodeId, CNodeState> mapNodeState;
// Requires cs_main.
CNodeState *State(NodeId pnode) {
map<NodeId, CNodeState>::iterator it = mapNodeState.find(pnode);
if (it == mapNodeState.end())
return NULL;
return &it->second;
}
int GetHeight()
{
LOCK(cs_main);
return chainActive.Height();
}
void UpdatePreferredDownload(CNode* node, CNodeState* state)
{
nPreferredDownload -= state->fPreferredDownload;
// Whether this node should be marked as a preferred download node.
state->fPreferredDownload = (!node->fInbound || node->fWhitelisted) && !node->fOneShot && !node->fClient;
nPreferredDownload += state->fPreferredDownload;
}
void InitializeNode(NodeId nodeid, const CNode *pnode) {
LOCK(cs_main);
CNodeState &state = mapNodeState.insert(std::make_pair(nodeid, CNodeState())).first->second;
state.name = pnode->addrName;
state.address = pnode->addr;
}
void FinalizeNode(NodeId nodeid) {
LOCK(cs_main);
CNodeState *state = State(nodeid);
if (state->fSyncStarted)
nSyncStarted--;
if (state->nMisbehavior == 0 && state->fCurrentlyConnected) {
AddressCurrentlyConnected(state->address);
}
BOOST_FOREACH(const QueuedBlock& entry, state->vBlocksInFlight) {
mapBlocksInFlight.erase(entry.hash);
}
EraseOrphansFor(nodeid);
nPreferredDownload -= state->fPreferredDownload;
nPeersWithValidatedDownloads -= (state->nBlocksInFlightValidHeaders != 0);
assert(nPeersWithValidatedDownloads >= 0);
mapNodeState.erase(nodeid);
if (mapNodeState.empty()) {
// Do a consistency check after the last peer is removed.
assert(mapBlocksInFlight.empty());
assert(nPreferredDownload == 0);
assert(nPeersWithValidatedDownloads == 0);
}
}
// Requires cs_main.
// Returns a bool indicating whether we requested this block.
bool MarkBlockAsReceived(const uint256& hash) {
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> >::iterator itInFlight = mapBlocksInFlight.find(hash);
if (itInFlight != mapBlocksInFlight.end()) {
CNodeState *state = State(itInFlight->second.first);
state->nBlocksInFlightValidHeaders -= itInFlight->second.second->fValidatedHeaders;
if (state->nBlocksInFlightValidHeaders == 0 && itInFlight->second.second->fValidatedHeaders) {
// Last validated block on the queue was received.
nPeersWithValidatedDownloads--;
}
if (state->vBlocksInFlight.begin() == itInFlight->second.second) {
// First block on the queue was received, update the start download time for the next one
state->nDownloadingSince = std::max(state->nDownloadingSince, GetTimeMicros());
}
state->vBlocksInFlight.erase(itInFlight->second.second);
state->nBlocksInFlight--;
state->nStallingSince = 0;
mapBlocksInFlight.erase(itInFlight);
return true;
}
return false;
}
// Requires cs_main.
void MarkBlockAsInFlight(NodeId nodeid, const uint256& hash, const Consensus::Params& consensusParams, CBlockIndex *pindex = NULL) {
CNodeState *state = State(nodeid);
assert(state != NULL);
// Make sure it's not listed somewhere already.
MarkBlockAsReceived(hash);
QueuedBlock newentry = {hash, pindex, pindex != NULL};
list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(), newentry);
state->nBlocksInFlight++;
state->nBlocksInFlightValidHeaders += newentry.fValidatedHeaders;
if (state->nBlocksInFlight == 1) {
// We're starting a block download (batch) from this peer.
state->nDownloadingSince = GetTimeMicros();
}
if (state->nBlocksInFlightValidHeaders == 1 && pindex != NULL) {
nPeersWithValidatedDownloads++;
}
mapBlocksInFlight[hash] = std::make_pair(nodeid, it);
}
/** Check whether the last unknown block a peer advertised is not yet known. */
void ProcessBlockAvailability(NodeId nodeid) {
CNodeState *state = State(nodeid);
assert(state != NULL);
if (!state->hashLastUnknownBlock.IsNull()) {
BlockMap::iterator itOld = mapBlockIndex.find(state->hashLastUnknownBlock);
if (itOld != mapBlockIndex.end() && itOld->second->nChainWork > 0) {
if (state->pindexBestKnownBlock == NULL || itOld->second->nChainWork >= state->pindexBestKnownBlock->nChainWork)
state->pindexBestKnownBlock = itOld->second;
state->hashLastUnknownBlock.SetNull();
}
}
}
/** Update tracking information about which blocks a peer is assumed to have. */
void UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
CNodeState *state = State(nodeid);
assert(state != NULL);
ProcessBlockAvailability(nodeid);
BlockMap::iterator it = mapBlockIndex.find(hash);
if (it != mapBlockIndex.end() && it->second->nChainWork > 0) {
// An actually better block was announced.
if (state->pindexBestKnownBlock == NULL || it->second->nChainWork >= state->pindexBestKnownBlock->nChainWork)
state->pindexBestKnownBlock = it->second;
} else {
// An unknown block was announced; just assume that the latest one is the best one.
state->hashLastUnknownBlock = hash;
}
}
// Requires cs_main
bool CanDirectFetch(const Consensus::Params &consensusParams)
{
return chainActive.Tip()->GetBlockTime() > GetAdjustedTime() - consensusParams.nPowTargetSpacing * 20;
}
// Requires cs_main
bool PeerHasHeader(CNodeState *state, CBlockIndex *pindex)
{
if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
return true;
if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
return true;
return false;
}
/** Find the last common ancestor two blocks have.
* Both pa and pb must be non-NULL. */
CBlockIndex* LastCommonAncestor(CBlockIndex* pa, CBlockIndex* pb) {
if (pa->nHeight > pb->nHeight) {
pa = pa->GetAncestor(pb->nHeight);
} else if (pb->nHeight > pa->nHeight) {
pb = pb->GetAncestor(pa->nHeight);
}
while (pa != pb && pa && pb) {
pa = pa->pprev;
pb = pb->pprev;
}
// Eventually all chain branches meet at the genesis block.
assert(pa == pb);
return pa;
}
/** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has
* at most count entries. */
void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector<CBlockIndex*>& vBlocks, NodeId& nodeStaller) {
if (count == 0)
return;
vBlocks.reserve(vBlocks.size() + count);
CNodeState *state = State(nodeid);
assert(state != NULL);
// Make sure pindexBestKnownBlock is up to date, we'll need it.
ProcessBlockAvailability(nodeid);
if (state->pindexBestKnownBlock == NULL || state->pindexBestKnownBlock->nChainWork < chainActive.Tip()->nChainWork) {
// This peer has nothing interesting.
return;
}
if (state->pindexLastCommonBlock == NULL) {
// Bootstrap quickly by guessing a parent of our best tip is the forking point.
// Guessing wrong in either direction is not a problem.
state->pindexLastCommonBlock = chainActive[std::min(state->pindexBestKnownBlock->nHeight, chainActive.Height())];
}
// If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
// of its current tip anymore. Go back enough to fix that.
state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
return;
std::vector<CBlockIndex*> vToFetch;
CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
// Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
// linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
// download that next block if the window were 1 larger.
int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
NodeId waitingfor = -1;
while (pindexWalk->nHeight < nMaxHeight) {
// Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
// pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
// as iterating over ~100 CBlockIndex* entries anyway.
int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
vToFetch.resize(nToFetch);
pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
vToFetch[nToFetch - 1] = pindexWalk;
for (unsigned int i = nToFetch - 1; i > 0; i--) {
vToFetch[i - 1] = vToFetch[i]->pprev;
}
// Iterate over those blocks in vToFetch (in forward direction), adding the ones that
// are not yet downloaded and not in flight to vBlocks. In the mean time, update
// pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
// already part of our chain (and therefore don't need it even if pruned).
BOOST_FOREACH(CBlockIndex* pindex, vToFetch) {
if (!pindex->IsValid(BLOCK_VALID_TREE)) {
// We consider the chain that this peer is on invalid.
return;
}
if (pindex->nStatus & BLOCK_HAVE_DATA || chainActive.Contains(pindex)) {
if (pindex->nChainTx)
state->pindexLastCommonBlock = pindex;
} else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) {
// The block is not already downloaded, and not yet in flight.
if (pindex->nHeight > nWindowEnd) {
// We reached the end of the window.
if (vBlocks.size() == 0 && waitingfor != nodeid) {
// We aren't able to fetch anything, but we would be if the download window was one larger.
nodeStaller = waitingfor;
}
return;
}
vBlocks.push_back(pindex);
if (vBlocks.size() == count) {
return;
}
} else if (waitingfor == -1) {
// This is the first already-in-flight block.
waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first;
}
}
}
}
} // anon namespace
bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) {
LOCK(cs_main);
CNodeState *state = State(nodeid);
if (state == NULL)
return false;
stats.nMisbehavior = state->nMisbehavior;
stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
BOOST_FOREACH(const QueuedBlock& queue, state->vBlocksInFlight) {
if (queue.pindex)
stats.vHeightInFlight.push_back(queue.pindex->nHeight);
}
return true;
}
void RegisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.GetHeight.connect(&GetHeight);
nodeSignals.ProcessMessages.connect(&ProcessMessages);
nodeSignals.SendMessages.connect(&SendMessages);
nodeSignals.InitializeNode.connect(&InitializeNode);
nodeSignals.FinalizeNode.connect(&FinalizeNode);
}
void UnregisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.GetHeight.disconnect(&GetHeight);
nodeSignals.ProcessMessages.disconnect(&ProcessMessages);
nodeSignals.SendMessages.disconnect(&SendMessages);
nodeSignals.InitializeNode.disconnect(&InitializeNode);
nodeSignals.FinalizeNode.disconnect(&FinalizeNode);
}
CBlockIndex* FindForkInGlobalIndex(const CChain& chain, const CBlockLocator& locator)
{
// Find the first block the caller has in the main chain
BOOST_FOREACH(const uint256& hash, locator.vHave) {
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
{
CBlockIndex* pindex = (*mi).second;
if (chain.Contains(pindex))
return pindex;
}
}
return chain.Genesis();
}
CCoinsViewCache *pcoinsTip = NULL;
CBlockTreeDB *pblocktree = NULL;
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
bool AddOrphanTx(const CTransaction& tx, NodeId peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
uint256 hash = tx.GetHash();
if (mapOrphanTransactions.count(hash))
return false;
// Ignore big transactions, to avoid a
// send-big-orphans memory exhaustion attack. If a peer has a legitimate
// large transaction with a missing parent then we assume
// it will rebroadcast it later, after the parent transaction(s)
// have been mined or received.
// 10,000 orphans, each of which is at most 5,000 bytes big is
// at most 500 megabytes of orphans:
unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (sz > 5000)
{
LogPrint("mempool", "ignoring large orphan tx (size: %u, hash: %s)\n", sz, hash.ToString());
return false;
}
mapOrphanTransactions[hash].tx = tx;
mapOrphanTransactions[hash].fromPeer = peer;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapOrphanTransactionsByPrev[txin.prevout.hash].insert(hash);
LogPrint("mempool", "stored orphan tx %s (mapsz %u prevsz %u)\n", hash.ToString(),
mapOrphanTransactions.size(), mapOrphanTransactionsByPrev.size());
return true;
}
void static EraseOrphanTx(uint256 hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
map<uint256, COrphanTx>::iterator it = mapOrphanTransactions.find(hash);
if (it == mapOrphanTransactions.end())
return;
BOOST_FOREACH(const CTxIn& txin, it->second.tx.vin)
{
map<uint256, set<uint256> >::iterator itPrev = mapOrphanTransactionsByPrev.find(txin.prevout.hash);
if (itPrev == mapOrphanTransactionsByPrev.end())
continue;
itPrev->second.erase(hash);
if (itPrev->second.empty())
mapOrphanTransactionsByPrev.erase(itPrev);
}
mapOrphanTransactions.erase(it);
}
void EraseOrphansFor(NodeId peer)
{
int nErased = 0;
map<uint256, COrphanTx>::iterator iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end())
{
map<uint256, COrphanTx>::iterator maybeErase = iter++; // increment to avoid iterator becoming invalid
if (maybeErase->second.fromPeer == peer)
{
EraseOrphanTx(maybeErase->second.tx.GetHash());
++nErased;
}
}
if (nErased > 0) LogPrint("mempool", "Erased %d orphan tx from peer %d\n", nErased, peer);
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
unsigned int nEvicted = 0;
while (mapOrphanTransactions.size() > nMaxOrphans)
{
// Evict a random orphan:
uint256 randomhash = GetRandHash();
map<uint256, COrphanTx>::iterator it = mapOrphanTransactions.lower_bound(randomhash);
if (it == mapOrphanTransactions.end())
it = mapOrphanTransactions.begin();
EraseOrphanTx(it->first);
++nEvicted;
}
return nEvicted;
}
bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime)
{
if (tx.nLockTime == 0)
return true;
if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64_t)nBlockHeight : nBlockTime))
return true;
BOOST_FOREACH(const CTxIn& txin, tx.vin) {
if (!(txin.nSequence == CTxIn::SEQUENCE_FINAL))
return false;
}
return true;
}
bool CheckFinalTx(const CTransaction &tx, int flags)
{
AssertLockHeld(cs_main);
// By convention a negative value for flags indicates that the
// current network-enforced consensus rules should be used. In
// a future soft-fork scenario that would mean checking which
// rules would be enforced for the next block and setting the
// appropriate flags. At the present time no soft-forks are
// scheduled, so no flags are set.
flags = std::max(flags, 0);
// CheckFinalTx() uses chainActive.Height()+1 to evaluate
// nLockTime because when IsFinalTx() is called within
// CBlock::AcceptBlock(), the height of the block *being*
// evaluated is what is used. Thus if we want to know if a
// transaction can be part of the *next* block, we need to call
// IsFinalTx() with one more than chainActive.Height().
const int nBlockHeight = chainActive.Height() + 1;
// BIP113 will require that time-locked transactions have nLockTime set to
// less than the median time of the previous block they're contained in.
// When the next block is created its previous block will be the current
// chain tip, so we use that to calculate the median time passed to
// IsFinalTx() if LOCKTIME_MEDIAN_TIME_PAST is set.
const int64_t nBlockTime = (flags & LOCKTIME_MEDIAN_TIME_PAST)
? chainActive.Tip()->GetMedianTimePast()
: GetAdjustedTime();
return IsFinalTx(tx, nBlockHeight, nBlockTime);
}
/**
* Calculates the block height and previous block's median time past at
* which the transaction will be considered final in the context of BIP 68.
* Also removes from the vector of input heights any entries which did not
* correspond to sequence locked inputs as they do not affect the calculation.
*/
static std::pair<int, int64_t> CalculateSequenceLocks(const CTransaction &tx, int flags, std::vector<int>* prevHeights, const CBlockIndex& block)
{
assert(prevHeights->size() == tx.vin.size());
// Will be set to the equivalent height- and time-based nLockTime
// values that would be necessary to satisfy all relative lock-
// time constraints given our view of block chain history.
// The semantics of nLockTime are the last invalid height/time, so
// use -1 to have the effect of any height or time being valid.
int nMinHeight = -1;
int64_t nMinTime = -1;
// tx.nVersion is signed integer so requires cast to unsigned otherwise
// we would be doing a signed comparison and half the range of nVersion
// wouldn't support BIP 68.
bool fEnforceBIP68 = static_cast<uint32_t>(tx.nVersion) >= 2
&& flags & LOCKTIME_VERIFY_SEQUENCE;
// Do not enforce sequence numbers as a relative lock time
// unless we have been instructed to
if (!fEnforceBIP68) {
return std::make_pair(nMinHeight, nMinTime);
}
for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) {
const CTxIn& txin = tx.vin[txinIndex];
// Sequence numbers with the most significant bit set are not
// treated as relative lock-times, nor are they given any
// consensus-enforced meaning at this point.
if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG) {
// The height of this input is not relevant for sequence locks
(*prevHeights)[txinIndex] = 0;
continue;
}
int nCoinHeight = (*prevHeights)[txinIndex];
if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) {
int64_t nCoinTime = block.GetAncestor(std::max(nCoinHeight-1, 0))->GetMedianTimePast();
// NOTE: Subtract 1 to maintain nLockTime semantics
// BIP 68 relative lock times have the semantics of calculating
// the first block or time at which the transaction would be
// valid. When calculating the effective block time or height
// for the entire transaction, we switch to using the
// semantics of nLockTime which is the last invalid block
// time or height. Thus we subtract 1 from the calculated
// time or height.
// Time-based relative lock-times are measured from the
// smallest allowed timestamp of the block containing the
// txout being spent, which is the median time past of the
// block prior.
nMinTime = std::max(nMinTime, nCoinTime + (int64_t)((txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) << CTxIn::SEQUENCE_LOCKTIME_GRANULARITY) - 1);
} else {
nMinHeight = std::max(nMinHeight, nCoinHeight + (int)(txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) - 1);
}
}
return std::make_pair(nMinHeight, nMinTime);
}
static bool EvaluateSequenceLocks(const CBlockIndex& block, std::pair<int, int64_t> lockPair)
{
assert(block.pprev);
int64_t nBlockTime = block.pprev->GetMedianTimePast();
if (lockPair.first >= block.nHeight || lockPair.second >= nBlockTime)
return false;
return true;
}
bool SequenceLocks(const CTransaction &tx, int flags, std::vector<int>* prevHeights, const CBlockIndex& block)
{
return EvaluateSequenceLocks(block, CalculateSequenceLocks(tx, flags, prevHeights, block));
}
bool TestLockPointValidity(const LockPoints* lp)
{
AssertLockHeld(cs_main);
assert(lp);
// If there are relative lock times then the maxInputBlock will be set
// If there are no relative lock times, the LockPoints don't depend on the chain
if (lp->maxInputBlock) {
// Check whether chainActive is an extension of the block at which the LockPoints
// calculation was valid. If not LockPoints are no longer valid
if (!chainActive.Contains(lp->maxInputBlock)) {
return false;
}
}
// LockPoints still valid
return true;
}
bool CheckSequenceLocks(const CTransaction &tx, int flags, LockPoints* lp, bool useExistingLockPoints)
{
AssertLockHeld(cs_main);
AssertLockHeld(mempool.cs);
CBlockIndex* tip = chainActive.Tip();
CBlockIndex index;
index.pprev = tip;
// CheckSequenceLocks() uses chainActive.Height()+1 to evaluate
// height based locks because when SequenceLocks() is called within
// ConnectBlock(), the height of the block *being*
// evaluated is what is used.
// Thus if we want to know if a transaction can be part of the
// *next* block, we need to use one more than chainActive.Height()
index.nHeight = tip->nHeight + 1;
std::pair<int, int64_t> lockPair;
if (useExistingLockPoints) {
assert(lp);
lockPair.first = lp->height;
lockPair.second = lp->time;
}
else {
// pcoinsTip contains the UTXO set for chainActive.Tip()
CCoinsViewMemPool viewMemPool(pcoinsTip, mempool);
std::vector<int> prevheights;
prevheights.resize(tx.vin.size());
for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) {
const CTxIn& txin = tx.vin[txinIndex];
CCoins coins;
if (!viewMemPool.GetCoins(txin.prevout.hash, coins)) {
return error("%s: Missing input", __func__);
}
if (coins.nHeight == MEMPOOL_HEIGHT) {
// Assume all mempool transaction confirm in the next block
prevheights[txinIndex] = tip->nHeight + 1;
} else {
prevheights[txinIndex] = coins.nHeight;
}
}
lockPair = CalculateSequenceLocks(tx, flags, &prevheights, index);
if (lp) {
lp->height = lockPair.first;
lp->time = lockPair.second;
// Also store the hash of the block with the highest height of
// all the blocks which have sequence locked prevouts.
// This hash needs to still be on the chain
// for these LockPoint calculations to be valid
// Note: It is impossible to correctly calculate a maxInputBlock
// if any of the sequence locked inputs depend on unconfirmed txs,
// except in the special case where the relative lock time/height
// is 0, which is equivalent to no sequence lock. Since we assume
// input height of tip+1 for mempool txs and test the resulting
// lockPair from CalculateSequenceLocks against tip+1. We know
// EvaluateSequenceLocks will fail if there was a non-zero sequence
// lock on a mempool input, so we can use the return value of
// CheckSequenceLocks to indicate the LockPoints validity
int maxInputHeight = 0;
BOOST_FOREACH(int height, prevheights) {
// Can ignore mempool inputs since we'll fail if they had non-zero locks
if (height != tip->nHeight+1) {
maxInputHeight = std::max(maxInputHeight, height);
}
}
lp->maxInputBlock = tip->GetAncestor(maxInputHeight);
}
}
return EvaluateSequenceLocks(index, lockPair);
}
unsigned int GetLegacySigOpCount(const CTransaction& tx)
{
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
BOOST_FOREACH(const CTxOut& txout, tx.vout)
{
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
unsigned int GetP2SHSigOpCount(const CTransaction& tx, const CCoinsViewCache& inputs)
{
if (tx.IsCoinBase())
return 0;
unsigned int nSigOps = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]);
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig);
}
return nSigOps;
}
bool CheckTransaction(const CTransaction& tx, CValidationState &state)
{
// Basic checks that don't depend on any context
if (tx.vin.empty())
return state.DoS(10, false, REJECT_INVALID, "bad-txns-vin-empty");
if (tx.vout.empty())
return state.DoS(10, false, REJECT_INVALID, "bad-txns-vout-empty");
// Size limits
if (::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-oversize");
// Check for negative or overflow output values
CAmount nValueOut = 0;
BOOST_FOREACH(const CTxOut& txout, tx.vout)
{
if (txout.nValue < 0)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-vout-negative");
if (txout.nValue > MAX_MONEY)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-vout-toolarge");
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut))
return state.DoS(100, false, REJECT_INVALID, "bad-txns-txouttotal-toolarge");
}
// Check for duplicate inputs
set<COutPoint> vInOutPoints;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
if (vInOutPoints.count(txin.prevout))
return state.DoS(100, false, REJECT_INVALID, "bad-txns-inputs-duplicate");
vInOutPoints.insert(txin.prevout);
}
if (tx.IsCoinBase())
{
if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100)
return state.DoS(100, false, REJECT_INVALID, "bad-cb-length");
}
else
{
BOOST_FOREACH(const CTxIn& txin, tx.vin)
if (txin.prevout.IsNull())
return state.DoS(10, false, REJECT_INVALID, "bad-txns-prevout-null");
}
return true;
}
void LimitMempoolSize(CTxMemPool& pool, size_t limit, unsigned long age) {
int expired = pool.Expire(GetTime() - age);
if (expired != 0)
LogPrint("mempool", "Expired %i transactions from the memory pool\n", expired);
std::vector<uint256> vNoSpendsRemaining;
pool.TrimToSize(limit, &vNoSpendsRemaining);
BOOST_FOREACH(const uint256& removed, vNoSpendsRemaining)
pcoinsTip->Uncache(removed);
}
/** Convert CValidationState to a human-readable message for logging */
std::string FormatStateMessage(const CValidationState &state)
{
return strprintf("%s%s (code %i)",
state.GetRejectReason(),
state.GetDebugMessage().empty() ? "" : ", "+state.GetDebugMessage(),
state.GetRejectCode());
}
bool AcceptToMemoryPoolWorker(CTxMemPool& pool, CValidationState& state, const CTransaction& tx, bool fLimitFree,
bool* pfMissingInputs, bool fOverrideMempoolLimit, const CAmount& nAbsurdFee,
std::vector<uint256>& vHashTxnToUncache)
{
const uint256 hash = tx.GetHash();
AssertLockHeld(cs_main);
if (pfMissingInputs)
*pfMissingInputs = false;
if (!CheckTransaction(tx, state))
return false; // state filled in by CheckTransaction
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return state.DoS(100, false, REJECT_INVALID, "coinbase");
// Rather not work on nonstandard transactions (unless -testnet/-regtest)
string reason;
if (fRequireStandard && !IsStandardTx(tx, reason))
return state.DoS(0, false, REJECT_NONSTANDARD, reason);
// Don't relay version 2 transactions until CSV is active, and we can be
// sure that such transactions will be mined (unless we're on
// -testnet/-regtest).
const CChainParams& chainparams = Params();
if (fRequireStandard && tx.nVersion >= 2 && VersionBitsTipState(chainparams.GetConsensus(), Consensus::DEPLOYMENT_CSV) != THRESHOLD_ACTIVE) {
return state.DoS(0, false, REJECT_NONSTANDARD, "premature-version2-tx");
}
// Only accept nLockTime-using transactions that can be mined in the next
// block; we don't want our mempool filled up with transactions that can't
// be mined yet.
if (!CheckFinalTx(tx, STANDARD_LOCKTIME_VERIFY_FLAGS))
return state.DoS(0, false, REJECT_NONSTANDARD, "non-final");
// is it already in the memory pool?
if (pool.exists(hash))
return state.Invalid(false, REJECT_ALREADY_KNOWN, "txn-already-in-mempool");
// Check for conflicts with in-memory transactions
set<uint256> setConflicts;
{
LOCK(pool.cs); // protect pool.mapNextTx
BOOST_FOREACH(const CTxIn &txin, tx.vin)
{
auto itConflicting = pool.mapNextTx.find(txin.prevout);
if (itConflicting != pool.mapNextTx.end())
{
const CTransaction *ptxConflicting = itConflicting->second;
if (!setConflicts.count(ptxConflicting->GetHash()))
{
// Allow opt-out of transaction replacement by setting
// nSequence >= maxint-1 on all inputs.
//
// maxint-1 is picked to still allow use of nLockTime by
// non-replacable transactions. All inputs rather than just one
// is for the sake of multi-party protocols, where we don't
// want a single party to be able to disable replacement.
//
// The opt-out ignores descendants as anyone relying on
// first-seen mempool behavior should be checking all
// unconfirmed ancestors anyway; doing otherwise is hopelessly
// insecure.
bool fReplacementOptOut = true;
if (fEnableReplacement)
{
BOOST_FOREACH(const CTxIn &txin, ptxConflicting->vin)
{
if (txin.nSequence < std::numeric_limits<unsigned int>::max()-1)
{
fReplacementOptOut = false;
break;
}
}
}
if (fReplacementOptOut)
return state.Invalid(false, REJECT_CONFLICT, "txn-mempool-conflict");
setConflicts.insert(ptxConflicting->GetHash());
}
}
}
}
{
CCoinsView dummy;
CCoinsViewCache view(&dummy);
CAmount nValueIn = 0;
LockPoints lp;
{
LOCK(pool.cs);
CCoinsViewMemPool viewMemPool(pcoinsTip, pool);
view.SetBackend(viewMemPool);
// do we already have it?
bool fHadTxInCache = pcoinsTip->HaveCoinsInCache(hash);
if (view.HaveCoins(hash)) {
if (!fHadTxInCache)
vHashTxnToUncache.push_back(hash);
return state.Invalid(false, REJECT_ALREADY_KNOWN, "txn-already-known");
}
// do all inputs exist?
// Note that this does not check for the presence of actual outputs (see the next check for that),
// and only helps with filling in pfMissingInputs (to determine missing vs spent).
BOOST_FOREACH(const CTxIn txin, tx.vin) {
if (!pcoinsTip->HaveCoinsInCache(txin.prevout.hash))
vHashTxnToUncache.push_back(txin.prevout.hash);
if (!view.HaveCoins(txin.prevout.hash)) {
if (pfMissingInputs)
*pfMissingInputs = true;
return false; // fMissingInputs and !state.IsInvalid() is used to detect this condition, don't set state.Invalid()
}
}
// are the actual inputs available?
if (!view.HaveInputs(tx))
return state.Invalid(false, REJECT_DUPLICATE, "bad-txns-inputs-spent");
// Bring the best block into scope
view.GetBestBlock();
nValueIn = view.GetValueIn(tx);
// we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool
view.SetBackend(dummy);
// Only accept BIP68 sequence locked transactions that can be mined in the next
// block; we don't want our mempool filled up with transactions that can't
// be mined yet.
// Must keep pool.cs for this unless we change CheckSequenceLocks to take a
// CoinsViewCache instead of create its own
if (!CheckSequenceLocks(tx, STANDARD_LOCKTIME_VERIFY_FLAGS, &lp))
return state.DoS(0, false, REJECT_NONSTANDARD, "non-BIP68-final");
}
// Check for non-standard pay-to-script-hash in inputs
if (fRequireStandard && !AreInputsStandard(tx, view))
return state.Invalid(false, REJECT_NONSTANDARD, "bad-txns-nonstandard-inputs");
unsigned int nSigOps = GetLegacySigOpCount(tx);
nSigOps += GetP2SHSigOpCount(tx, view);
CAmount nValueOut = tx.GetValueOut();
CAmount nFees = nValueIn-nValueOut;
// nModifiedFees includes any fee deltas from PrioritiseTransaction
CAmount nModifiedFees = nFees;
double nPriorityDummy = 0;
pool.ApplyDeltas(hash, nPriorityDummy, nModifiedFees);
CAmount inChainInputValue;
double dPriority = view.GetPriority(tx, chainActive.Height(), inChainInputValue);
// Keep track of transactions that spend a coinbase, which we re-scan
// during reorgs to ensure COINBASE_MATURITY is still met.
bool fSpendsCoinbase = false;
BOOST_FOREACH(const CTxIn &txin, tx.vin) {
const CCoins *coins = view.AccessCoins(txin.prevout.hash);
if (coins->IsCoinBase()) {
fSpendsCoinbase = true;
break;
}
}
CTxMemPoolEntry entry(tx, nFees, GetTime(), dPriority, chainActive.Height(), pool.HasNoInputsOf(tx), inChainInputValue, fSpendsCoinbase, nSigOps, lp);
unsigned int nSize = entry.GetTxSize();
// Check that the transaction doesn't have an excessive number of
// sigops, making it impossible to mine. Since the coinbase transaction
// itself can contain sigops MAX_STANDARD_TX_SIGOPS is less than
// MAX_BLOCK_SIGOPS; we still consider this an invalid rather than
// merely non-standard transaction.
if ((nSigOps > MAX_STANDARD_TX_SIGOPS) || (nBytesPerSigOp && nSigOps > nSize / nBytesPerSigOp))
return state.DoS(0, false, REJECT_NONSTANDARD, "bad-txns-too-many-sigops", false,
strprintf("%d", nSigOps));
CAmount mempoolRejectFee = pool.GetMinFee(GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000).GetFee(nSize);
if (mempoolRejectFee > 0 && nModifiedFees < mempoolRejectFee) {
return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "mempool min fee not met", false, strprintf("%d < %d", nFees, mempoolRejectFee));
} else if (GetBoolArg("-relaypriority", DEFAULT_RELAYPRIORITY) && nModifiedFees < ::minRelayTxFee.GetFee(nSize) && !AllowFree(entry.GetPriority(chainActive.Height() + 1))) {
// Require that free transactions have sufficient priority to be mined in the next block.
return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "insufficient priority");
}
// Continuously rate-limit free (really, very-low-fee) transactions
// This mitigates 'penny-flooding' -- sending thousands of free transactions just to
// be annoying or make others' transactions take longer to confirm.
if (fLimitFree && nModifiedFees < ::minRelayTxFee.GetFee(nSize))
{
static CCriticalSection csFreeLimiter;
static double dFreeCount;
static int64_t nLastTime;
int64_t nNow = GetTime();
LOCK(csFreeLimiter);
// Use an exponentially decaying ~10-minute window:
dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime));
nLastTime = nNow;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if (dFreeCount + nSize >= GetArg("-limitfreerelay", DEFAULT_LIMITFREERELAY) * 10 * 1000)
return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "rate limited free transaction");
LogPrint("mempool", "Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize);
dFreeCount += nSize;
}
if (nAbsurdFee && nFees > nAbsurdFee)
return state.Invalid(false,
REJECT_HIGHFEE, "absurdly-high-fee",
strprintf("%d > %d", nFees, nAbsurdFee));
// Calculate in-mempool ancestors, up to a limit.
CTxMemPool::setEntries setAncestors;
size_t nLimitAncestors = GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT);
size_t nLimitAncestorSize = GetArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT)*1000;
size_t nLimitDescendants = GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT);
size_t nLimitDescendantSize = GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT)*1000;
std::string errString;
if (!pool.CalculateMemPoolAncestors(entry, setAncestors, nLimitAncestors, nLimitAncestorSize, nLimitDescendants, nLimitDescendantSize, errString)) {
return state.DoS(0, false, REJECT_NONSTANDARD, "too-long-mempool-chain", false, errString);
}
// A transaction that spends outputs that would be replaced by it is invalid. Now
// that we have the set of all ancestors we can detect this
// pathological case by making sure setConflicts and setAncestors don't
// intersect.
BOOST_FOREACH(CTxMemPool::txiter ancestorIt, setAncestors)
{
const uint256 &hashAncestor = ancestorIt->GetTx().GetHash();
if (setConflicts.count(hashAncestor))
{
return state.DoS(10, false,
REJECT_INVALID, "bad-txns-spends-conflicting-tx", false,
strprintf("%s spends conflicting transaction %s",
hash.ToString(),
hashAncestor.ToString()));
}
}
// Check if it's economically rational to mine this transaction rather
// than the ones it replaces.
CAmount nConflictingFees = 0;
size_t nConflictingSize = 0;
uint64_t nConflictingCount = 0;
CTxMemPool::setEntries allConflicting;
// If we don't hold the lock allConflicting might be incomplete; the
// subsequent RemoveStaged() and addUnchecked() calls don't guarantee
// mempool consistency for us.
LOCK(pool.cs);
if (setConflicts.size())
{
CFeeRate newFeeRate(nModifiedFees, nSize);
set<uint256> setConflictsParents;
const int maxDescendantsToVisit = 100;
CTxMemPool::setEntries setIterConflicting;
BOOST_FOREACH(const uint256 &hashConflicting, setConflicts)
{
CTxMemPool::txiter mi = pool.mapTx.find(hashConflicting);
if (mi == pool.mapTx.end())
continue;
// Save these to avoid repeated lookups
setIterConflicting.insert(mi);
// Don't allow the replacement to reduce the feerate of the
// mempool.
//
// We usually don't want to accept replacements with lower
// feerates than what they replaced as that would lower the
// feerate of the next block. Requiring that the feerate always
// be increased is also an easy-to-reason about way to prevent
// DoS attacks via replacements.
//
// The mining code doesn't (currently) take children into
// account (CPFP) so we only consider the feerates of
// transactions being directly replaced, not their indirect
// descendants. While that does mean high feerate children are
// ignored when deciding whether or not to replace, we do
// require the replacement to pay more overall fees too,
// mitigating most cases.
CFeeRate oldFeeRate(mi->GetModifiedFee(), mi->GetTxSize());
if (newFeeRate <= oldFeeRate)
{
return state.DoS(0, false,
REJECT_INSUFFICIENTFEE, "insufficient fee", false,
strprintf("rejecting replacement %s; new feerate %s <= old feerate %s",
hash.ToString(),
newFeeRate.ToString(),
oldFeeRate.ToString()));
}
BOOST_FOREACH(const CTxIn &txin, mi->GetTx().vin)
{
setConflictsParents.insert(txin.prevout.hash);
}
nConflictingCount += mi->GetCountWithDescendants();
}
// This potentially overestimates the number of actual descendants
// but we just want to be conservative to avoid doing too much
// work.
if (nConflictingCount <= maxDescendantsToVisit) {
// If not too many to replace, then calculate the set of
// transactions that would have to be evicted
BOOST_FOREACH(CTxMemPool::txiter it, setIterConflicting) {
pool.CalculateDescendants(it, allConflicting);
}
BOOST_FOREACH(CTxMemPool::txiter it, allConflicting) {
nConflictingFees += it->GetModifiedFee();
nConflictingSize += it->GetTxSize();
}
} else {
return state.DoS(0, false,
REJECT_NONSTANDARD, "too many potential replacements", false,
strprintf("rejecting replacement %s; too many potential replacements (%d > %d)\n",
hash.ToString(),
nConflictingCount,
maxDescendantsToVisit));
}
for (unsigned int j = 0; j < tx.vin.size(); j++)
{
// We don't want to accept replacements that require low
// feerate junk to be mined first. Ideally we'd keep track of
// the ancestor feerates and make the decision based on that,
// but for now requiring all new inputs to be confirmed works.
if (!setConflictsParents.count(tx.vin[j].prevout.hash))
{
// Rather than check the UTXO set - potentially expensive -
// it's cheaper to just check if the new input refers to a
// tx that's in the mempool.
if (pool.mapTx.find(tx.vin[j].prevout.hash) != pool.mapTx.end())
return state.DoS(0, false,
REJECT_NONSTANDARD, "replacement-adds-unconfirmed", false,
strprintf("replacement %s adds unconfirmed input, idx %d",
hash.ToString(), j));
}
}
// The replacement must pay greater fees than the transactions it
// replaces - if we did the bandwidth used by those conflicting
// transactions would not be paid for.
if (nModifiedFees < nConflictingFees)
{
return state.DoS(0, false,
REJECT_INSUFFICIENTFEE, "insufficient fee", false,
strprintf("rejecting replacement %s, less fees than conflicting txs; %s < %s",
hash.ToString(), FormatMoney(nModifiedFees), FormatMoney(nConflictingFees)));
}
// Finally in addition to paying more fees than the conflicts the
// new transaction must pay for its own bandwidth.
CAmount nDeltaFees = nModifiedFees - nConflictingFees;
if (nDeltaFees < ::minRelayTxFee.GetFee(nSize))
{
return state.DoS(0, false,
REJECT_INSUFFICIENTFEE, "insufficient fee", false,
strprintf("rejecting replacement %s, not enough additional fees to relay; %s < %s",
hash.ToString(),
FormatMoney(nDeltaFees),
FormatMoney(::minRelayTxFee.GetFee(nSize))));
}
}
// Check against previous transactions
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
if (!CheckInputs(tx, state, view, true, STANDARD_SCRIPT_VERIFY_FLAGS, true))
return false; // state filled in by CheckInputs
// Check again against just the consensus-critical mandatory script
// verification flags, in case of bugs in the standard flags that cause
// transactions to pass as valid when they're actually invalid. For
// instance the STRICTENC flag was incorrectly allowing certain
// CHECKSIG NOT scripts to pass, even though they were invalid.
//
// There is a similar check in CreateNewBlock() to prevent creating
// invalid blocks, however allowing such transactions into the mempool
// can be exploited as a DoS attack.
if (!CheckInputs(tx, state, view, true, MANDATORY_SCRIPT_VERIFY_FLAGS, true))
{
return error("%s: BUG! PLEASE REPORT THIS! ConnectInputs failed against MANDATORY but not STANDARD flags %s, %s",
__func__, hash.ToString(), FormatStateMessage(state));
}
// Remove conflicting transactions from the mempool
BOOST_FOREACH(const CTxMemPool::txiter it, allConflicting)
{
LogPrint("mempool", "replacing tx %s with %s for %s BTC additional fees, %d delta bytes\n",
it->GetTx().GetHash().ToString(),
hash.ToString(),
FormatMoney(nModifiedFees - nConflictingFees),
(int)nSize - (int)nConflictingSize);
}
pool.RemoveStaged(allConflicting, false);
// Store transaction in memory
pool.addUnchecked(hash, entry, setAncestors, !IsInitialBlockDownload());
// trim mempool and check if tx was trimmed
if (!fOverrideMempoolLimit) {
LimitMempoolSize(pool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
if (!pool.exists(hash))
return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "mempool full");
}
}
SyncWithWallets(tx, NULL, NULL);
return true;
}
bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool fLimitFree,
bool* pfMissingInputs, bool fOverrideMempoolLimit, const CAmount nAbsurdFee)
{
std::vector<uint256> vHashTxToUncache;
bool res = AcceptToMemoryPoolWorker(pool, state, tx, fLimitFree, pfMissingInputs, fOverrideMempoolLimit, nAbsurdFee, vHashTxToUncache);
if (!res) {
BOOST_FOREACH(const uint256& hashTx, vHashTxToUncache)
pcoinsTip->Uncache(hashTx);
}
return res;
}
/** Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock */
bool GetTransaction(const uint256 &hash, CTransaction &txOut, const Consensus::Params& consensusParams, uint256 &hashBlock, bool fAllowSlow)
{
CBlockIndex *pindexSlow = NULL;
LOCK(cs_main);
std::shared_ptr<const CTransaction> ptx = mempool.get(hash);
if (ptx)
{
txOut = *ptx;
return true;
}
if (fTxIndex) {
CDiskTxPos postx;
if (pblocktree->ReadTxIndex(hash, postx)) {
CAutoFile file(OpenBlockFile(postx, true), SER_DISK, CLIENT_VERSION);
if (file.IsNull())
return error("%s: OpenBlockFile failed", __func__);
CBlockHeader header;
try {
file >> header;
fseek(file.Get(), postx.nTxOffset, SEEK_CUR);
file >> txOut;
} catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s", __func__, e.what());
}
hashBlock = header.GetHash();
if (txOut.GetHash() != hash)
return error("%s: txid mismatch", __func__);
return true;
}
}
if (fAllowSlow) { // use coin database to locate block that contains transaction, and scan it
int nHeight = -1;
{
const CCoinsViewCache& view = *pcoinsTip;
const CCoins* coins = view.AccessCoins(hash);
if (coins)
nHeight = coins->nHeight;
}
if (nHeight > 0)
pindexSlow = chainActive[nHeight];
}
if (pindexSlow) {
CBlock block;
if (ReadBlockFromDisk(block, pindexSlow, consensusParams)) {
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
if (tx.GetHash() == hash) {
txOut = tx;
hashBlock = pindexSlow->GetBlockHash();
return true;
}
}
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
bool WriteBlockToDisk(const CBlock& block, CDiskBlockPos& pos, const CMessageHeader::MessageStartChars& messageStart)
{
// Open history file to append
CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull())
return error("WriteBlockToDisk: OpenBlockFile failed");
// Write index header
unsigned int nSize = fileout.GetSerializeSize(block);
fileout << FLATDATA(messageStart) << nSize;
// Write block
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0)
return error("WriteBlockToDisk: ftell failed");
pos.nPos = (unsigned int)fileOutPos;
fileout << block;
return true;
}
bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos, const Consensus::Params& consensusParams)
{
block.SetNull();
// Open history file to read
CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull())
return error("ReadBlockFromDisk: OpenBlockFile failed for %s", pos.ToString());
// Read block
try {
filein >> block;
}
catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s at %s", __func__, e.what(), pos.ToString());
}
// Check the header
if (!CheckProofOfWork(block.GetHash(), block.nBits, consensusParams))
return error("ReadBlockFromDisk: Errors in block header at %s", pos.ToString());
return true;
}
bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex, const Consensus::Params& consensusParams)
{
if (!ReadBlockFromDisk(block, pindex->GetBlockPos(), consensusParams))
return false;
if (block.GetHash() != pindex->GetBlockHash())
return error("ReadBlockFromDisk(CBlock&, CBlockIndex*): GetHash() doesn't match index for %s at %s",
pindex->ToString(), pindex->GetBlockPos().ToString());
return true;
}
CAmount GetBlockSubsidy(int nHeight, const Consensus::Params& consensusParams)
{
int halvings = nHeight / consensusParams.nSubsidyHalvingInterval;
// Force block reward to zero when right shift is undefined.
if (halvings >= 64)
return 0;
CAmount nSubsidy = 50 * COIN;
// Subsidy is cut in half every 210,000 blocks which will occur approximately every 4 years.
nSubsidy >>= halvings;
return nSubsidy;
}
bool IsInitialBlockDownload()
{
const CChainParams& chainParams = Params();
// Once this function has returned false, it must remain false.
static std::atomic<bool> latchToFalse{false};
// Optimization: pre-test latch before taking the lock.
if (latchToFalse.load(std::memory_order_relaxed))
return false;
LOCK(cs_main);
if (latchToFalse.load(std::memory_order_relaxed))
return false;
if (fImporting || fReindex)
return true;
if (fCheckpointsEnabled && chainActive.Height() < Checkpoints::GetTotalBlocksEstimate(chainParams.Checkpoints()))
return true;
bool state = (chainActive.Height() < pindexBestHeader->nHeight - 24 * 6 ||
std::max(chainActive.Tip()->GetBlockTime(), pindexBestHeader->GetBlockTime()) < GetTime() - nMaxTipAge);
if (!state)
latchToFalse.store(true, std::memory_order_relaxed);
return state;
}
bool fLargeWorkForkFound = false;
bool fLargeWorkInvalidChainFound = false;
CBlockIndex *pindexBestForkTip = NULL, *pindexBestForkBase = NULL;
static void AlertNotify(const std::string& strMessage)
{
uiInterface.NotifyAlertChanged();
std::string strCmd = GetArg("-alertnotify", "");
if (strCmd.empty()) return;
// Alert text should be plain ascii coming from a trusted source, but to
// be safe we first strip anything not in safeChars, then add single quotes around
// the whole string before passing it to the shell:
std::string singleQuote("'");
std::string safeStatus = SanitizeString(strMessage);
safeStatus = singleQuote+safeStatus+singleQuote;
boost::replace_all(strCmd, "%s", safeStatus);
boost::thread t(runCommand, strCmd); // thread runs free
}
void CheckForkWarningConditions()
{
AssertLockHeld(cs_main);
// Before we get past initial download, we cannot reliably alert about forks
// (we assume we don't get stuck on a fork before the last checkpoint)
if (IsInitialBlockDownload())
return;
// If our best fork is no longer within 72 blocks (+/- 12 hours if no one mines it)
// of our head, drop it
if (pindexBestForkTip && chainActive.Height() - pindexBestForkTip->nHeight >= 72)
pindexBestForkTip = NULL;
if (pindexBestForkTip || (pindexBestInvalid && pindexBestInvalid->nChainWork > chainActive.Tip()->nChainWork + (GetBlockProof(*chainActive.Tip()) * 6)))
{
if (!fLargeWorkForkFound && pindexBestForkBase)
{
std::string warning = std::string("'Warning: Large-work fork detected, forking after block ") +
pindexBestForkBase->phashBlock->ToString() + std::string("'");
AlertNotify(warning);
}
if (pindexBestForkTip && pindexBestForkBase)
{
LogPrintf("%s: Warning: Large valid fork found\n forking the chain at height %d (%s)\n lasting to height %d (%s).\nChain state database corruption likely.\n", __func__,
pindexBestForkBase->nHeight, pindexBestForkBase->phashBlock->ToString(),
pindexBestForkTip->nHeight, pindexBestForkTip->phashBlock->ToString());
fLargeWorkForkFound = true;
}
else
{
LogPrintf("%s: Warning: Found invalid chain at least ~6 blocks longer than our best chain.\nChain state database corruption likely.\n", __func__);
fLargeWorkInvalidChainFound = true;
}
}
else
{
fLargeWorkForkFound = false;
fLargeWorkInvalidChainFound = false;
}
}
void CheckForkWarningConditionsOnNewFork(CBlockIndex* pindexNewForkTip)
{
AssertLockHeld(cs_main);
// If we are on a fork that is sufficiently large, set a warning flag
CBlockIndex* pfork = pindexNewForkTip;
CBlockIndex* plonger = chainActive.Tip();
while (pfork && pfork != plonger)
{
while (plonger && plonger->nHeight > pfork->nHeight)
plonger = plonger->pprev;
if (pfork == plonger)
break;
pfork = pfork->pprev;
}
// We define a condition where we should warn the user about as a fork of at least 7 blocks
// with a tip within 72 blocks (+/- 12 hours if no one mines it) of ours
// We use 7 blocks rather arbitrarily as it represents just under 10% of sustained network
// hash rate operating on the fork.
// or a chain that is entirely longer than ours and invalid (note that this should be detected by both)
// We define it this way because it allows us to only store the highest fork tip (+ base) which meets
// the 7-block condition and from this always have the most-likely-to-cause-warning fork
if (pfork && (!pindexBestForkTip || (pindexBestForkTip && pindexNewForkTip->nHeight > pindexBestForkTip->nHeight)) &&
pindexNewForkTip->nChainWork - pfork->nChainWork > (GetBlockProof(*pfork) * 7) &&
chainActive.Height() - pindexNewForkTip->nHeight < 72)
{
pindexBestForkTip = pindexNewForkTip;
pindexBestForkBase = pfork;
}
CheckForkWarningConditions();
}
// Requires cs_main.
void Misbehaving(NodeId pnode, int howmuch)
{
if (howmuch == 0)
return;
CNodeState *state = State(pnode);
if (state == NULL)
return;
state->nMisbehavior += howmuch;
int banscore = GetArg("-banscore", DEFAULT_BANSCORE_THRESHOLD);
if (state->nMisbehavior >= banscore && state->nMisbehavior - howmuch < banscore)
{
LogPrintf("%s: %s (%d -> %d) BAN THRESHOLD EXCEEDED\n", __func__, state->name, state->nMisbehavior-howmuch, state->nMisbehavior);
state->fShouldBan = true;
} else
LogPrintf("%s: %s (%d -> %d)\n", __func__, state->name, state->nMisbehavior-howmuch, state->nMisbehavior);
}
void static InvalidChainFound(CBlockIndex* pindexNew)
{
if (!pindexBestInvalid || pindexNew->nChainWork > pindexBestInvalid->nChainWork)
pindexBestInvalid = pindexNew;
LogPrintf("%s: invalid block=%s height=%d log2_work=%.8g date=%s\n", __func__,
pindexNew->GetBlockHash().ToString(), pindexNew->nHeight,
log(pindexNew->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S",
pindexNew->GetBlockTime()));
CBlockIndex *tip = chainActive.Tip();
assert (tip);
LogPrintf("%s: current best=%s height=%d log2_work=%.8g date=%s\n", __func__,
tip->GetBlockHash().ToString(), chainActive.Height(), log(tip->nChainWork.getdouble())/log(2.0),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", tip->GetBlockTime()));
CheckForkWarningConditions();
}
void static InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) {
int nDoS = 0;
if (state.IsInvalid(nDoS)) {
std::map<uint256, NodeId>::iterator it = mapBlockSource.find(pindex->GetBlockHash());
if (it != mapBlockSource.end() && State(it->second)) {
assert (state.GetRejectCode() < REJECT_INTERNAL); // Blocks are never rejected with internal reject codes
CBlockReject reject = {(unsigned char)state.GetRejectCode(), state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), pindex->GetBlockHash()};
State(it->second)->rejects.push_back(reject);
if (nDoS > 0)
Misbehaving(it->second, nDoS);
}
}
if (!state.CorruptionPossible()) {
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
setBlockIndexCandidates.erase(pindex);
InvalidChainFound(pindex);
}
}
void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, CTxUndo &txundo, int nHeight)
{
// mark inputs spent
if (!tx.IsCoinBase()) {
txundo.vprevout.reserve(tx.vin.size());
BOOST_FOREACH(const CTxIn &txin, tx.vin) {
CCoinsModifier coins = inputs.ModifyCoins(txin.prevout.hash);
unsigned nPos = txin.prevout.n;
if (nPos >= coins->vout.size() || coins->vout[nPos].IsNull())
assert(false);
// mark an outpoint spent, and construct undo information
txundo.vprevout.push_back(CTxInUndo(coins->vout[nPos]));
coins->Spend(nPos);
if (coins->vout.size() == 0) {
CTxInUndo& undo = txundo.vprevout.back();
undo.nHeight = coins->nHeight;
undo.fCoinBase = coins->fCoinBase;
undo.nVersion = coins->nVersion;
}
}
}
// add outputs
inputs.ModifyNewCoins(tx.GetHash(), tx.IsCoinBase())->FromTx(tx, nHeight);
}
void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, int nHeight)
{
CTxUndo txundo;
UpdateCoins(tx, inputs, txundo, nHeight);
}
bool CScriptCheck::operator()() {
const CScript &scriptSig = ptxTo->vin[nIn].scriptSig;
if (!VerifyScript(scriptSig, scriptPubKey, nFlags, CachingTransactionSignatureChecker(ptxTo, nIn, cacheStore), &error)) {
return false;
}
return true;
}
int GetSpendHeight(const CCoinsViewCache& inputs)
{
LOCK(cs_main);
CBlockIndex* pindexPrev = mapBlockIndex.find(inputs.GetBestBlock())->second;
return pindexPrev->nHeight + 1;
}
namespace Consensus {
bool CheckTxInputs(const CTransaction& tx, CValidationState& state, const CCoinsViewCache& inputs, int nSpendHeight)
{
// This doesn't trigger the DoS code on purpose; if it did, it would make it easier
// for an attacker to attempt to split the network.
if (!inputs.HaveInputs(tx))
return state.Invalid(false, 0, "", "Inputs unavailable");
CAmount nValueIn = 0;
CAmount nFees = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins *coins = inputs.AccessCoins(prevout.hash);
assert(coins);
// If prev is coinbase, check that it's matured
if (coins->IsCoinBase()) {
if (nSpendHeight - coins->nHeight < COINBASE_MATURITY)
return state.Invalid(false,
REJECT_INVALID, "bad-txns-premature-spend-of-coinbase",
strprintf("tried to spend coinbase at depth %d", nSpendHeight - coins->nHeight));
}
// Check for negative or overflow input values
nValueIn += coins->vout[prevout.n].nValue;
if (!MoneyRange(coins->vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return state.DoS(100, false, REJECT_INVALID, "bad-txns-inputvalues-outofrange");
}
if (nValueIn < tx.GetValueOut())
return state.DoS(100, false, REJECT_INVALID, "bad-txns-in-belowout", false,
strprintf("value in (%s) < value out (%s)", FormatMoney(nValueIn), FormatMoney(tx.GetValueOut())));
// Tally transaction fees
CAmount nTxFee = nValueIn - tx.GetValueOut();
if (nTxFee < 0)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-fee-negative");
nFees += nTxFee;
if (!MoneyRange(nFees))
return state.DoS(100, false, REJECT_INVALID, "bad-txns-fee-outofrange");
return true;
}
}// namespace Consensus
bool CheckInputs(const CTransaction& tx, CValidationState &state, const CCoinsViewCache &inputs, bool fScriptChecks, unsigned int flags, bool cacheStore, std::vector<CScriptCheck> *pvChecks)
{
if (!tx.IsCoinBase())
{
if (!Consensus::CheckTxInputs(tx, state, inputs, GetSpendHeight(inputs)))
return false;
if (pvChecks)
pvChecks->reserve(tx.vin.size());
// The first loop above does all the inexpensive checks.
// Only if ALL inputs pass do we perform expensive ECDSA signature checks.
// Helps prevent CPU exhaustion attacks.
// Skip ECDSA signature verification when connecting blocks before the
// last block chain checkpoint. Assuming the checkpoints are valid this
// is safe because block merkle hashes are still computed and checked,
// and any change will be caught at the next checkpoint. Of course, if
// the checkpoint is for a chain that's invalid due to false scriptSigs
// this optimisation would allow an invalid chain to be accepted.
if (fScriptChecks) {
for (unsigned int i = 0; i < tx.vin.size(); i++) {
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins* coins = inputs.AccessCoins(prevout.hash);
assert(coins);
// Verify signature
CScriptCheck check(*coins, tx, i, flags, cacheStore);
if (pvChecks) {
pvChecks->push_back(CScriptCheck());
check.swap(pvChecks->back());
} else if (!check()) {
if (flags & STANDARD_NOT_MANDATORY_VERIFY_FLAGS) {
// Check whether the failure was caused by a
// non-mandatory script verification check, such as
// non-standard DER encodings or non-null dummy
// arguments; if so, don't trigger DoS protection to
// avoid splitting the network between upgraded and
// non-upgraded nodes.
CScriptCheck check2(*coins, tx, i,
flags & ~STANDARD_NOT_MANDATORY_VERIFY_FLAGS, cacheStore);
if (check2())
return state.Invalid(false, REJECT_NONSTANDARD, strprintf("non-mandatory-script-verify-flag (%s)", ScriptErrorString(check.GetScriptError())));
}
// Failures of other flags indicate a transaction that is
// invalid in new blocks, e.g. a invalid P2SH. We DoS ban
// such nodes as they are not following the protocol. That
// said during an upgrade careful thought should be taken
// as to the correct behavior - we may want to continue
// peering with non-upgraded nodes even after soft-fork
// super-majority signaling has occurred.
return state.DoS(100,false, REJECT_INVALID, strprintf("mandatory-script-verify-flag-failed (%s)", ScriptErrorString(check.GetScriptError())));
}
}
}
}
return true;
}
namespace {
bool UndoWriteToDisk(const CBlockUndo& blockundo, CDiskBlockPos& pos, const uint256& hashBlock, const CMessageHeader::MessageStartChars& messageStart)
{
// Open history file to append
CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull())
return error("%s: OpenUndoFile failed", __func__);
// Write index header
unsigned int nSize = fileout.GetSerializeSize(blockundo);
fileout << FLATDATA(messageStart) << nSize;
// Write undo data
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0)
return error("%s: ftell failed", __func__);
pos.nPos = (unsigned int)fileOutPos;
fileout << blockundo;
// calculate & write checksum
CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION);
hasher << hashBlock;
hasher << blockundo;
fileout << hasher.GetHash();
return true;
}
bool UndoReadFromDisk(CBlockUndo& blockundo, const CDiskBlockPos& pos, const uint256& hashBlock)
{
// Open history file to read
CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull())
return error("%s: OpenBlockFile failed", __func__);
// Read block
uint256 hashChecksum;
try {
filein >> blockundo;
filein >> hashChecksum;
}
catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s", __func__, e.what());
}
// Verify checksum
CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION);
hasher << hashBlock;
hasher << blockundo;
if (hashChecksum != hasher.GetHash())
return error("%s: Checksum mismatch", __func__);
return true;
}
/** Abort with a message */
bool AbortNode(const std::string& strMessage, const std::string& userMessage="")
{
strMiscWarning = strMessage;
LogPrintf("*** %s\n", strMessage);
uiInterface.ThreadSafeMessageBox(
userMessage.empty() ? _("Error: A fatal internal error occurred, see debug.log for details") : userMessage,
"", CClientUIInterface::MSG_ERROR);
StartShutdown();
return false;
}
bool AbortNode(CValidationState& state, const std::string& strMessage, const std::string& userMessage="")
{
AbortNode(strMessage, userMessage);
return state.Error(strMessage);
}
} // anon namespace
/**
* Apply the undo operation of a CTxInUndo to the given chain state.
* @param undo The undo object.
* @param view The coins view to which to apply the changes.
* @param out The out point that corresponds to the tx input.
* @return True on success.
*/
static bool ApplyTxInUndo(const CTxInUndo& undo, CCoinsViewCache& view, const COutPoint& out)
{
bool fClean = true;
CCoinsModifier coins = view.ModifyCoins(out.hash);
if (undo.nHeight != 0) {
// undo data contains height: this is the last output of the prevout tx being spent
if (!coins->IsPruned())
fClean = fClean && error("%s: undo data overwriting existing transaction", __func__);
coins->Clear();
coins->fCoinBase = undo.fCoinBase;
coins->nHeight = undo.nHeight;
coins->nVersion = undo.nVersion;
} else {
if (coins->IsPruned())
fClean = fClean && error("%s: undo data adding output to missing transaction", __func__);
}
if (coins->IsAvailable(out.n))
fClean = fClean && error("%s: undo data overwriting existing output", __func__);
if (coins->vout.size() < out.n+1)
coins->vout.resize(out.n+1);
coins->vout[out.n] = undo.txout;
return fClean;
}
bool DisconnectBlock(const CBlock& block, CValidationState& state, const CBlockIndex* pindex, CCoinsViewCache& view, bool* pfClean)
{
assert(pindex->GetBlockHash() == view.GetBestBlock());
if (pfClean)
*pfClean = false;
bool fClean = true;
CBlockUndo blockUndo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (pos.IsNull())
return error("DisconnectBlock(): no undo data available");
if (!UndoReadFromDisk(blockUndo, pos, pindex->pprev->GetBlockHash()))
return error("DisconnectBlock(): failure reading undo data");
if (blockUndo.vtxundo.size() + 1 != block.vtx.size())
return error("DisconnectBlock(): block and undo data inconsistent");
// undo transactions in reverse order
for (int i = block.vtx.size() - 1; i >= 0; i--) {
const CTransaction &tx = block.vtx[i];
uint256 hash = tx.GetHash();
// Check that all outputs are available and match the outputs in the block itself
// exactly.
{
CCoinsModifier outs = view.ModifyCoins(hash);
outs->ClearUnspendable();
CCoins outsBlock(tx, pindex->nHeight);
// The CCoins serialization does not serialize negative numbers.
// No network rules currently depend on the version here, so an inconsistency is harmless
// but it must be corrected before txout nversion ever influences a network rule.
if (outsBlock.nVersion < 0)
outs->nVersion = outsBlock.nVersion;
if (*outs != outsBlock)
fClean = fClean && error("DisconnectBlock(): added transaction mismatch? database corrupted");
// remove outputs
outs->Clear();
}
// restore inputs
if (i > 0) { // not coinbases
const CTxUndo &txundo = blockUndo.vtxundo[i-1];
if (txundo.vprevout.size() != tx.vin.size())
return error("DisconnectBlock(): transaction and undo data inconsistent");
for (unsigned int j = tx.vin.size(); j-- > 0;) {
const COutPoint &out = tx.vin[j].prevout;
const CTxInUndo &undo = txundo.vprevout[j];
if (!ApplyTxInUndo(undo, view, out))
fClean = false;
}
}
}
// move best block pointer to prevout block
view.SetBestBlock(pindex->pprev->GetBlockHash());
if (pfClean) {
*pfClean = fClean;
return true;
}
return fClean;
}
void static FlushBlockFile(bool fFinalize = false)
{
LOCK(cs_LastBlockFile);
CDiskBlockPos posOld(nLastBlockFile, 0);
FILE *fileOld = OpenBlockFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nSize);
FileCommit(fileOld);
fclose(fileOld);
}
fileOld = OpenUndoFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nUndoSize);
FileCommit(fileOld);
fclose(fileOld);
}
}
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize);
static CCheckQueue<CScriptCheck> scriptcheckqueue(128);
void ThreadScriptCheck() {
RenameThread("bitcoin-scriptch");
scriptcheckqueue.Thread();
}
//
// Called periodically asynchronously; alerts if it smells like
// we're being fed a bad chain (blocks being generated much
// too slowly or too quickly).
//
void PartitionCheck(bool (*initialDownloadCheck)(), CCriticalSection& cs, const CBlockIndex *const &bestHeader,
int64_t nPowTargetSpacing)
{
if (bestHeader == NULL || initialDownloadCheck()) return;
static int64_t lastAlertTime = 0;
int64_t now = GetAdjustedTime();
if (lastAlertTime > now-60*60*24) return; // Alert at most once per day
const int SPAN_HOURS=4;
const int SPAN_SECONDS=SPAN_HOURS*60*60;
int BLOCKS_EXPECTED = SPAN_SECONDS / nPowTargetSpacing;
boost::math::poisson_distribution<double> poisson(BLOCKS_EXPECTED);
std::string strWarning;
int64_t startTime = GetAdjustedTime()-SPAN_SECONDS;
LOCK(cs);
const CBlockIndex* i = bestHeader;
int nBlocks = 0;
while (i->GetBlockTime() >= startTime) {
++nBlocks;
i = i->pprev;
if (i == NULL) return; // Ran out of chain, we must not be fully sync'ed
}
// How likely is it to find that many by chance?
double p = boost::math::pdf(poisson, nBlocks);
LogPrint("partitioncheck", "%s: Found %d blocks in the last %d hours\n", __func__, nBlocks, SPAN_HOURS);
LogPrint("partitioncheck", "%s: likelihood: %g\n", __func__, p);
// Aim for one false-positive about every fifty years of normal running:
const int FIFTY_YEARS = 50*365*24*60*60;
double alertThreshold = 1.0 / (FIFTY_YEARS / SPAN_SECONDS);
if (p <= alertThreshold && nBlocks < BLOCKS_EXPECTED)
{
// Many fewer blocks than expected: alert!
strWarning = strprintf(_("WARNING: check your network connection, %d blocks received in the last %d hours (%d expected)"),
nBlocks, SPAN_HOURS, BLOCKS_EXPECTED);
}
else if (p <= alertThreshold && nBlocks > BLOCKS_EXPECTED)
{
// Many more blocks than expected: alert!
strWarning = strprintf(_("WARNING: abnormally high number of blocks generated, %d blocks received in the last %d hours (%d expected)"),
nBlocks, SPAN_HOURS, BLOCKS_EXPECTED);
}
if (!strWarning.empty())
{
strMiscWarning = strWarning;
AlertNotify(strWarning);
lastAlertTime = now;
}
}
// Protected by cs_main
VersionBitsCache versionbitscache;
int32_t ComputeBlockVersion(const CBlockIndex* pindexPrev, const Consensus::Params& params)
{
LOCK(cs_main);
int32_t nVersion = VERSIONBITS_TOP_BITS;
for (int i = 0; i < (int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; i++) {
ThresholdState state = VersionBitsState(pindexPrev, params, (Consensus::DeploymentPos)i, versionbitscache);
if (state == THRESHOLD_LOCKED_IN || state == THRESHOLD_STARTED) {
nVersion |= VersionBitsMask(params, (Consensus::DeploymentPos)i);
}
}
return nVersion;
}
/**
* Threshold condition checker that triggers when unknown versionbits are seen on the network.
*/
class WarningBitsConditionChecker : public AbstractThresholdConditionChecker
{
private:
int bit;
public:
WarningBitsConditionChecker(int bitIn) : bit(bitIn) {}
int64_t BeginTime(const Consensus::Params& params) const { return 0; }
int64_t EndTime(const Consensus::Params& params) const { return std::numeric_limits<int64_t>::max(); }
int Period(const Consensus::Params& params) const { return params.nMinerConfirmationWindow; }
int Threshold(const Consensus::Params& params) const { return params.nRuleChangeActivationThreshold; }
bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const
{
return ((pindex->nVersion & VERSIONBITS_TOP_MASK) == VERSIONBITS_TOP_BITS) &&
((pindex->nVersion >> bit) & 1) != 0 &&
((ComputeBlockVersion(pindex->pprev, params) >> bit) & 1) == 0;
}
};
// Protected by cs_main
static ThresholdConditionCache warningcache[VERSIONBITS_NUM_BITS];
static int64_t nTimeCheck = 0;
static int64_t nTimeForks = 0;
static int64_t nTimeVerify = 0;
static int64_t nTimeConnect = 0;
static int64_t nTimeIndex = 0;
static int64_t nTimeCallbacks = 0;
static int64_t nTimeTotal = 0;
bool ConnectBlock(const CBlock& block, CValidationState& state, CBlockIndex* pindex,
CCoinsViewCache& view, const CChainParams& chainparams, bool fJustCheck)
{
AssertLockHeld(cs_main);
int64_t nTimeStart = GetTimeMicros();
// Check it again in case a previous version let a bad block in
if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))
return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state));
// verify that the view's current state corresponds to the previous block
uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : pindex->pprev->GetBlockHash();
assert(hashPrevBlock == view.GetBestBlock());
// Special case for the genesis block, skipping connection of its transactions
// (its coinbase is unspendable)
if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {
if (!fJustCheck)
view.SetBestBlock(pindex->GetBlockHash());
return true;
}
bool fScriptChecks = true;
if (fCheckpointsEnabled) {
CBlockIndex *pindexLastCheckpoint = Checkpoints::GetLastCheckpoint(chainparams.Checkpoints());
if (pindexLastCheckpoint && pindexLastCheckpoint->GetAncestor(pindex->nHeight) == pindex) {
// This block is an ancestor of a checkpoint: disable script checks
fScriptChecks = false;
}
}
int64_t nTime1 = GetTimeMicros(); nTimeCheck += nTime1 - nTimeStart;
LogPrint("bench", " - Sanity checks: %.2fms [%.2fs]\n", 0.001 * (nTime1 - nTimeStart), nTimeCheck * 0.000001);
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information.
// This logic is not necessary for memory pool transactions, as AcceptToMemoryPool
// already refuses previously-known transaction ids entirely.
// This rule was originally applied to all blocks with a timestamp after March 15, 2012, 0:00 UTC.
// Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the
// two in the chain that violate it. This prevents exploiting the issue against nodes during their
// initial block download.
bool fEnforceBIP30 = (!pindex->phashBlock) || // Enforce on CreateNewBlock invocations which don't have a hash.
!((pindex->nHeight==91842 && pindex->GetBlockHash() == uint256S("0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")) ||
(pindex->nHeight==91880 && pindex->GetBlockHash() == uint256S("0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721")));
// Once BIP34 activated it was not possible to create new duplicate coinbases and thus other than starting
// with the 2 existing duplicate coinbase pairs, not possible to create overwriting txs. But by the
// time BIP34 activated, in each of the existing pairs the duplicate coinbase had overwritten the first
// before the first had been spent. Since those coinbases are sufficiently buried its no longer possible to create further
// duplicate transactions descending from the known pairs either.
// If we're on the known chain at height greater than where BIP34 activated, we can save the db accesses needed for the BIP30 check.
CBlockIndex *pindexBIP34height = pindex->pprev->GetAncestor(chainparams.GetConsensus().BIP34Height);
//Only continue to enforce if we're below BIP34 activation height or the block hash at that height doesn't correspond.
fEnforceBIP30 = fEnforceBIP30 && (!pindexBIP34height || !(pindexBIP34height->GetBlockHash() == chainparams.GetConsensus().BIP34Hash));
if (fEnforceBIP30) {
BOOST_FOREACH(const CTransaction& tx, block.vtx) {
const CCoins* coins = view.AccessCoins(tx.GetHash());
if (coins && !coins->IsPruned())
return state.DoS(100, error("ConnectBlock(): tried to overwrite transaction"),
REJECT_INVALID, "bad-txns-BIP30");
}
}
// BIP16 didn't become active until Apr 1 2012
int64_t nBIP16SwitchTime = 1333238400;
bool fStrictPayToScriptHash = (pindex->GetBlockTime() >= nBIP16SwitchTime);
unsigned int flags = fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE;
// Start enforcing the DERSIG (BIP66) rules, for block.nVersion=3 blocks,
// when 75% of the network has upgraded:
if (block.nVersion >= 3 && IsSuperMajority(3, pindex->pprev, chainparams.GetConsensus().nMajorityEnforceBlockUpgrade, chainparams.GetConsensus())) {
flags |= SCRIPT_VERIFY_DERSIG;
}
// Start enforcing CHECKLOCKTIMEVERIFY, (BIP65) for block.nVersion=4
// blocks, when 75% of the network has upgraded:
if (block.nVersion >= 4 && IsSuperMajority(4, pindex->pprev, chainparams.GetConsensus().nMajorityEnforceBlockUpgrade, chainparams.GetConsensus())) {
flags |= SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY;
}
// Start enforcing BIP68 (sequence locks) and BIP112 (CHECKSEQUENCEVERIFY) using versionbits logic.
int nLockTimeFlags = 0;
if (VersionBitsState(pindex->pprev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_CSV, versionbitscache) == THRESHOLD_ACTIVE) {
flags |= SCRIPT_VERIFY_CHECKSEQUENCEVERIFY;
nLockTimeFlags |= LOCKTIME_VERIFY_SEQUENCE;
}
int64_t nTime2 = GetTimeMicros(); nTimeForks += nTime2 - nTime1;
LogPrint("bench", " - Fork checks: %.2fms [%.2fs]\n", 0.001 * (nTime2 - nTime1), nTimeForks * 0.000001);
CBlockUndo blockundo;
CCheckQueueControl<CScriptCheck> control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL);
std::vector<int> prevheights;
CAmount nFees = 0;
int nInputs = 0;
unsigned int nSigOps = 0;
CDiskTxPos pos(pindex->GetBlockPos(), GetSizeOfCompactSize(block.vtx.size()));
std::vector<std::pair<uint256, CDiskTxPos> > vPos;
vPos.reserve(block.vtx.size());
blockundo.vtxundo.reserve(block.vtx.size() - 1);
for (unsigned int i = 0; i < block.vtx.size(); i++)
{
const CTransaction &tx = block.vtx[i];
nInputs += tx.vin.size();
nSigOps += GetLegacySigOpCount(tx);
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, error("ConnectBlock(): too many sigops"),
REJECT_INVALID, "bad-blk-sigops");
if (!tx.IsCoinBase())
{
if (!view.HaveInputs(tx))
return state.DoS(100, error("ConnectBlock(): inputs missing/spent"),
REJECT_INVALID, "bad-txns-inputs-missingorspent");
// Check that transaction is BIP68 final
// BIP68 lock checks (as opposed to nLockTime checks) must
// be in ConnectBlock because they require the UTXO set
prevheights.resize(tx.vin.size());
for (size_t j = 0; j < tx.vin.size(); j++) {
prevheights[j] = view.AccessCoins(tx.vin[j].prevout.hash)->nHeight;
}
if (!SequenceLocks(tx, nLockTimeFlags, &prevheights, *pindex)) {
return state.DoS(100, error("%s: contains a non-BIP68-final transaction", __func__),
REJECT_INVALID, "bad-txns-nonfinal");
}
if (fStrictPayToScriptHash)
{
// Add in sigops done by pay-to-script-hash inputs;
// this is to prevent a "rogue miner" from creating
// an incredibly-expensive-to-validate block.
nSigOps += GetP2SHSigOpCount(tx, view);
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, error("ConnectBlock(): too many sigops"),
REJECT_INVALID, "bad-blk-sigops");
}
nFees += view.GetValueIn(tx)-tx.GetValueOut();
std::vector<CScriptCheck> vChecks;
bool fCacheResults = fJustCheck; /* Don't cache results if we're actually connecting blocks (still consult the cache, though) */
if (!CheckInputs(tx, state, view, fScriptChecks, flags, fCacheResults, nScriptCheckThreads ? &vChecks : NULL))
return error("ConnectBlock(): CheckInputs on %s failed with %s",
tx.GetHash().ToString(), FormatStateMessage(state));
control.Add(vChecks);
}
CTxUndo undoDummy;
if (i > 0) {
blockundo.vtxundo.push_back(CTxUndo());
}
UpdateCoins(tx, view, i == 0 ? undoDummy : blockundo.vtxundo.back(), pindex->nHeight);
vPos.push_back(std::make_pair(tx.GetHash(), pos));
pos.nTxOffset += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION);
}
int64_t nTime3 = GetTimeMicros(); nTimeConnect += nTime3 - nTime2;
LogPrint("bench", " - Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin) [%.2fs]\n", (unsigned)block.vtx.size(), 0.001 * (nTime3 - nTime2), 0.001 * (nTime3 - nTime2) / block.vtx.size(), nInputs <= 1 ? 0 : 0.001 * (nTime3 - nTime2) / (nInputs-1), nTimeConnect * 0.000001);
CAmount blockReward = nFees + GetBlockSubsidy(pindex->nHeight, chainparams.GetConsensus());
if (block.vtx[0].GetValueOut() > blockReward)
return state.DoS(100,
error("ConnectBlock(): coinbase pays too much (actual=%d vs limit=%d)",
block.vtx[0].GetValueOut(), blockReward),
REJECT_INVALID, "bad-cb-amount");
if (!control.Wait())
return state.DoS(100, false);
int64_t nTime4 = GetTimeMicros(); nTimeVerify += nTime4 - nTime2;
LogPrint("bench", " - Verify %u txins: %.2fms (%.3fms/txin) [%.2fs]\n", nInputs - 1, 0.001 * (nTime4 - nTime2), nInputs <= 1 ? 0 : 0.001 * (nTime4 - nTime2) / (nInputs-1), nTimeVerify * 0.000001);
if (fJustCheck)
return true;
// Write undo information to disk
if (pindex->GetUndoPos().IsNull() || !pindex->IsValid(BLOCK_VALID_SCRIPTS))
{
if (pindex->GetUndoPos().IsNull()) {
CDiskBlockPos pos;
if (!FindUndoPos(state, pindex->nFile, pos, ::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) + 40))
return error("ConnectBlock(): FindUndoPos failed");
if (!UndoWriteToDisk(blockundo, pos, pindex->pprev->GetBlockHash(), chainparams.MessageStart()))
return AbortNode(state, "Failed to write undo data");
// update nUndoPos in block index
pindex->nUndoPos = pos.nPos;
pindex->nStatus |= BLOCK_HAVE_UNDO;
}
pindex->RaiseValidity(BLOCK_VALID_SCRIPTS);
setDirtyBlockIndex.insert(pindex);
}
if (fTxIndex)
if (!pblocktree->WriteTxIndex(vPos))
return AbortNode(state, "Failed to write transaction index");
// add this block to the view's block chain
view.SetBestBlock(pindex->GetBlockHash());
int64_t nTime5 = GetTimeMicros(); nTimeIndex += nTime5 - nTime4;
LogPrint("bench", " - Index writing: %.2fms [%.2fs]\n", 0.001 * (nTime5 - nTime4), nTimeIndex * 0.000001);
// Watch for changes to the previous coinbase transaction.
static uint256 hashPrevBestCoinBase;
GetMainSignals().UpdatedTransaction(hashPrevBestCoinBase);
hashPrevBestCoinBase = block.vtx[0].GetHash();
int64_t nTime6 = GetTimeMicros(); nTimeCallbacks += nTime6 - nTime5;
LogPrint("bench", " - Callbacks: %.2fms [%.2fs]\n", 0.001 * (nTime6 - nTime5), nTimeCallbacks * 0.000001);
return true;
}
enum FlushStateMode {
FLUSH_STATE_NONE,
FLUSH_STATE_IF_NEEDED,
FLUSH_STATE_PERIODIC,
FLUSH_STATE_ALWAYS
};
/**
* Update the on-disk chain state.
* The caches and indexes are flushed depending on the mode we're called with
* if they're too large, if it's been a while since the last write,
* or always and in all cases if we're in prune mode and are deleting files.
*/
bool static FlushStateToDisk(CValidationState &state, FlushStateMode mode) {
const CChainParams& chainparams = Params();
LOCK2(cs_main, cs_LastBlockFile);
static int64_t nLastWrite = 0;
static int64_t nLastFlush = 0;
static int64_t nLastSetChain = 0;
std::set<int> setFilesToPrune;
bool fFlushForPrune = false;
try {
if (fPruneMode && fCheckForPruning && !fReindex) {
FindFilesToPrune(setFilesToPrune, chainparams.PruneAfterHeight());
fCheckForPruning = false;
if (!setFilesToPrune.empty()) {
fFlushForPrune = true;
if (!fHavePruned) {
pblocktree->WriteFlag("prunedblockfiles", true);
fHavePruned = true;
}
}
}
int64_t nNow = GetTimeMicros();
// Avoid writing/flushing immediately after startup.
if (nLastWrite == 0) {
nLastWrite = nNow;
}
if (nLastFlush == 0) {
nLastFlush = nNow;
}
if (nLastSetChain == 0) {
nLastSetChain = nNow;
}
size_t cacheSize = pcoinsTip->DynamicMemoryUsage();
// The cache is large and close to the limit, but we have time now (not in the middle of a block processing).
bool fCacheLarge = mode == FLUSH_STATE_PERIODIC && cacheSize * (10.0/9) > nCoinCacheUsage;
// The cache is over the limit, we have to write now.
bool fCacheCritical = mode == FLUSH_STATE_IF_NEEDED && cacheSize > nCoinCacheUsage;
// It's been a while since we wrote the block index to disk. Do this frequently, so we don't need to redownload after a crash.
bool fPeriodicWrite = mode == FLUSH_STATE_PERIODIC && nNow > nLastWrite + (int64_t)DATABASE_WRITE_INTERVAL * 1000000;
// It's been very long since we flushed the cache. Do this infrequently, to optimize cache usage.
bool fPeriodicFlush = mode == FLUSH_STATE_PERIODIC && nNow > nLastFlush + (int64_t)DATABASE_FLUSH_INTERVAL * 1000000;
// Combine all conditions that result in a full cache flush.
bool fDoFullFlush = (mode == FLUSH_STATE_ALWAYS) || fCacheLarge || fCacheCritical || fPeriodicFlush || fFlushForPrune;
// Write blocks and block index to disk.
if (fDoFullFlush || fPeriodicWrite) {
// Depend on nMinDiskSpace to ensure we can write block index
if (!CheckDiskSpace(0))
return state.Error("out of disk space");
// First make sure all block and undo data is flushed to disk.
FlushBlockFile();
// Then update all block file information (which may refer to block and undo files).
{
std::vector<std::pair<int, const CBlockFileInfo*> > vFiles;
vFiles.reserve(setDirtyFileInfo.size());
for (set<int>::iterator it = setDirtyFileInfo.begin(); it != setDirtyFileInfo.end(); ) {
vFiles.push_back(make_pair(*it, &vinfoBlockFile[*it]));
setDirtyFileInfo.erase(it++);
}
std::vector<const CBlockIndex*> vBlocks;
vBlocks.reserve(setDirtyBlockIndex.size());
for (set<CBlockIndex*>::iterator it = setDirtyBlockIndex.begin(); it != setDirtyBlockIndex.end(); ) {
vBlocks.push_back(*it);
setDirtyBlockIndex.erase(it++);
}
if (!pblocktree->WriteBatchSync(vFiles, nLastBlockFile, vBlocks)) {
return AbortNode(state, "Files to write to block index database");
}
}
// Finally remove any pruned files
if (fFlushForPrune)
UnlinkPrunedFiles(setFilesToPrune);
nLastWrite = nNow;
}
// Flush best chain related state. This can only be done if the blocks / block index write was also done.
if (fDoFullFlush) {
// Typical CCoins structures on disk are around 128 bytes in size.
// Pushing a new one to the database can cause it to be written
// twice (once in the log, and once in the tables). This is already
// an overestimation, as most will delete an existing entry or
// overwrite one. Still, use a conservative safety factor of 2.
if (!CheckDiskSpace(128 * 2 * 2 * pcoinsTip->GetCacheSize()))
return state.Error("out of disk space");
// Flush the chainstate (which may refer to block index entries).
if (!pcoinsTip->Flush())
return AbortNode(state, "Failed to write to coin database");
nLastFlush = nNow;
}
if (fDoFullFlush || ((mode == FLUSH_STATE_ALWAYS || mode == FLUSH_STATE_PERIODIC) && nNow > nLastSetChain + (int64_t)DATABASE_WRITE_INTERVAL * 1000000)) {
// Update best block in wallet (so we can detect restored wallets).
GetMainSignals().SetBestChain(chainActive.GetLocator());
nLastSetChain = nNow;
}
} catch (const std::runtime_error& e) {
return AbortNode(state, std::string("System error while flushing: ") + e.what());
}
return true;
}
void FlushStateToDisk() {
CValidationState state;
FlushStateToDisk(state, FLUSH_STATE_ALWAYS);
}
void PruneAndFlush() {
CValidationState state;
fCheckForPruning = true;
FlushStateToDisk(state, FLUSH_STATE_NONE);
}
/** Update chainActive and related internal data structures. */
void static UpdateTip(CBlockIndex *pindexNew, const CChainParams& chainParams) {
chainActive.SetTip(pindexNew);
// New best block
nTimeBestReceived = GetTime();
mempool.AddTransactionsUpdated(1);
cvBlockChange.notify_all();
static bool fWarned = false;
std::vector<std::string> warningMessages;
if (!IsInitialBlockDownload())
{
int nUpgraded = 0;
const CBlockIndex* pindex = chainActive.Tip();
for (int bit = 0; bit < VERSIONBITS_NUM_BITS; bit++) {
WarningBitsConditionChecker checker(bit);
ThresholdState state = checker.GetStateFor(pindex, chainParams.GetConsensus(), warningcache[bit]);
if (state == THRESHOLD_ACTIVE || state == THRESHOLD_LOCKED_IN) {
if (state == THRESHOLD_ACTIVE) {
strMiscWarning = strprintf(_("Warning: unknown new rules activated (versionbit %i)"), bit);
if (!fWarned) {
AlertNotify(strMiscWarning);
fWarned = true;
}
} else {
warningMessages.push_back(strprintf("unknown new rules are about to activate (versionbit %i)", bit));
}
}
}
// Check the version of the last 100 blocks to see if we need to upgrade:
for (int i = 0; i < 100 && pindex != NULL; i++)
{
int32_t nExpectedVersion = ComputeBlockVersion(pindex->pprev, chainParams.GetConsensus());
if (pindex->nVersion > VERSIONBITS_LAST_OLD_BLOCK_VERSION && (pindex->nVersion & ~nExpectedVersion) != 0)
++nUpgraded;
pindex = pindex->pprev;
}
if (nUpgraded > 0)
warningMessages.push_back(strprintf("%d of last 100 blocks have unexpected version", nUpgraded));
if (nUpgraded > 100/2)
{
// strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user:
strMiscWarning = _("Warning: Unknown block versions being mined! It's possible unknown rules are in effect");
if (!fWarned) {
AlertNotify(strMiscWarning);
fWarned = true;
}
}
}
LogPrintf("%s: new best=%s height=%d version=0x%08x log2_work=%.8g tx=%lu date='%s' progress=%f cache=%.1fMiB(%utx)", __func__,
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), chainActive.Tip()->nVersion,
log(chainActive.Tip()->nChainWork.getdouble())/log(2.0), (unsigned long)chainActive.Tip()->nChainTx,
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()),
Checkpoints::GuessVerificationProgress(chainParams.Checkpoints(), chainActive.Tip()), pcoinsTip->DynamicMemoryUsage() * (1.0 / (1<<20)), pcoinsTip->GetCacheSize());
if (!warningMessages.empty())
LogPrintf(" warning='%s'", boost::algorithm::join(warningMessages, ", "));
LogPrintf("\n");
}
/** Disconnect chainActive's tip. You probably want to call mempool.removeForReorg and manually re-limit mempool size after this, with cs_main held. */
bool static DisconnectTip(CValidationState& state, const CChainParams& chainparams)
{
CBlockIndex *pindexDelete = chainActive.Tip();
assert(pindexDelete);
// Read block from disk.
CBlock block;
if (!ReadBlockFromDisk(block, pindexDelete, chainparams.GetConsensus()))
return AbortNode(state, "Failed to read block");
// Apply the block atomically to the chain state.
int64_t nStart = GetTimeMicros();
{
CCoinsViewCache view(pcoinsTip);
if (!DisconnectBlock(block, state, pindexDelete, view))
return error("DisconnectTip(): DisconnectBlock %s failed", pindexDelete->GetBlockHash().ToString());
assert(view.Flush());
}
LogPrint("bench", "- Disconnect block: %.2fms\n", (GetTimeMicros() - nStart) * 0.001);
// Write the chain state to disk, if necessary.
if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED))
return false;
// Resurrect mempool transactions from the disconnected block.
std::vector<uint256> vHashUpdate;
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
// ignore validation errors in resurrected transactions
list<CTransaction> removed;
CValidationState stateDummy;
if (tx.IsCoinBase() || !AcceptToMemoryPool(mempool, stateDummy, tx, false, NULL, true)) {
mempool.removeRecursive(tx, removed);
} else if (mempool.exists(tx.GetHash())) {
vHashUpdate.push_back(tx.GetHash());
}
}
// AcceptToMemoryPool/addUnchecked all assume that new mempool entries have
// no in-mempool children, which is generally not true when adding
// previously-confirmed transactions back to the mempool.
// UpdateTransactionsFromBlock finds descendants of any transactions in this
// block that were added back and cleans up the mempool state.
mempool.UpdateTransactionsFromBlock(vHashUpdate);
// Update chainActive and related variables.
UpdateTip(pindexDelete->pprev, chainparams);
// Let wallets know transactions went from 1-confirmed to
// 0-confirmed or conflicted:
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
SyncWithWallets(tx, pindexDelete->pprev, NULL);
}
return true;
}
static int64_t nTimeReadFromDisk = 0;
static int64_t nTimeConnectTotal = 0;
static int64_t nTimeFlush = 0;
static int64_t nTimeChainState = 0;
static int64_t nTimePostConnect = 0;
/**
* Connect a new block to chainActive. pblock is either NULL or a pointer to a CBlock
* corresponding to pindexNew, to bypass loading it again from disk.
*/
bool static ConnectTip(CValidationState& state, const CChainParams& chainparams, CBlockIndex* pindexNew, const CBlock* pblock)
{
assert(pindexNew->pprev == chainActive.Tip());
// Read block from disk.
int64_t nTime1 = GetTimeMicros();
CBlock block;
if (!pblock) {
if (!ReadBlockFromDisk(block, pindexNew, chainparams.GetConsensus()))
return AbortNode(state, "Failed to read block");
pblock = &block;
}
// Apply the block atomically to the chain state.
int64_t nTime2 = GetTimeMicros(); nTimeReadFromDisk += nTime2 - nTime1;
int64_t nTime3;
LogPrint("bench", " - Load block from disk: %.2fms [%.2fs]\n", (nTime2 - nTime1) * 0.001, nTimeReadFromDisk * 0.000001);
{
CCoinsViewCache view(pcoinsTip);
bool rv = ConnectBlock(*pblock, state, pindexNew, view, chainparams);
GetMainSignals().BlockChecked(*pblock, state);
if (!rv) {
if (state.IsInvalid())
InvalidBlockFound(pindexNew, state);
return error("ConnectTip(): ConnectBlock %s failed", pindexNew->GetBlockHash().ToString());
}
mapBlockSource.erase(pindexNew->GetBlockHash());
nTime3 = GetTimeMicros(); nTimeConnectTotal += nTime3 - nTime2;
LogPrint("bench", " - Connect total: %.2fms [%.2fs]\n", (nTime3 - nTime2) * 0.001, nTimeConnectTotal * 0.000001);
assert(view.Flush());
}
int64_t nTime4 = GetTimeMicros(); nTimeFlush += nTime4 - nTime3;
LogPrint("bench", " - Flush: %.2fms [%.2fs]\n", (nTime4 - nTime3) * 0.001, nTimeFlush * 0.000001);
// Write the chain state to disk, if necessary.
if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED))
return false;
int64_t nTime5 = GetTimeMicros(); nTimeChainState += nTime5 - nTime4;
LogPrint("bench", " - Writing chainstate: %.2fms [%.2fs]\n", (nTime5 - nTime4) * 0.001, nTimeChainState * 0.000001);
// Remove conflicting transactions from the mempool.
list<CTransaction> txConflicted;
mempool.removeForBlock(pblock->vtx, pindexNew->nHeight, txConflicted, !IsInitialBlockDownload());
// Update chainActive & related variables.
UpdateTip(pindexNew, chainparams);
// Tell wallet about transactions that went from mempool
// to conflicted:
BOOST_FOREACH(const CTransaction &tx, txConflicted) {
SyncWithWallets(tx, pindexNew, NULL);
}
// ... and about transactions that got confirmed:
BOOST_FOREACH(const CTransaction &tx, pblock->vtx) {
SyncWithWallets(tx, pindexNew, pblock);
}
int64_t nTime6 = GetTimeMicros(); nTimePostConnect += nTime6 - nTime5; nTimeTotal += nTime6 - nTime1;
LogPrint("bench", " - Connect postprocess: %.2fms [%.2fs]\n", (nTime6 - nTime5) * 0.001, nTimePostConnect * 0.000001);
LogPrint("bench", "- Connect block: %.2fms [%.2fs]\n", (nTime6 - nTime1) * 0.001, nTimeTotal * 0.000001);
return true;
}
/**
* Return the tip of the chain with the most work in it, that isn't
* known to be invalid (it's however far from certain to be valid).
*/
static CBlockIndex* FindMostWorkChain() {
do {
CBlockIndex *pindexNew = NULL;
// Find the best candidate header.
{
std::set<CBlockIndex*, CBlockIndexWorkComparator>::reverse_iterator it = setBlockIndexCandidates.rbegin();
if (it == setBlockIndexCandidates.rend())
return NULL;
pindexNew = *it;
}
// Check whether all blocks on the path between the currently active chain and the candidate are valid.
// Just going until the active chain is an optimization, as we know all blocks in it are valid already.
CBlockIndex *pindexTest = pindexNew;
bool fInvalidAncestor = false;
while (pindexTest && !chainActive.Contains(pindexTest)) {
assert(pindexTest->nChainTx || pindexTest->nHeight == 0);
// Pruned nodes may have entries in setBlockIndexCandidates for
// which block files have been deleted. Remove those as candidates
// for the most work chain if we come across them; we can't switch
// to a chain unless we have all the non-active-chain parent blocks.
bool fFailedChain = pindexTest->nStatus & BLOCK_FAILED_MASK;
bool fMissingData = !(pindexTest->nStatus & BLOCK_HAVE_DATA);
if (fFailedChain || fMissingData) {
// Candidate chain is not usable (either invalid or missing data)
if (fFailedChain && (pindexBestInvalid == NULL || pindexNew->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindexNew;
CBlockIndex *pindexFailed = pindexNew;
// Remove the entire chain from the set.
while (pindexTest != pindexFailed) {
if (fFailedChain) {
pindexFailed->nStatus |= BLOCK_FAILED_CHILD;
} else if (fMissingData) {
// If we're missing data, then add back to mapBlocksUnlinked,
// so that if the block arrives in the future we can try adding
// to setBlockIndexCandidates again.
mapBlocksUnlinked.insert(std::make_pair(pindexFailed->pprev, pindexFailed));
}
setBlockIndexCandidates.erase(pindexFailed);
pindexFailed = pindexFailed->pprev;
}
setBlockIndexCandidates.erase(pindexTest);
fInvalidAncestor = true;
break;
}
pindexTest = pindexTest->pprev;
}
if (!fInvalidAncestor)
return pindexNew;
} while(true);
}
/** Delete all entries in setBlockIndexCandidates that are worse than the current tip. */
static void PruneBlockIndexCandidates() {
// Note that we can't delete the current block itself, as we may need to return to it later in case a
// reorganization to a better block fails.
std::set<CBlockIndex*, CBlockIndexWorkComparator>::iterator it = setBlockIndexCandidates.begin();
while (it != setBlockIndexCandidates.end() && setBlockIndexCandidates.value_comp()(*it, chainActive.Tip())) {
setBlockIndexCandidates.erase(it++);
}
// Either the current tip or a successor of it we're working towards is left in setBlockIndexCandidates.
assert(!setBlockIndexCandidates.empty());
}
/**
* Try to make some progress towards making pindexMostWork the active block.
* pblock is either NULL or a pointer to a CBlock corresponding to pindexMostWork.
*/
static bool ActivateBestChainStep(CValidationState& state, const CChainParams& chainparams, CBlockIndex* pindexMostWork, const CBlock* pblock, bool& fInvalidFound)
{
AssertLockHeld(cs_main);
const CBlockIndex *pindexOldTip = chainActive.Tip();
const CBlockIndex *pindexFork = chainActive.FindFork(pindexMostWork);
// Disconnect active blocks which are no longer in the best chain.
bool fBlocksDisconnected = false;
while (chainActive.Tip() && chainActive.Tip() != pindexFork) {
if (!DisconnectTip(state, chainparams))
return false;
fBlocksDisconnected = true;
}
// Build list of new blocks to connect.
std::vector<CBlockIndex*> vpindexToConnect;
bool fContinue = true;
int nHeight = pindexFork ? pindexFork->nHeight : -1;
while (fContinue && nHeight != pindexMostWork->nHeight) {
// Don't iterate the entire list of potential improvements toward the best tip, as we likely only need
// a few blocks along the way.
int nTargetHeight = std::min(nHeight + 32, pindexMostWork->nHeight);
vpindexToConnect.clear();
vpindexToConnect.reserve(nTargetHeight - nHeight);
CBlockIndex *pindexIter = pindexMostWork->GetAncestor(nTargetHeight);
while (pindexIter && pindexIter->nHeight != nHeight) {
vpindexToConnect.push_back(pindexIter);
pindexIter = pindexIter->pprev;
}
nHeight = nTargetHeight;
// Connect new blocks.
BOOST_REVERSE_FOREACH(CBlockIndex *pindexConnect, vpindexToConnect) {
if (!ConnectTip(state, chainparams, pindexConnect, pindexConnect == pindexMostWork ? pblock : NULL)) {
if (state.IsInvalid()) {
// The block violates a consensus rule.
if (!state.CorruptionPossible())
InvalidChainFound(vpindexToConnect.back());
state = CValidationState();
fInvalidFound = true;
fContinue = false;
break;
} else {
// A system error occurred (disk space, database error, ...).
return false;
}
} else {
PruneBlockIndexCandidates();
if (!pindexOldTip || chainActive.Tip()->nChainWork > pindexOldTip->nChainWork) {
// We're in a better position than we were. Return temporarily to release the lock.
fContinue = false;
break;
}
}
}
}
if (fBlocksDisconnected) {
mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS);
LimitMempoolSize(mempool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
}
mempool.check(pcoinsTip);
// Callbacks/notifications for a new best chain.
if (fInvalidFound)
CheckForkWarningConditionsOnNewFork(vpindexToConnect.back());
else
CheckForkWarningConditions();
return true;
}
static void NotifyHeaderTip() {
bool fNotify = false;
bool fInitialBlockDownload = false;
static CBlockIndex* pindexHeaderOld = NULL;
CBlockIndex* pindexHeader = NULL;
{
LOCK(cs_main);
if (!setBlockIndexCandidates.empty()) {
pindexHeader = *setBlockIndexCandidates.rbegin();
}
if (pindexHeader != pindexHeaderOld) {
fNotify = true;
fInitialBlockDownload = IsInitialBlockDownload();
pindexHeaderOld = pindexHeader;
}
}
// Send block tip changed notifications without cs_main
if (fNotify) {
uiInterface.NotifyHeaderTip(fInitialBlockDownload, pindexHeader);
}
}
/**
* Make the best chain active, in multiple steps. The result is either failure
* or an activated best chain. pblock is either NULL or a pointer to a block
* that is already loaded (to avoid loading it again from disk).
*/
bool ActivateBestChain(CValidationState &state, const CChainParams& chainparams, const CBlock *pblock) {
CBlockIndex *pindexMostWork = NULL;
CBlockIndex *pindexNewTip = NULL;
do {
boost::this_thread::interruption_point();
if (ShutdownRequested())
break;
const CBlockIndex *pindexFork;
bool fInitialDownload;
int nNewHeight;
{
LOCK(cs_main);
CBlockIndex *pindexOldTip = chainActive.Tip();
if (pindexMostWork == NULL) {
pindexMostWork = FindMostWorkChain();
}
// Whether we have anything to do at all.
if (pindexMostWork == NULL || pindexMostWork == chainActive.Tip())
return true;
bool fInvalidFound = false;
if (!ActivateBestChainStep(state, chainparams, pindexMostWork, pblock && pblock->GetHash() == pindexMostWork->GetBlockHash() ? pblock : NULL, fInvalidFound))
return false;
if (fInvalidFound) {
// Wipe cache, we may need another branch now.
pindexMostWork = NULL;
}
pindexNewTip = chainActive.Tip();
pindexFork = chainActive.FindFork(pindexOldTip);
fInitialDownload = IsInitialBlockDownload();
nNewHeight = chainActive.Height();
}
// When we reach this point, we switched to a new tip (stored in pindexNewTip).
// Notifications/callbacks that can run without cs_main
// Always notify the UI if a new block tip was connected
if (pindexFork != pindexNewTip) {
uiInterface.NotifyBlockTip(fInitialDownload, pindexNewTip);
if (!fInitialDownload) {
// Find the hashes of all blocks that weren't previously in the best chain.
std::vector<uint256> vHashes;
CBlockIndex *pindexToAnnounce = pindexNewTip;
while (pindexToAnnounce != pindexFork) {
vHashes.push_back(pindexToAnnounce->GetBlockHash());
pindexToAnnounce = pindexToAnnounce->pprev;
if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
// Limit announcements in case of a huge reorganization.
// Rely on the peer's synchronization mechanism in that case.
break;
}
}
// Relay inventory, but don't relay old inventory during initial block download.
int nBlockEstimate = 0;
if (fCheckpointsEnabled)
nBlockEstimate = Checkpoints::GetTotalBlocksEstimate(chainparams.Checkpoints());
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes) {
if (nNewHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate)) {
BOOST_REVERSE_FOREACH(const uint256& hash, vHashes) {
pnode->PushBlockHash(hash);
}
}
}
}
// Notify external listeners about the new tip.
if (!vHashes.empty()) {
GetMainSignals().UpdatedBlockTip(pindexNewTip);
}
}
}
} while (pindexNewTip != pindexMostWork);
CheckBlockIndex(chainparams.GetConsensus());
// Write changes periodically to disk, after relay.
if (!FlushStateToDisk(state, FLUSH_STATE_PERIODIC)) {
return false;
}
return true;
}
bool InvalidateBlock(CValidationState& state, const CChainParams& chainparams, CBlockIndex *pindex)
{
AssertLockHeld(cs_main);
// Mark the block itself as invalid.
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
setBlockIndexCandidates.erase(pindex);
while (chainActive.Contains(pindex)) {
CBlockIndex *pindexWalk = chainActive.Tip();
pindexWalk->nStatus |= BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(pindexWalk);
setBlockIndexCandidates.erase(pindexWalk);
// ActivateBestChain considers blocks already in chainActive
// unconditionally valid already, so force disconnect away from it.
if (!DisconnectTip(state, chainparams)) {
mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS);
return false;
}
}
LimitMempoolSize(mempool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
// The resulting new best tip may not be in setBlockIndexCandidates anymore, so
// add it again.
BlockMap::iterator it = mapBlockIndex.begin();
while (it != mapBlockIndex.end()) {
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->nChainTx && !setBlockIndexCandidates.value_comp()(it->second, chainActive.Tip())) {
setBlockIndexCandidates.insert(it->second);
}
it++;
}
InvalidChainFound(pindex);
mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS);
return true;
}
bool ResetBlockFailureFlags(CBlockIndex *pindex) {
AssertLockHeld(cs_main);
int nHeight = pindex->nHeight;
// Remove the invalidity flag from this block and all its descendants.
BlockMap::iterator it = mapBlockIndex.begin();
while (it != mapBlockIndex.end()) {
if (!it->second->IsValid() && it->second->GetAncestor(nHeight) == pindex) {
it->second->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(it->second);
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->nChainTx && setBlockIndexCandidates.value_comp()(chainActive.Tip(), it->second)) {
setBlockIndexCandidates.insert(it->second);
}
if (it->second == pindexBestInvalid) {
// Reset invalid block marker if it was pointing to one of those.
pindexBestInvalid = NULL;
}
}
it++;
}
// Remove the invalidity flag from all ancestors too.
while (pindex != NULL) {
if (pindex->nStatus & BLOCK_FAILED_MASK) {
pindex->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(pindex);
}
pindex = pindex->pprev;
}
return true;
}
CBlockIndex* AddToBlockIndex(const CBlockHeader& block)
{
// Check for duplicate
uint256 hash = block.GetHash();
BlockMap::iterator it = mapBlockIndex.find(hash);
if (it != mapBlockIndex.end())
return it->second;
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(block);
assert(pindexNew);
// We assign the sequence id to blocks only when the full data is available,
// to avoid miners withholding blocks but broadcasting headers, to get a
// competitive advantage.
pindexNew->nSequenceId = 0;
BlockMap::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
BlockMap::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock);
if (miPrev != mapBlockIndex.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
pindexNew->BuildSkip();
}
pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew);
pindexNew->RaiseValidity(BLOCK_VALID_TREE);
if (pindexBestHeader == NULL || pindexBestHeader->nChainWork < pindexNew->nChainWork)
pindexBestHeader = pindexNew;
setDirtyBlockIndex.insert(pindexNew);
return pindexNew;
}
/** Mark a block as having its data received and checked (up to BLOCK_VALID_TRANSACTIONS). */
bool ReceivedBlockTransactions(const CBlock &block, CValidationState& state, CBlockIndex *pindexNew, const CDiskBlockPos& pos)
{
pindexNew->nTx = block.vtx.size();
pindexNew->nChainTx = 0;
pindexNew->nFile = pos.nFile;
pindexNew->nDataPos = pos.nPos;
pindexNew->nUndoPos = 0;
pindexNew->nStatus |= BLOCK_HAVE_DATA;
pindexNew->RaiseValidity(BLOCK_VALID_TRANSACTIONS);
setDirtyBlockIndex.insert(pindexNew);
if (pindexNew->pprev == NULL || pindexNew->pprev->nChainTx) {
// If pindexNew is the genesis block or all parents are BLOCK_VALID_TRANSACTIONS.
deque<CBlockIndex*> queue;
queue.push_back(pindexNew);
// Recursively process any descendant blocks that now may be eligible to be connected.
while (!queue.empty()) {
CBlockIndex *pindex = queue.front();
queue.pop_front();
pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx;
{
LOCK(cs_nBlockSequenceId);
pindex->nSequenceId = nBlockSequenceId++;
}
if (chainActive.Tip() == NULL || !setBlockIndexCandidates.value_comp()(pindex, chainActive.Tip())) {
setBlockIndexCandidates.insert(pindex);
}
std::pair<std::multimap<CBlockIndex*, CBlockIndex*>::iterator, std::multimap<CBlockIndex*, CBlockIndex*>::iterator> range = mapBlocksUnlinked.equal_range(pindex);
while (range.first != range.second) {
std::multimap<CBlockIndex*, CBlockIndex*>::iterator it = range.first;
queue.push_back(it->second);
range.first++;
mapBlocksUnlinked.erase(it);
}
}
} else {
if (pindexNew->pprev && pindexNew->pprev->IsValid(BLOCK_VALID_TREE)) {
mapBlocksUnlinked.insert(std::make_pair(pindexNew->pprev, pindexNew));
}
}
return true;
}
bool FindBlockPos(CValidationState &state, CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64_t nTime, bool fKnown = false)
{
LOCK(cs_LastBlockFile);
unsigned int nFile = fKnown ? pos.nFile : nLastBlockFile;
if (vinfoBlockFile.size() <= nFile) {
vinfoBlockFile.resize(nFile + 1);
}
if (!fKnown) {
while (vinfoBlockFile[nFile].nSize + nAddSize >= MAX_BLOCKFILE_SIZE) {
nFile++;
if (vinfoBlockFile.size() <= nFile) {
vinfoBlockFile.resize(nFile + 1);
}
}
pos.nFile = nFile;
pos.nPos = vinfoBlockFile[nFile].nSize;
}
if ((int)nFile != nLastBlockFile) {
if (!fKnown) {
LogPrintf("Leaving block file %i: %s\n", nLastBlockFile, vinfoBlockFile[nLastBlockFile].ToString());
}
FlushBlockFile(!fKnown);
nLastBlockFile = nFile;
}
vinfoBlockFile[nFile].AddBlock(nHeight, nTime);
if (fKnown)
vinfoBlockFile[nFile].nSize = std::max(pos.nPos + nAddSize, vinfoBlockFile[nFile].nSize);
else
vinfoBlockFile[nFile].nSize += nAddSize;
if (!fKnown) {
unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
unsigned int nNewChunks = (vinfoBlockFile[nFile].nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (fPruneMode)
fCheckForPruning = true;
if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenBlockFile(pos);
if (file) {
LogPrintf("Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return state.Error("out of disk space");
}
}
setDirtyFileInfo.insert(nFile);
return true;
}
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize)
{
pos.nFile = nFile;
LOCK(cs_LastBlockFile);
unsigned int nNewSize;
pos.nPos = vinfoBlockFile[nFile].nUndoSize;
nNewSize = vinfoBlockFile[nFile].nUndoSize += nAddSize;
setDirtyFileInfo.insert(nFile);
unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (fPruneMode)
fCheckForPruning = true;
if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenUndoFile(pos);
if (file) {
LogPrintf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return state.Error("out of disk space");
}
return true;
}
bool CheckBlockHeader(const CBlockHeader& block, CValidationState& state, const Consensus::Params& consensusParams, bool fCheckPOW)
{
// Check proof of work matches claimed amount
if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits, consensusParams))
return state.DoS(50, false, REJECT_INVALID, "high-hash", false, "proof of work failed");
return true;
}
bool CheckBlock(const CBlock& block, CValidationState& state, const Consensus::Params& consensusParams, bool fCheckPOW, bool fCheckMerkleRoot)
{
// These are checks that are independent of context.
if (block.fChecked)
return true;
// Check that the header is valid (particularly PoW). This is mostly
// redundant with the call in AcceptBlockHeader.
if (!CheckBlockHeader(block, state, consensusParams, fCheckPOW))
return false;
// Check the merkle root.
if (fCheckMerkleRoot) {
bool mutated;
uint256 hashMerkleRoot2 = BlockMerkleRoot(block, &mutated);
if (block.hashMerkleRoot != hashMerkleRoot2)
return state.DoS(100, false, REJECT_INVALID, "bad-txnmrklroot", true, "hashMerkleRoot mismatch");
// Check for merkle tree malleability (CVE-2012-2459): repeating sequences
// of transactions in a block without affecting the merkle root of a block,
// while still invalidating it.
if (mutated)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-duplicate", true, "duplicate transaction");
}
// All potential-corruption validation must be done before we do any
// transaction validation, as otherwise we may mark the header as invalid
// because we receive the wrong transactions for it.
// Size limits
if (block.vtx.empty() || block.vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return state.DoS(100, false, REJECT_INVALID, "bad-blk-length", false, "size limits failed");
// First transaction must be coinbase, the rest must not be
if (block.vtx.empty() || !block.vtx[0].IsCoinBase())
return state.DoS(100, false, REJECT_INVALID, "bad-cb-missing", false, "first tx is not coinbase");
for (unsigned int i = 1; i < block.vtx.size(); i++)
if (block.vtx[i].IsCoinBase())
return state.DoS(100, false, REJECT_INVALID, "bad-cb-multiple", false, "more than one coinbase");
// Check transactions
BOOST_FOREACH(const CTransaction& tx, block.vtx)
if (!CheckTransaction(tx, state))
return state.Invalid(false, state.GetRejectCode(), state.GetRejectReason(),
strprintf("Transaction check failed (tx hash %s) %s", tx.GetHash().ToString(), state.GetDebugMessage()));
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTransaction& tx, block.vtx)
{
nSigOps += GetLegacySigOpCount(tx);
}
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, false, REJECT_INVALID, "bad-blk-sigops", false, "out-of-bounds SigOpCount");
if (fCheckPOW && fCheckMerkleRoot)
block.fChecked = true;
return true;
}
static bool CheckIndexAgainstCheckpoint(const CBlockIndex* pindexPrev, CValidationState& state, const CChainParams& chainparams, const uint256& hash)
{
if (*pindexPrev->phashBlock == chainparams.GetConsensus().hashGenesisBlock)
return true;
int nHeight = pindexPrev->nHeight+1;
// Don't accept any forks from the main chain prior to last checkpoint
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(chainparams.Checkpoints());
if (pcheckpoint && nHeight < pcheckpoint->nHeight)
return state.DoS(100, error("%s: forked chain older than last checkpoint (height %d)", __func__, nHeight));
return true;
}
bool ContextualCheckBlockHeader(const CBlockHeader& block, CValidationState& state, const Consensus::Params& consensusParams, CBlockIndex * const pindexPrev, int64_t nAdjustedTime)
{
// Check proof of work
if (block.nBits != GetNextWorkRequired(pindexPrev, &block, consensusParams))
return state.DoS(100, false, REJECT_INVALID, "bad-diffbits", false, "incorrect proof of work");
// Check timestamp against prev
if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast())
return state.Invalid(false, REJECT_INVALID, "time-too-old", "block's timestamp is too early");
// Check timestamp
if (block.GetBlockTime() > nAdjustedTime + 2 * 60 * 60)
return state.Invalid(false, REJECT_INVALID, "time-too-new", "block timestamp too far in the future");
// Reject outdated version blocks when 95% (75% on testnet) of the network has upgraded:
for (int32_t version = 2; version < 5; ++version) // check for version 2, 3 and 4 upgrades
if (block.nVersion < version && IsSuperMajority(version, pindexPrev, consensusParams.nMajorityRejectBlockOutdated, consensusParams))
return state.Invalid(false, REJECT_OBSOLETE, strprintf("bad-version(0x%08x)", version - 1),
strprintf("rejected nVersion=0x%08x block", version - 1));
return true;
}
bool ContextualCheckBlock(const CBlock& block, CValidationState& state, CBlockIndex * const pindexPrev)
{
const int nHeight = pindexPrev == NULL ? 0 : pindexPrev->nHeight + 1;
const Consensus::Params& consensusParams = Params().GetConsensus();
// Start enforcing BIP113 (Median Time Past) using versionbits logic.
int nLockTimeFlags = 0;
if (VersionBitsState(pindexPrev, consensusParams, Consensus::DEPLOYMENT_CSV, versionbitscache) == THRESHOLD_ACTIVE) {
nLockTimeFlags |= LOCKTIME_MEDIAN_TIME_PAST;
}
int64_t nLockTimeCutoff = (nLockTimeFlags & LOCKTIME_MEDIAN_TIME_PAST)
? pindexPrev->GetMedianTimePast()
: block.GetBlockTime();
// Check that all transactions are finalized
BOOST_FOREACH(const CTransaction& tx, block.vtx) {
if (!IsFinalTx(tx, nHeight, nLockTimeCutoff)) {
return state.DoS(10, false, REJECT_INVALID, "bad-txns-nonfinal", false, "non-final transaction");
}
}
// Enforce block.nVersion=2 rule that the coinbase starts with serialized block height
// if 750 of the last 1,000 blocks are version 2 or greater (51/100 if testnet):
if (block.nVersion >= 2 && IsSuperMajority(2, pindexPrev, consensusParams.nMajorityEnforceBlockUpgrade, consensusParams))
{
CScript expect = CScript() << nHeight;
if (block.vtx[0].vin[0].scriptSig.size() < expect.size() ||
!std::equal(expect.begin(), expect.end(), block.vtx[0].vin[0].scriptSig.begin())) {
return state.DoS(100, false, REJECT_INVALID, "bad-cb-height", false, "block height mismatch in coinbase");
}
}
return true;
}
static bool AcceptBlockHeader(const CBlockHeader& block, CValidationState& state, const CChainParams& chainparams, CBlockIndex** ppindex=NULL)
{
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = block.GetHash();
BlockMap::iterator miSelf = mapBlockIndex.find(hash);
CBlockIndex *pindex = NULL;
if (hash != chainparams.GetConsensus().hashGenesisBlock) {
if (miSelf != mapBlockIndex.end()) {
// Block header is already known.
pindex = miSelf->second;
if (ppindex)
*ppindex = pindex;
if (pindex->nStatus & BLOCK_FAILED_MASK)
return state.Invalid(error("%s: block %s is marked invalid", __func__, hash.ToString()), 0, "duplicate");
return true;
}
if (!CheckBlockHeader(block, state, chainparams.GetConsensus()))
return error("%s: Consensus::CheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state));
// Get prev block index
CBlockIndex* pindexPrev = NULL;
BlockMap::iterator mi = mapBlockIndex.find(block.hashPrevBlock);
if (mi == mapBlockIndex.end())
return state.DoS(10, error("%s: prev block not found", __func__), 0, "bad-prevblk");
pindexPrev = (*mi).second;
if (pindexPrev->nStatus & BLOCK_FAILED_MASK)
return state.DoS(100, error("%s: prev block invalid", __func__), REJECT_INVALID, "bad-prevblk");
assert(pindexPrev);
if (fCheckpointsEnabled && !CheckIndexAgainstCheckpoint(pindexPrev, state, chainparams, hash))
return error("%s: CheckIndexAgainstCheckpoint(): %s", __func__, state.GetRejectReason().c_str());
if (!ContextualCheckBlockHeader(block, state, chainparams.GetConsensus(), pindexPrev, GetAdjustedTime()))
return error("%s: Consensus::ContextualCheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state));
}
if (pindex == NULL)
pindex = AddToBlockIndex(block);
if (ppindex)
*ppindex = pindex;
return true;
}
/** Store block on disk. If dbp is non-NULL, the file is known to already reside on disk */
static bool AcceptBlock(const CBlock& block, CValidationState& state, const CChainParams& chainparams, CBlockIndex** ppindex, bool fRequested, const CDiskBlockPos* dbp, bool* fNewBlock)
{
if (fNewBlock) *fNewBlock = false;
AssertLockHeld(cs_main);
CBlockIndex *pindexDummy = NULL;
CBlockIndex *&pindex = ppindex ? *ppindex : pindexDummy;
if (!AcceptBlockHeader(block, state, chainparams, &pindex))
return false;
// Try to process all requested blocks that we don't have, but only
// process an unrequested block if it's new and has enough work to
// advance our tip, and isn't too many blocks ahead.
bool fAlreadyHave = pindex->nStatus & BLOCK_HAVE_DATA;
bool fHasMoreWork = (chainActive.Tip() ? pindex->nChainWork > chainActive.Tip()->nChainWork : true);
// Blocks that are too out-of-order needlessly limit the effectiveness of
// pruning, because pruning will not delete block files that contain any
// blocks which are too close in height to the tip. Apply this test
// regardless of whether pruning is enabled; it should generally be safe to
// not process unrequested blocks.
bool fTooFarAhead = (pindex->nHeight > int(chainActive.Height() + MIN_BLOCKS_TO_KEEP));
// TODO: deal better with return value and error conditions for duplicate
// and unrequested blocks.
if (fAlreadyHave) return true;
if (!fRequested) { // If we didn't ask for it:
if (pindex->nTx != 0) return true; // This is a previously-processed block that was pruned
if (!fHasMoreWork) return true; // Don't process less-work chains
if (fTooFarAhead) return true; // Block height is too high
}
if (fNewBlock) *fNewBlock = true;
if ((!CheckBlock(block, state, chainparams.GetConsensus(), GetAdjustedTime())) || !ContextualCheckBlock(block, state, pindex->pprev)) {
if (state.IsInvalid() && !state.CorruptionPossible()) {
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
}
return error("%s: %s", __func__, FormatStateMessage(state));
}
int nHeight = pindex->nHeight;
// Write block to history file
try {
unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
if (dbp != NULL)
blockPos = *dbp;
if (!FindBlockPos(state, blockPos, nBlockSize+8, nHeight, block.GetBlockTime(), dbp != NULL))
return error("AcceptBlock(): FindBlockPos failed");
if (dbp == NULL)
if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart()))
AbortNode(state, "Failed to write block");
if (!ReceivedBlockTransactions(block, state, pindex, blockPos))
return error("AcceptBlock(): ReceivedBlockTransactions failed");
} catch (const std::runtime_error& e) {
return AbortNode(state, std::string("System error: ") + e.what());
}
if (fCheckForPruning)
FlushStateToDisk(state, FLUSH_STATE_NONE); // we just allocated more disk space for block files
return true;
}
static bool IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned nRequired, const Consensus::Params& consensusParams)
{
unsigned int nFound = 0;
for (int i = 0; i < consensusParams.nMajorityWindow && nFound < nRequired && pstart != NULL; i++)
{
if (pstart->nVersion >= minVersion)
++nFound;
pstart = pstart->pprev;
}
return (nFound >= nRequired);
}
bool ProcessNewBlock(CValidationState& state, const CChainParams& chainparams, CNode* pfrom, const CBlock* pblock, bool fForceProcessing, const CDiskBlockPos* dbp)
{
{
LOCK(cs_main);
bool fRequested = MarkBlockAsReceived(pblock->GetHash());
fRequested |= fForceProcessing;
// Store to disk
CBlockIndex *pindex = NULL;
bool fNewBlock = false;
bool ret = AcceptBlock(*pblock, state, chainparams, &pindex, fRequested, dbp, &fNewBlock);
if (pindex && pfrom) {
mapBlockSource[pindex->GetBlockHash()] = pfrom->GetId();
if (fNewBlock) pfrom->nLastBlockTime = GetTime();
}
CheckBlockIndex(chainparams.GetConsensus());
if (!ret)
return error("%s: AcceptBlock FAILED", __func__);
}
NotifyHeaderTip();
if (!ActivateBestChain(state, chainparams, pblock))
return error("%s: ActivateBestChain failed", __func__);
return true;
}
bool TestBlockValidity(CValidationState& state, const CChainParams& chainparams, const CBlock& block, CBlockIndex* pindexPrev, bool fCheckPOW, bool fCheckMerkleRoot)
{
AssertLockHeld(cs_main);
assert(pindexPrev && pindexPrev == chainActive.Tip());
if (fCheckpointsEnabled && !CheckIndexAgainstCheckpoint(pindexPrev, state, chainparams, block.GetHash()))
return error("%s: CheckIndexAgainstCheckpoint(): %s", __func__, state.GetRejectReason().c_str());
CCoinsViewCache viewNew(pcoinsTip);
CBlockIndex indexDummy(block);
indexDummy.pprev = pindexPrev;
indexDummy.nHeight = pindexPrev->nHeight + 1;
// NOTE: CheckBlockHeader is called by CheckBlock
if (!ContextualCheckBlockHeader(block, state, chainparams.GetConsensus(), pindexPrev, GetAdjustedTime()))
return error("%s: Consensus::ContextualCheckBlockHeader: %s", __func__, FormatStateMessage(state));
if (!CheckBlock(block, state, chainparams.GetConsensus(), fCheckPOW, fCheckMerkleRoot))
return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state));
if (!ContextualCheckBlock(block, state, pindexPrev))
return error("%s: Consensus::ContextualCheckBlock: %s", __func__, FormatStateMessage(state));
if (!ConnectBlock(block, state, &indexDummy, viewNew, chainparams, true))
return false;
assert(state.IsValid());
return true;
}
/**
* BLOCK PRUNING CODE
*/
/* Calculate the amount of disk space the block & undo files currently use */
uint64_t CalculateCurrentUsage()
{
uint64_t retval = 0;
BOOST_FOREACH(const CBlockFileInfo &file, vinfoBlockFile) {
retval += file.nSize + file.nUndoSize;
}
return retval;
}
/* Prune a block file (modify associated database entries)*/
void PruneOneBlockFile(const int fileNumber)
{
for (BlockMap::iterator it = mapBlockIndex.begin(); it != mapBlockIndex.end(); ++it) {
CBlockIndex* pindex = it->second;
if (pindex->nFile == fileNumber) {
pindex->nStatus &= ~BLOCK_HAVE_DATA;
pindex->nStatus &= ~BLOCK_HAVE_UNDO;
pindex->nFile = 0;
pindex->nDataPos = 0;
pindex->nUndoPos = 0;
setDirtyBlockIndex.insert(pindex);
// Prune from mapBlocksUnlinked -- any block we prune would have
// to be downloaded again in order to consider its chain, at which
// point it would be considered as a candidate for
// mapBlocksUnlinked or setBlockIndexCandidates.
std::pair<std::multimap<CBlockIndex*, CBlockIndex*>::iterator, std::multimap<CBlockIndex*, CBlockIndex*>::iterator> range = mapBlocksUnlinked.equal_range(pindex->pprev);
while (range.first != range.second) {
std::multimap<CBlockIndex *, CBlockIndex *>::iterator it = range.first;
range.first++;
if (it->second == pindex) {
mapBlocksUnlinked.erase(it);
}
}
}
}
vinfoBlockFile[fileNumber].SetNull();
setDirtyFileInfo.insert(fileNumber);
}
void UnlinkPrunedFiles(std::set<int>& setFilesToPrune)
{
for (set<int>::iterator it = setFilesToPrune.begin(); it != setFilesToPrune.end(); ++it) {
CDiskBlockPos pos(*it, 0);
boost::filesystem::remove(GetBlockPosFilename(pos, "blk"));
boost::filesystem::remove(GetBlockPosFilename(pos, "rev"));
LogPrintf("Prune: %s deleted blk/rev (%05u)\n", __func__, *it);
}
}
/* Calculate the block/rev files that should be deleted to remain under target*/
void FindFilesToPrune(std::set<int>& setFilesToPrune, uint64_t nPruneAfterHeight)
{
LOCK2(cs_main, cs_LastBlockFile);
if (chainActive.Tip() == NULL || nPruneTarget == 0) {
return;
}
if ((uint64_t)chainActive.Tip()->nHeight <= nPruneAfterHeight) {
return;
}
unsigned int nLastBlockWeCanPrune = chainActive.Tip()->nHeight - MIN_BLOCKS_TO_KEEP;
uint64_t nCurrentUsage = CalculateCurrentUsage();
// We don't check to prune until after we've allocated new space for files
// So we should leave a buffer under our target to account for another allocation
// before the next pruning.
uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE;
uint64_t nBytesToPrune;
int count=0;
if (nCurrentUsage + nBuffer >= nPruneTarget) {
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
nBytesToPrune = vinfoBlockFile[fileNumber].nSize + vinfoBlockFile[fileNumber].nUndoSize;
if (vinfoBlockFile[fileNumber].nSize == 0)
continue;
if (nCurrentUsage + nBuffer < nPruneTarget) // are we below our target?
break;
// don't prune files that could have a block within MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning
if (vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune)
continue;
PruneOneBlockFile(fileNumber);
// Queue up the files for removal
setFilesToPrune.insert(fileNumber);
nCurrentUsage -= nBytesToPrune;
count++;
}
}
LogPrint("prune", "Prune: target=%dMiB actual=%dMiB diff=%dMiB max_prune_height=%d removed %d blk/rev pairs\n",
nPruneTarget/1024/1024, nCurrentUsage/1024/1024,
((int64_t)nPruneTarget - (int64_t)nCurrentUsage)/1024/1024,
nLastBlockWeCanPrune, count);
}
bool CheckDiskSpace(uint64_t nAdditionalBytes)
{
uint64_t nFreeBytesAvailable = boost::filesystem::space(GetDataDir()).available;
// Check for nMinDiskSpace bytes (currently 50MB)
if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes)
return AbortNode("Disk space is low!", _("Error: Disk space is low!"));
return true;
}
FILE* OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly)
{
if (pos.IsNull())
return NULL;
boost::filesystem::path path = GetBlockPosFilename(pos, prefix);
boost::filesystem::create_directories(path.parent_path());
FILE* file = fopen(path.string().c_str(), "rb+");
if (!file && !fReadOnly)
file = fopen(path.string().c_str(), "wb+");
if (!file) {
LogPrintf("Unable to open file %s\n", path.string());
return NULL;
}
if (pos.nPos) {
if (fseek(file, pos.nPos, SEEK_SET)) {
LogPrintf("Unable to seek to position %u of %s\n", pos.nPos, path.string());
fclose(file);
return NULL;
}
}
return file;
}
FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "blk", fReadOnly);
}
FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "rev", fReadOnly);
}
boost::filesystem::path GetBlockPosFilename(const CDiskBlockPos &pos, const char *prefix)
{
return GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile);
}
CBlockIndex * InsertBlockIndex(uint256 hash)
{
if (hash.IsNull())
return NULL;
// Return existing
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
return (*mi).second;
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
if (!pindexNew)
throw runtime_error("LoadBlockIndex(): new CBlockIndex failed");
mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool static LoadBlockIndexDB()
{
const CChainParams& chainparams = Params();
if (!pblocktree->LoadBlockIndexGuts(InsertBlockIndex))
return false;
boost::this_thread::interruption_point();
// Calculate nChainWork
vector<pair<int, CBlockIndex*> > vSortedByHeight;
vSortedByHeight.reserve(mapBlockIndex.size());
BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex)
{
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
BOOST_FOREACH(const PAIRTYPE(int, CBlockIndex*)& item, vSortedByHeight)
{
CBlockIndex* pindex = item.second;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex);
// We can link the chain of blocks for which we've received transactions at some point.
// Pruned nodes may have deleted the block.
if (pindex->nTx > 0) {
if (pindex->pprev) {
if (pindex->pprev->nChainTx) {
pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx;
} else {
pindex->nChainTx = 0;
mapBlocksUnlinked.insert(std::make_pair(pindex->pprev, pindex));
}
} else {
pindex->nChainTx = pindex->nTx;
}
}
if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && (pindex->nChainTx || pindex->pprev == NULL))
setBlockIndexCandidates.insert(pindex);
if (pindex->nStatus & BLOCK_FAILED_MASK && (!pindexBestInvalid || pindex->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindex;
if (pindex->pprev)
pindex->BuildSkip();
if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == NULL || CBlockIndexWorkComparator()(pindexBestHeader, pindex)))
pindexBestHeader = pindex;
}
// Load block file info
pblocktree->ReadLastBlockFile(nLastBlockFile);
vinfoBlockFile.resize(nLastBlockFile + 1);
LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile);
for (int nFile = 0; nFile <= nLastBlockFile; nFile++) {
pblocktree->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]);
}
LogPrintf("%s: last block file info: %s\n", __func__, vinfoBlockFile[nLastBlockFile].ToString());
for (int nFile = nLastBlockFile + 1; true; nFile++) {
CBlockFileInfo info;
if (pblocktree->ReadBlockFileInfo(nFile, info)) {
vinfoBlockFile.push_back(info);
} else {
break;
}
}
// Check presence of blk files
LogPrintf("Checking all blk files are present...\n");
set<int> setBlkDataFiles;
BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex)
{
CBlockIndex* pindex = item.second;
if (pindex->nStatus & BLOCK_HAVE_DATA) {
setBlkDataFiles.insert(pindex->nFile);
}
}
for (std::set<int>::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++)
{
CDiskBlockPos pos(*it, 0);
if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) {
return false;
}
}
// Check whether we have ever pruned block & undo files
pblocktree->ReadFlag("prunedblockfiles", fHavePruned);
if (fHavePruned)
LogPrintf("LoadBlockIndexDB(): Block files have previously been pruned\n");
// Check whether we need to continue reindexing
bool fReindexing = false;
pblocktree->ReadReindexing(fReindexing);
fReindex |= fReindexing;
// Check whether we have a transaction index
pblocktree->ReadFlag("txindex", fTxIndex);
LogPrintf("%s: transaction index %s\n", __func__, fTxIndex ? "enabled" : "disabled");
// Load pointer to end of best chain
BlockMap::iterator it = mapBlockIndex.find(pcoinsTip->GetBestBlock());
if (it == mapBlockIndex.end())
return true;
chainActive.SetTip(it->second);
PruneBlockIndexCandidates();
LogPrintf("%s: hashBestChain=%s height=%d date=%s progress=%f\n", __func__,
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()),
Checkpoints::GuessVerificationProgress(chainparams.Checkpoints(), chainActive.Tip()));
return true;
}
CVerifyDB::CVerifyDB()
{
uiInterface.ShowProgress(_("Verifying blocks..."), 0);
}
CVerifyDB::~CVerifyDB()
{
uiInterface.ShowProgress("", 100);
}
bool CVerifyDB::VerifyDB(const CChainParams& chainparams, CCoinsView *coinsview, int nCheckLevel, int nCheckDepth)
{
LOCK(cs_main);
if (chainActive.Tip() == NULL || chainActive.Tip()->pprev == NULL)
return true;
// Verify blocks in the best chain
if (nCheckDepth <= 0)
nCheckDepth = 1000000000; // suffices until the year 19000
if (nCheckDepth > chainActive.Height())
nCheckDepth = chainActive.Height();
nCheckLevel = std::max(0, std::min(4, nCheckLevel));
LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel);
CCoinsViewCache coins(coinsview);
CBlockIndex* pindexState = chainActive.Tip();
CBlockIndex* pindexFailure = NULL;
int nGoodTransactions = 0;
CValidationState state;
int reportDone = 0;
LogPrintf("[0%]...");
for (CBlockIndex* pindex = chainActive.Tip(); pindex && pindex->pprev; pindex = pindex->pprev)
{
boost::this_thread::interruption_point();
int percentageDone = std::max(1, std::min(99, (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * (nCheckLevel >= 4 ? 50 : 100))));
if (reportDone < percentageDone/10) {
// report every 10% step
LogPrintf("[%d%%]...", percentageDone);
reportDone = percentageDone/10;
}
uiInterface.ShowProgress(_("Verifying blocks..."), percentageDone);
if (pindex->nHeight < chainActive.Height()-nCheckDepth)
break;
if (fPruneMode && !(pindex->nStatus & BLOCK_HAVE_DATA)) {
// If pruning, only go back as far as we have data.
LogPrintf("VerifyDB(): block verification stopping at height %d (pruning, no data)\n", pindex->nHeight);
break;
}
CBlock block;
// check level 0: read from disk
if (!ReadBlockFromDisk(block, pindex, chainparams.GetConsensus()))
return error("VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
// check level 1: verify block validity
if (nCheckLevel >= 1 && !CheckBlock(block, state, chainparams.GetConsensus()))
return error("%s: *** found bad block at %d, hash=%s (%s)\n", __func__,
pindex->nHeight, pindex->GetBlockHash().ToString(), FormatStateMessage(state));
// check level 2: verify undo validity
if (nCheckLevel >= 2 && pindex) {
CBlockUndo undo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (!pos.IsNull()) {
if (!UndoReadFromDisk(undo, pos, pindex->pprev->GetBlockHash()))
return error("VerifyDB(): *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
// check level 3: check for inconsistencies during memory-only disconnect of tip blocks
if (nCheckLevel >= 3 && pindex == pindexState && (coins.DynamicMemoryUsage() + pcoinsTip->DynamicMemoryUsage()) <= nCoinCacheUsage) {
bool fClean = true;
if (!DisconnectBlock(block, state, pindex, coins, &fClean))
return error("VerifyDB(): *** irrecoverable inconsistency in block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
pindexState = pindex->pprev;
if (!fClean) {
nGoodTransactions = 0;
pindexFailure = pindex;
} else
nGoodTransactions += block.vtx.size();
}
if (ShutdownRequested())
return true;
}
if (pindexFailure)
return error("VerifyDB(): *** coin database inconsistencies found (last %i blocks, %i good transactions before that)\n", chainActive.Height() - pindexFailure->nHeight + 1, nGoodTransactions);
// check level 4: try reconnecting blocks
if (nCheckLevel >= 4) {
CBlockIndex *pindex = pindexState;
while (pindex != chainActive.Tip()) {
boost::this_thread::interruption_point();
uiInterface.ShowProgress(_("Verifying blocks..."), std::max(1, std::min(99, 100 - (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * 50))));
pindex = chainActive.Next(pindex);
CBlock block;
if (!ReadBlockFromDisk(block, pindex, chainparams.GetConsensus()))
return error("VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
if (!ConnectBlock(block, state, pindex, coins, chainparams))
return error("VerifyDB(): *** found unconnectable block at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
LogPrintf("[DONE].\n");
LogPrintf("No coin database inconsistencies in last %i blocks (%i transactions)\n", chainActive.Height() - pindexState->nHeight, nGoodTransactions);
return true;
}
void UnloadBlockIndex()
{
LOCK(cs_main);
setBlockIndexCandidates.clear();
chainActive.SetTip(NULL);
pindexBestInvalid = NULL;
pindexBestHeader = NULL;
mempool.clear();
mapOrphanTransactions.clear();
mapOrphanTransactionsByPrev.clear();
nSyncStarted = 0;
mapBlocksUnlinked.clear();
vinfoBlockFile.clear();
nLastBlockFile = 0;
nBlockSequenceId = 1;
mapBlockSource.clear();
mapBlocksInFlight.clear();
nPreferredDownload = 0;
setDirtyBlockIndex.clear();
setDirtyFileInfo.clear();
mapNodeState.clear();
recentRejects.reset(NULL);
versionbitscache.Clear();
for (int b = 0; b < VERSIONBITS_NUM_BITS; b++) {
warningcache[b].clear();
}
BOOST_FOREACH(BlockMap::value_type& entry, mapBlockIndex) {
delete entry.second;
}
mapBlockIndex.clear();
fHavePruned = false;
}
bool LoadBlockIndex()
{
// Load block index from databases
if (!fReindex && !LoadBlockIndexDB())
return false;
return true;
}
bool InitBlockIndex(const CChainParams& chainparams)
{
LOCK(cs_main);
// Initialize global variables that cannot be constructed at startup.
recentRejects.reset(new CRollingBloomFilter(120000, 0.000001));
// Check whether we're already initialized
if (chainActive.Genesis() != NULL)
return true;
// Use the provided setting for -txindex in the new database
fTxIndex = GetBoolArg("-txindex", DEFAULT_TXINDEX);
pblocktree->WriteFlag("txindex", fTxIndex);
LogPrintf("Initializing databases...\n");
// Only add the genesis block if not reindexing (in which case we reuse the one already on disk)
if (!fReindex) {
try {
CBlock &block = const_cast<CBlock&>(chainparams.GenesisBlock());
// Start new block file
unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
CValidationState state;
if (!FindBlockPos(state, blockPos, nBlockSize+8, 0, block.GetBlockTime()))
return error("LoadBlockIndex(): FindBlockPos failed");
if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart()))
return error("LoadBlockIndex(): writing genesis block to disk failed");
CBlockIndex *pindex = AddToBlockIndex(block);
if (!ReceivedBlockTransactions(block, state, pindex, blockPos))
return error("LoadBlockIndex(): genesis block not accepted");
if (!ActivateBestChain(state, chainparams, &block))
return error("LoadBlockIndex(): genesis block cannot be activated");
// Force a chainstate write so that when we VerifyDB in a moment, it doesn't check stale data
return FlushStateToDisk(state, FLUSH_STATE_ALWAYS);
} catch (const std::runtime_error& e) {
return error("LoadBlockIndex(): failed to initialize block database: %s", e.what());
}
}
return true;
}
bool LoadExternalBlockFile(const CChainParams& chainparams, FILE* fileIn, CDiskBlockPos *dbp)
{
// Map of disk positions for blocks with unknown parent (only used for reindex)
static std::multimap<uint256, CDiskBlockPos> mapBlocksUnknownParent;
int64_t nStart = GetTimeMillis();
int nLoaded = 0;
try {
// This takes over fileIn and calls fclose() on it in the CBufferedFile destructor
CBufferedFile blkdat(fileIn, 2*MAX_BLOCK_SIZE, MAX_BLOCK_SIZE+8, SER_DISK, CLIENT_VERSION);
uint64_t nRewind = blkdat.GetPos();
while (!blkdat.eof()) {
boost::this_thread::interruption_point();
blkdat.SetPos(nRewind);
nRewind++; // start one byte further next time, in case of failure
blkdat.SetLimit(); // remove former limit
unsigned int nSize = 0;
try {
// locate a header
unsigned char buf[MESSAGE_START_SIZE];
blkdat.FindByte(chainparams.MessageStart()[0]);
nRewind = blkdat.GetPos()+1;
blkdat >> FLATDATA(buf);
if (memcmp(buf, chainparams.MessageStart(), MESSAGE_START_SIZE))
continue;
// read size
blkdat >> nSize;
if (nSize < 80 || nSize > MAX_BLOCK_SIZE)
continue;
} catch (const std::exception&) {
// no valid block header found; don't complain
break;
}
try {
// read block
uint64_t nBlockPos = blkdat.GetPos();
if (dbp)
dbp->nPos = nBlockPos;
blkdat.SetLimit(nBlockPos + nSize);
blkdat.SetPos(nBlockPos);
CBlock block;
blkdat >> block;
nRewind = blkdat.GetPos();
// detect out of order blocks, and store them for later
uint256 hash = block.GetHash();
if (hash != chainparams.GetConsensus().hashGenesisBlock && mapBlockIndex.find(block.hashPrevBlock) == mapBlockIndex.end()) {
LogPrint("reindex", "%s: Out of order block %s, parent %s not known\n", __func__, hash.ToString(),
block.hashPrevBlock.ToString());
if (dbp)
mapBlocksUnknownParent.insert(std::make_pair(block.hashPrevBlock, *dbp));
continue;
}
// process in case the block isn't known yet
if (mapBlockIndex.count(hash) == 0 || (mapBlockIndex[hash]->nStatus & BLOCK_HAVE_DATA) == 0) {
LOCK(cs_main);
CValidationState state;
if (AcceptBlock(block, state, chainparams, NULL, true, dbp, NULL))
nLoaded++;
if (state.IsError())
break;
} else if (hash != chainparams.GetConsensus().hashGenesisBlock && mapBlockIndex[hash]->nHeight % 1000 == 0) {
LogPrint("reindex", "Block Import: already had block %s at height %d\n", hash.ToString(), mapBlockIndex[hash]->nHeight);
}
// Activate the genesis block so normal node progress can continue
if (hash == chainparams.GetConsensus().hashGenesisBlock) {
CValidationState state;
if (!ActivateBestChain(state, chainparams)) {
break;
}
}
NotifyHeaderTip();
// Recursively process earlier encountered successors of this block
deque<uint256> queue;
queue.push_back(hash);
while (!queue.empty()) {
uint256 head = queue.front();
queue.pop_front();
std::pair<std::multimap<uint256, CDiskBlockPos>::iterator, std::multimap<uint256, CDiskBlockPos>::iterator> range = mapBlocksUnknownParent.equal_range(head);
while (range.first != range.second) {
std::multimap<uint256, CDiskBlockPos>::iterator it = range.first;
if (ReadBlockFromDisk(block, it->second, chainparams.GetConsensus()))
{
LogPrint("reindex", "%s: Processing out of order child %s of %s\n", __func__, block.GetHash().ToString(),
head.ToString());
LOCK(cs_main);
CValidationState dummy;
if (AcceptBlock(block, dummy, chainparams, NULL, true, &it->second, NULL))
{
nLoaded++;
queue.push_back(block.GetHash());
}
}
range.first++;
mapBlocksUnknownParent.erase(it);
NotifyHeaderTip();
}
}
} catch (const std::exception& e) {
LogPrintf("%s: Deserialize or I/O error - %s\n", __func__, e.what());
}
}
} catch (const std::runtime_error& e) {
AbortNode(std::string("System error: ") + e.what());
}
if (nLoaded > 0)
LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart);
return nLoaded > 0;
}
void static CheckBlockIndex(const Consensus::Params& consensusParams)
{
if (!fCheckBlockIndex) {
return;
}
LOCK(cs_main);
// During a reindex, we read the genesis block and call CheckBlockIndex before ActivateBestChain,
// so we have the genesis block in mapBlockIndex but no active chain. (A few of the tests when
// iterating the block tree require that chainActive has been initialized.)
if (chainActive.Height() < 0) {
assert(mapBlockIndex.size() <= 1);
return;
}
// Build forward-pointing map of the entire block tree.
std::multimap<CBlockIndex*,CBlockIndex*> forward;
for (BlockMap::iterator it = mapBlockIndex.begin(); it != mapBlockIndex.end(); it++) {
forward.insert(std::make_pair(it->second->pprev, it->second));
}
assert(forward.size() == mapBlockIndex.size());
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangeGenesis = forward.equal_range(NULL);
CBlockIndex *pindex = rangeGenesis.first->second;
rangeGenesis.first++;
assert(rangeGenesis.first == rangeGenesis.second); // There is only one index entry with parent NULL.
// Iterate over the entire block tree, using depth-first search.
// Along the way, remember whether there are blocks on the path from genesis
// block being explored which are the first to have certain properties.
size_t nNodes = 0;
int nHeight = 0;
CBlockIndex* pindexFirstInvalid = NULL; // Oldest ancestor of pindex which is invalid.
CBlockIndex* pindexFirstMissing = NULL; // Oldest ancestor of pindex which does not have BLOCK_HAVE_DATA.
CBlockIndex* pindexFirstNeverProcessed = NULL; // Oldest ancestor of pindex for which nTx == 0.
CBlockIndex* pindexFirstNotTreeValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_TREE (regardless of being valid or not).
CBlockIndex* pindexFirstNotTransactionsValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_TRANSACTIONS (regardless of being valid or not).
CBlockIndex* pindexFirstNotChainValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_CHAIN (regardless of being valid or not).
CBlockIndex* pindexFirstNotScriptsValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_SCRIPTS (regardless of being valid or not).
while (pindex != NULL) {
nNodes++;
if (pindexFirstInvalid == NULL && pindex->nStatus & BLOCK_FAILED_VALID) pindexFirstInvalid = pindex;
if (pindexFirstMissing == NULL && !(pindex->nStatus & BLOCK_HAVE_DATA)) pindexFirstMissing = pindex;
if (pindexFirstNeverProcessed == NULL && pindex->nTx == 0) pindexFirstNeverProcessed = pindex;
if (pindex->pprev != NULL && pindexFirstNotTreeValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TREE) pindexFirstNotTreeValid = pindex;
if (pindex->pprev != NULL && pindexFirstNotTransactionsValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TRANSACTIONS) pindexFirstNotTransactionsValid = pindex;
if (pindex->pprev != NULL && pindexFirstNotChainValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_CHAIN) pindexFirstNotChainValid = pindex;
if (pindex->pprev != NULL && pindexFirstNotScriptsValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS) pindexFirstNotScriptsValid = pindex;
// Begin: actual consistency checks.
if (pindex->pprev == NULL) {
// Genesis block checks.
assert(pindex->GetBlockHash() == consensusParams.hashGenesisBlock); // Genesis block's hash must match.
assert(pindex == chainActive.Genesis()); // The current active chain's genesis block must be this block.
}
if (pindex->nChainTx == 0) assert(pindex->nSequenceId == 0); // nSequenceId can't be set for blocks that aren't linked
// VALID_TRANSACTIONS is equivalent to nTx > 0 for all nodes (whether or not pruning has occurred).
// HAVE_DATA is only equivalent to nTx > 0 (or VALID_TRANSACTIONS) if no pruning has occurred.
if (!fHavePruned) {
// If we've never pruned, then HAVE_DATA should be equivalent to nTx > 0
assert(!(pindex->nStatus & BLOCK_HAVE_DATA) == (pindex->nTx == 0));
assert(pindexFirstMissing == pindexFirstNeverProcessed);
} else {
// If we have pruned, then we can only say that HAVE_DATA implies nTx > 0
if (pindex->nStatus & BLOCK_HAVE_DATA) assert(pindex->nTx > 0);
}
if (pindex->nStatus & BLOCK_HAVE_UNDO) assert(pindex->nStatus & BLOCK_HAVE_DATA);
assert(((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TRANSACTIONS) == (pindex->nTx > 0)); // This is pruning-independent.
// All parents having had data (at some point) is equivalent to all parents being VALID_TRANSACTIONS, which is equivalent to nChainTx being set.
assert((pindexFirstNeverProcessed != NULL) == (pindex->nChainTx == 0)); // nChainTx != 0 is used to signal that all parent blocks have been processed (but may have been pruned).
assert((pindexFirstNotTransactionsValid != NULL) == (pindex->nChainTx == 0));
assert(pindex->nHeight == nHeight); // nHeight must be consistent.
assert(pindex->pprev == NULL || pindex->nChainWork >= pindex->pprev->nChainWork); // For every block except the genesis block, the chainwork must be larger than the parent's.
assert(nHeight < 2 || (pindex->pskip && (pindex->pskip->nHeight < nHeight))); // The pskip pointer must point back for all but the first 2 blocks.
assert(pindexFirstNotTreeValid == NULL); // All mapBlockIndex entries must at least be TREE valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TREE) assert(pindexFirstNotTreeValid == NULL); // TREE valid implies all parents are TREE valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_CHAIN) assert(pindexFirstNotChainValid == NULL); // CHAIN valid implies all parents are CHAIN valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_SCRIPTS) assert(pindexFirstNotScriptsValid == NULL); // SCRIPTS valid implies all parents are SCRIPTS valid
if (pindexFirstInvalid == NULL) {
// Checks for not-invalid blocks.
assert((pindex->nStatus & BLOCK_FAILED_MASK) == 0); // The failed mask cannot be set for blocks without invalid parents.
}
if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && pindexFirstNeverProcessed == NULL) {
if (pindexFirstInvalid == NULL) {
// If this block sorts at least as good as the current tip and
// is valid and we have all data for its parents, it must be in
// setBlockIndexCandidates. chainActive.Tip() must also be there
// even if some data has been pruned.
if (pindexFirstMissing == NULL || pindex == chainActive.Tip()) {
assert(setBlockIndexCandidates.count(pindex));
}
// If some parent is missing, then it could be that this block was in
// setBlockIndexCandidates but had to be removed because of the missing data.
// In this case it must be in mapBlocksUnlinked -- see test below.
}
} else { // If this block sorts worse than the current tip or some ancestor's block has never been seen, it cannot be in setBlockIndexCandidates.
assert(setBlockIndexCandidates.count(pindex) == 0);
}
// Check whether this block is in mapBlocksUnlinked.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangeUnlinked = mapBlocksUnlinked.equal_range(pindex->pprev);
bool foundInUnlinked = false;
while (rangeUnlinked.first != rangeUnlinked.second) {
assert(rangeUnlinked.first->first == pindex->pprev);
if (rangeUnlinked.first->second == pindex) {
foundInUnlinked = true;
break;
}
rangeUnlinked.first++;
}
if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed != NULL && pindexFirstInvalid == NULL) {
// If this block has block data available, some parent was never received, and has no invalid parents, it must be in mapBlocksUnlinked.
assert(foundInUnlinked);
}
if (!(pindex->nStatus & BLOCK_HAVE_DATA)) assert(!foundInUnlinked); // Can't be in mapBlocksUnlinked if we don't HAVE_DATA
if (pindexFirstMissing == NULL) assert(!foundInUnlinked); // We aren't missing data for any parent -- cannot be in mapBlocksUnlinked.
if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed == NULL && pindexFirstMissing != NULL) {
// We HAVE_DATA for this block, have received data for all parents at some point, but we're currently missing data for some parent.
assert(fHavePruned); // We must have pruned.
// This block may have entered mapBlocksUnlinked if:
// - it has a descendant that at some point had more work than the
// tip, and
// - we tried switching to that descendant but were missing
// data for some intermediate block between chainActive and the
// tip.
// So if this block is itself better than chainActive.Tip() and it wasn't in
// setBlockIndexCandidates, then it must be in mapBlocksUnlinked.
if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && setBlockIndexCandidates.count(pindex) == 0) {
if (pindexFirstInvalid == NULL) {
assert(foundInUnlinked);
}
}
}
// assert(pindex->GetBlockHash() == pindex->GetBlockHeader().GetHash()); // Perhaps too slow
// End: actual consistency checks.
// Try descending into the first subnode.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> range = forward.equal_range(pindex);
if (range.first != range.second) {
// A subnode was found.
pindex = range.first->second;
nHeight++;
continue;
}
// This is a leaf node.
// Move upwards until we reach a node of which we have not yet visited the last child.
while (pindex) {
// We are going to either move to a parent or a sibling of pindex.
// If pindex was the first with a certain property, unset the corresponding variable.
if (pindex == pindexFirstInvalid) pindexFirstInvalid = NULL;
if (pindex == pindexFirstMissing) pindexFirstMissing = NULL;
if (pindex == pindexFirstNeverProcessed) pindexFirstNeverProcessed = NULL;
if (pindex == pindexFirstNotTreeValid) pindexFirstNotTreeValid = NULL;
if (pindex == pindexFirstNotTransactionsValid) pindexFirstNotTransactionsValid = NULL;
if (pindex == pindexFirstNotChainValid) pindexFirstNotChainValid = NULL;
if (pindex == pindexFirstNotScriptsValid) pindexFirstNotScriptsValid = NULL;
// Find our parent.
CBlockIndex* pindexPar = pindex->pprev;
// Find which child we just visited.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangePar = forward.equal_range(pindexPar);
while (rangePar.first->second != pindex) {
assert(rangePar.first != rangePar.second); // Our parent must have at least the node we're coming from as child.
rangePar.first++;
}
// Proceed to the next one.
rangePar.first++;
if (rangePar.first != rangePar.second) {
// Move to the sibling.
pindex = rangePar.first->second;
break;
} else {
// Move up further.
pindex = pindexPar;
nHeight--;
continue;
}
}
}
// Check that we actually traversed the entire map.
assert(nNodes == forward.size());
}
std::string GetWarnings(const std::string& strFor)
{
string strStatusBar;
string strRPC;
string strGUI;
if (!CLIENT_VERSION_IS_RELEASE) {
strStatusBar = "This is a pre-release test build - use at your own risk - do not use for mining or merchant applications";
strGUI = _("This is a pre-release test build - use at your own risk - do not use for mining or merchant applications");
}
if (GetBoolArg("-testsafemode", DEFAULT_TESTSAFEMODE))
strStatusBar = strRPC = strGUI = "testsafemode enabled";
// Misc warnings like out of disk space and clock is wrong
if (strMiscWarning != "")
{
strStatusBar = strGUI = strMiscWarning;
}
if (fLargeWorkForkFound)
{
strStatusBar = strRPC = "Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues.";
strGUI = _("Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues.");
}
else if (fLargeWorkInvalidChainFound)
{
strStatusBar = strRPC = "Warning: We do not appear to fully agree with our peers! You may need to upgrade, or other nodes may need to upgrade.";
strGUI = _("Warning: We do not appear to fully agree with our peers! You may need to upgrade, or other nodes may need to upgrade.");
}
if (strFor == "gui")
return strGUI;
else if (strFor == "statusbar")
return strStatusBar;
else if (strFor == "rpc")
return strRPC;
assert(!"GetWarnings(): invalid parameter");
return "error";
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
bool static AlreadyHave(const CInv& inv) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
switch (inv.type)
{
case MSG_TX:
{
assert(recentRejects);
if (chainActive.Tip()->GetBlockHash() != hashRecentRejectsChainTip)
{
// If the chain tip has changed previously rejected transactions
// might be now valid, e.g. due to a nLockTime'd tx becoming valid,
// or a double-spend. Reset the rejects filter and give those
// txs a second chance.
hashRecentRejectsChainTip = chainActive.Tip()->GetBlockHash();
recentRejects->reset();
}
// Use pcoinsTip->HaveCoinsInCache as a quick approximation to exclude
// requesting or processing some txs which have already been included in a block
return recentRejects->contains(inv.hash) ||
mempool.exists(inv.hash) ||
mapOrphanTransactions.count(inv.hash) ||
pcoinsTip->HaveCoinsInCache(inv.hash);
}
case MSG_BLOCK:
return mapBlockIndex.count(inv.hash);
}
// Don't know what it is, just say we already got one
return true;
}
void static ProcessGetData(CNode* pfrom, const Consensus::Params& consensusParams)
{
std::deque<CInv>::iterator it = pfrom->vRecvGetData.begin();
vector<CInv> vNotFound;
LOCK(cs_main);
while (it != pfrom->vRecvGetData.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= SendBufferSize())
break;
const CInv &inv = *it;
{
boost::this_thread::interruption_point();
it++;
if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK)
{
bool send = false;
BlockMap::iterator mi = mapBlockIndex.find(inv.hash);
if (mi != mapBlockIndex.end())
{
if (chainActive.Contains(mi->second)) {
send = true;
} else {
static const int nOneMonth = 30 * 24 * 60 * 60;
// To prevent fingerprinting attacks, only send blocks outside of the active
// chain if they are valid, and no more than a month older (both in time, and in
// best equivalent proof of work) than the best header chain we know about.
send = mi->second->IsValid(BLOCK_VALID_SCRIPTS) && (pindexBestHeader != NULL) &&
(pindexBestHeader->GetBlockTime() - mi->second->GetBlockTime() < nOneMonth) &&
(GetBlockProofEquivalentTime(*pindexBestHeader, *mi->second, *pindexBestHeader, consensusParams) < nOneMonth);
if (!send) {
LogPrintf("%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom->GetId());
}
}
}
// disconnect node in case we have reached the outbound limit for serving historical blocks
// never disconnect whitelisted nodes
static const int nOneWeek = 7 * 24 * 60 * 60; // assume > 1 week = historical
if (send && CNode::OutboundTargetReached(true) && ( ((pindexBestHeader != NULL) && (pindexBestHeader->GetBlockTime() - mi->second->GetBlockTime() > nOneWeek)) || inv.type == MSG_FILTERED_BLOCK) && !pfrom->fWhitelisted)
{
LogPrint("net", "historical block serving limit reached, disconnect peer=%d\n", pfrom->GetId());
//disconnect node
pfrom->fDisconnect = true;
send = false;
}
// Pruned nodes may have deleted the block, so check whether
// it's available before trying to send.
if (send && (mi->second->nStatus & BLOCK_HAVE_DATA))
{
// Send block from disk
CBlock block;
if (!ReadBlockFromDisk(block, (*mi).second, consensusParams))
assert(!"cannot load block from disk");
if (inv.type == MSG_BLOCK)
pfrom->PushMessage(NetMsgType::BLOCK, block);
else // MSG_FILTERED_BLOCK)
{
LOCK(pfrom->cs_filter);
if (pfrom->pfilter)
{
CMerkleBlock merkleBlock(block, *pfrom->pfilter);
pfrom->PushMessage(NetMsgType::MERKLEBLOCK, merkleBlock);
// CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
// This avoids hurting performance by pointlessly requiring a round-trip
// Note that there is currently no way for a node to request any single transactions we didn't send here -
// they must either disconnect and retry or request the full block.
// Thus, the protocol spec specified allows for us to provide duplicate txn here,
// however we MUST always provide at least what the remote peer needs
typedef std::pair<unsigned int, uint256> PairType;
BOOST_FOREACH(PairType& pair, merkleBlock.vMatchedTxn)
pfrom->PushMessage(NetMsgType::TX, block.vtx[pair.first]);
}
// else
// no response
}
// Trigger the peer node to send a getblocks request for the next batch of inventory
if (inv.hash == pfrom->hashContinue)
{
// Bypass PushInventory, this must send even if redundant,
// and we want it right after the last block so they don't
// wait for other stuff first.
vector<CInv> vInv;
vInv.push_back(CInv(MSG_BLOCK, chainActive.Tip()->GetBlockHash()));
pfrom->PushMessage(NetMsgType::INV, vInv);
pfrom->hashContinue.SetNull();
}
}
}
else if (inv.type == MSG_TX)
{
// Send stream from relay memory
bool push = false;
auto mi = mapRelay.find(inv.hash);
if (mi != mapRelay.end()) {
pfrom->PushMessage(NetMsgType::TX, *mi->second);
push = true;
} else if (pfrom->timeLastMempoolReq) {
auto txinfo = mempool.info(inv.hash);
// To protect privacy, do not answer getdata using the mempool when
// that TX couldn't have been INVed in reply to a MEMPOOL request.
if (txinfo.tx && txinfo.nTime <= pfrom->timeLastMempoolReq) {
pfrom->PushMessage(NetMsgType::TX, *txinfo.tx);
push = true;
}
}
if (!push) {
vNotFound.push_back(inv);
}
}
// Track requests for our stuff.
GetMainSignals().Inventory(inv.hash);
if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK)
break;
}
}
pfrom->vRecvGetData.erase(pfrom->vRecvGetData.begin(), it);
if (!vNotFound.empty()) {
// Let the peer know that we didn't find what it asked for, so it doesn't
// have to wait around forever. Currently only SPV clients actually care
// about this message: it's needed when they are recursively walking the
// dependencies of relevant unconfirmed transactions. SPV clients want to
// do that because they want to know about (and store and rebroadcast and
// risk analyze) the dependencies of transactions relevant to them, without
// having to download the entire memory pool.
pfrom->PushMessage(NetMsgType::NOTFOUND, vNotFound);
}
}
bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv, int64_t nTimeReceived, const CChainParams& chainparams)
{
LogPrint("net", "received: %s (%u bytes) peer=%d\n", SanitizeString(strCommand), vRecv.size(), pfrom->id);
if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0)
{
LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n");
return true;
}
if (!(nLocalServices & NODE_BLOOM) &&
(strCommand == NetMsgType::FILTERLOAD ||
strCommand == NetMsgType::FILTERADD ||
strCommand == NetMsgType::FILTERCLEAR))
{
if (pfrom->nVersion >= NO_BLOOM_VERSION) {
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 100);
return false;
} else {
pfrom->fDisconnect = true;
return false;
}
}
if (strCommand == NetMsgType::VERSION)
{
// Each connection can only send one version message
if (pfrom->nVersion != 0)
{
pfrom->PushMessage(NetMsgType::REJECT, strCommand, REJECT_DUPLICATE, string("Duplicate version message"));
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 1);
return false;
}
int64_t nTime;
CAddress addrMe;
CAddress addrFrom;
uint64_t nNonce = 1;
uint64_t nServiceInt;
vRecv >> pfrom->nVersion >> nServiceInt >> nTime >> addrMe;
pfrom->nServices = ServiceFlags(nServiceInt);
if (!pfrom->fInbound)
{
addrman.SetServices(pfrom->addr, pfrom->nServices);
}
if (pfrom->nServicesExpected & ~pfrom->nServices)
{
LogPrint("net", "peer=%d does not offer the expected services (%08x offered, %08x expected); disconnecting\n", pfrom->id, pfrom->nServices, pfrom->nServicesExpected);
pfrom->PushMessage(NetMsgType::REJECT, strCommand, REJECT_NONSTANDARD,
strprintf("Expected to offer services %08x", pfrom->nServicesExpected));
pfrom->fDisconnect = true;
return false;
}
if (pfrom->nVersion < MIN_PEER_PROTO_VERSION)
{
// disconnect from peers older than this proto version
LogPrintf("peer=%d using obsolete version %i; disconnecting\n", pfrom->id, pfrom->nVersion);
pfrom->PushMessage(NetMsgType::REJECT, strCommand, REJECT_OBSOLETE,
strprintf("Version must be %d or greater", MIN_PEER_PROTO_VERSION));
pfrom->fDisconnect = true;
return false;
}
if (pfrom->nVersion == 10300)
pfrom->nVersion = 300;
if (!vRecv.empty())
vRecv >> addrFrom >> nNonce;
if (!vRecv.empty()) {
vRecv >> LIMITED_STRING(pfrom->strSubVer, MAX_SUBVERSION_LENGTH);
pfrom->cleanSubVer = SanitizeString(pfrom->strSubVer);
}
if (!vRecv.empty()) {
vRecv >> pfrom->nStartingHeight;
}
{
LOCK(pfrom->cs_filter);
if (!vRecv.empty())
vRecv >> pfrom->fRelayTxes; // set to true after we get the first filter* message
else
pfrom->fRelayTxes = true;
}
// Disconnect if we connected to ourself
if (nNonce == nLocalHostNonce && nNonce > 1)
{
LogPrintf("connected to self at %s, disconnecting\n", pfrom->addr.ToString());
pfrom->fDisconnect = true;
return true;
}
pfrom->addrLocal = addrMe;
if (pfrom->fInbound && addrMe.IsRoutable())
{
SeenLocal(addrMe);
}
// Be shy and don't send version until we hear
if (pfrom->fInbound)
pfrom->PushVersion();
pfrom->fClient = !(pfrom->nServices & NODE_NETWORK);
// Potentially mark this peer as a preferred download peer.
{
LOCK(cs_main);
UpdatePreferredDownload(pfrom, State(pfrom->GetId()));
}
// Change version
pfrom->PushMessage(NetMsgType::VERACK);
pfrom->ssSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
if (!pfrom->fInbound)
{
// Advertise our address
if (fListen && !IsInitialBlockDownload())
{
CAddress addr = GetLocalAddress(&pfrom->addr);
if (addr.IsRoutable())
{
LogPrintf("ProcessMessages: advertising address %s\n", addr.ToString());
pfrom->PushAddress(addr);
} else if (IsPeerAddrLocalGood(pfrom)) {
addr.SetIP(pfrom->addrLocal);
LogPrintf("ProcessMessages: advertising address %s\n", addr.ToString());
pfrom->PushAddress(addr);
}
}
// Get recent addresses
if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000)
{
pfrom->PushMessage(NetMsgType::GETADDR);
pfrom->fGetAddr = true;
}
addrman.Good(pfrom->addr);
} else {
if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom)
{
addrman.Add(addrFrom, addrFrom);
addrman.Good(addrFrom);
}
}
pfrom->fSuccessfullyConnected = true;
string remoteAddr;
if (fLogIPs)
remoteAddr = ", peeraddr=" + pfrom->addr.ToString();
LogPrintf("receive version message: %s: version %d, blocks=%d, us=%s, peer=%d%s\n",
pfrom->cleanSubVer, pfrom->nVersion,
pfrom->nStartingHeight, addrMe.ToString(), pfrom->id,
remoteAddr);
int64_t nTimeOffset = nTime - GetTime();
pfrom->nTimeOffset = nTimeOffset;
AddTimeData(pfrom->addr, nTimeOffset);
}
else if (pfrom->nVersion == 0)
{
// Must have a version message before anything else
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 1);
return false;
}
else if (strCommand == NetMsgType::VERACK)
{
pfrom->SetRecvVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
// Mark this node as currently connected, so we update its timestamp later.
if (pfrom->fNetworkNode) {
LOCK(cs_main);
State(pfrom->GetId())->fCurrentlyConnected = true;
}
if (pfrom->nVersion >= SENDHEADERS_VERSION) {
// Tell our peer we prefer to receive headers rather than inv's
// We send this to non-NODE NETWORK peers as well, because even
// non-NODE NETWORK peers can announce blocks (such as pruning
// nodes)
pfrom->PushMessage(NetMsgType::SENDHEADERS);
}
}
else if (strCommand == NetMsgType::ADDR)
{
vector<CAddress> vAddr;
vRecv >> vAddr;
// Don't want addr from older versions unless seeding
if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000)
return true;
if (vAddr.size() > 1000)
{
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 20);
return error("message addr size() = %u", vAddr.size());
}
// Store the new addresses
vector<CAddress> vAddrOk;
int64_t nNow = GetAdjustedTime();
int64_t nSince = nNow - 10 * 60;
BOOST_FOREACH(CAddress& addr, vAddr)
{
boost::this_thread::interruption_point();
if ((addr.nServices & REQUIRED_SERVICES) != REQUIRED_SERVICES)
continue;
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60)
addr.nTime = nNow - 5 * 24 * 60 * 60;
pfrom->AddAddressKnown(addr);
bool fReachable = IsReachable(addr);
if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable())
{
// Relay to a limited number of other nodes
{
LOCK(cs_vNodes);
// Use deterministic randomness to send to the same nodes for 24 hours
// at a time so the addrKnowns of the chosen nodes prevent repeats
static const uint64_t salt0 = GetRand(std::numeric_limits<uint64_t>::max());
static const uint64_t salt1 = GetRand(std::numeric_limits<uint64_t>::max());
uint64_t hashAddr = addr.GetHash();
multimap<uint64_t, CNode*> mapMix;
const CSipHasher hasher = CSipHasher(salt0, salt1).Write(hashAddr << 32).Write((GetTime() + hashAddr) / (24*60*60));
BOOST_FOREACH(CNode* pnode, vNodes)
{
if (pnode->nVersion < CADDR_TIME_VERSION)
continue;
uint64_t hashKey = CSipHasher(hasher).Write(pnode->id).Finalize();
mapMix.insert(make_pair(hashKey, pnode));
}
int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s)
for (multimap<uint64_t, CNode*>::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi)
((*mi).second)->PushAddress(addr);
}
}
// Do not store addresses outside our network
if (fReachable)
vAddrOk.push_back(addr);
}
addrman.Add(vAddrOk, pfrom->addr, 2 * 60 * 60);
if (vAddr.size() < 1000)
pfrom->fGetAddr = false;
if (pfrom->fOneShot)
pfrom->fDisconnect = true;
}
else if (strCommand == NetMsgType::SENDHEADERS)
{
LOCK(cs_main);
State(pfrom->GetId())->fPreferHeaders = true;
}
else if (strCommand == NetMsgType::INV)
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 20);
return error("message inv size() = %u", vInv.size());
}
bool fBlocksOnly = !fRelayTxes;
// Allow whitelisted peers to send data other than blocks in blocks only mode if whitelistrelay is true
if (pfrom->fWhitelisted && GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY))
fBlocksOnly = false;
LOCK(cs_main);
std::vector<CInv> vToFetch;
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++)
{
const CInv &inv = vInv[nInv];
boost::this_thread::interruption_point();
bool fAlreadyHave = AlreadyHave(inv);
LogPrint("net", "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom->id);
if (inv.type == MSG_BLOCK) {
UpdateBlockAvailability(pfrom->GetId(), inv.hash);
if (!fAlreadyHave && !fImporting && !fReindex && !mapBlocksInFlight.count(inv.hash)) {
// First request the headers preceding the announced block. In the normal fully-synced
// case where a new block is announced that succeeds the current tip (no reorganization),
// there are no such headers.
// Secondly, and only when we are close to being synced, we request the announced block directly,
// to avoid an extra round-trip. Note that we must *first* ask for the headers, so by the
// time the block arrives, the header chain leading up to it is already validated. Not
// doing this will result in the received block being rejected as an orphan in case it is
// not a direct successor.
pfrom->PushMessage(NetMsgType::GETHEADERS, chainActive.GetLocator(pindexBestHeader), inv.hash);
CNodeState *nodestate = State(pfrom->GetId());
if (CanDirectFetch(chainparams.GetConsensus()) &&
nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
vToFetch.push_back(inv);
// Mark block as in flight already, even though the actual "getdata" message only goes out
// later (within the same cs_main lock, though).
MarkBlockAsInFlight(pfrom->GetId(), inv.hash, chainparams.GetConsensus());
}
LogPrint("net", "getheaders (%d) %s to peer=%d\n", pindexBestHeader->nHeight, inv.hash.ToString(), pfrom->id);
}
}
else
{
pfrom->AddInventoryKnown(inv);
if (fBlocksOnly)
LogPrint("net", "transaction (%s) inv sent in violation of protocol peer=%d\n", inv.hash.ToString(), pfrom->id);
else if (!fAlreadyHave && !fImporting && !fReindex && !IsInitialBlockDownload())
pfrom->AskFor(inv);
}
// Track requests for our stuff
GetMainSignals().Inventory(inv.hash);
if (pfrom->nSendSize > (SendBufferSize() * 2)) {
Misbehaving(pfrom->GetId(), 50);
return error("send buffer size() = %u", pfrom->nSendSize);
}
}
if (!vToFetch.empty())
pfrom->PushMessage(NetMsgType::GETDATA, vToFetch);
}
else if (strCommand == NetMsgType::GETDATA)
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 20);
return error("message getdata size() = %u", vInv.size());
}
if (fDebug || (vInv.size() != 1))
LogPrint("net", "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom->id);
if ((fDebug && vInv.size() > 0) || (vInv.size() == 1))
LogPrint("net", "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom->id);
pfrom->vRecvGetData.insert(pfrom->vRecvGetData.end(), vInv.begin(), vInv.end());
ProcessGetData(pfrom, chainparams.GetConsensus());
}
else if (strCommand == NetMsgType::GETBLOCKS)
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
LOCK(cs_main);
// Find the last block the caller has in the main chain
CBlockIndex* pindex = FindForkInGlobalIndex(chainActive, locator);
// Send the rest of the chain
if (pindex)
pindex = chainActive.Next(pindex);
int nLimit = 500;
LogPrint("net", "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom->id);
for (; pindex; pindex = chainActive.Next(pindex))
{
if (pindex->GetBlockHash() == hashStop)
{
LogPrint("net", " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
break;
}
// If pruning, don't inv blocks unless we have on disk and are likely to still have
// for some reasonable time window (1 hour) that block relay might require.
const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / chainparams.GetConsensus().nPowTargetSpacing;
if (fPruneMode && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= chainActive.Tip()->nHeight - nPrunedBlocksLikelyToHave))
{
LogPrint("net", " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
break;
}
pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash()));
if (--nLimit <= 0)
{
// When this block is requested, we'll send an inv that'll
// trigger the peer to getblocks the next batch of inventory.
LogPrint("net", " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
pfrom->hashContinue = pindex->GetBlockHash();
break;
}
}
}
else if (strCommand == NetMsgType::GETHEADERS)
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
LOCK(cs_main);
if (IsInitialBlockDownload() && !pfrom->fWhitelisted) {
LogPrint("net", "Ignoring getheaders from peer=%d because node is in initial block download\n", pfrom->id);
return true;
}
CNodeState *nodestate = State(pfrom->GetId());
CBlockIndex* pindex = NULL;
if (locator.IsNull())
{
// If locator is null, return the hashStop block
BlockMap::iterator mi = mapBlockIndex.find(hashStop);
if (mi == mapBlockIndex.end())
return true;
pindex = (*mi).second;
}
else
{
// Find the last block the caller has in the main chain
pindex = FindForkInGlobalIndex(chainActive, locator);
if (pindex)
pindex = chainActive.Next(pindex);
}
// we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
vector<CBlock> vHeaders;
int nLimit = MAX_HEADERS_RESULTS;
LogPrint("net", "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString(), pfrom->id);
for (; pindex; pindex = chainActive.Next(pindex))
{
vHeaders.push_back(pindex->GetBlockHeader());
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
break;
}
// pindex can be NULL either if we sent chainActive.Tip() OR
// if our peer has chainActive.Tip() (and thus we are sending an empty
// headers message). In both cases it's safe to update
// pindexBestHeaderSent to be our tip.
nodestate->pindexBestHeaderSent = pindex ? pindex : chainActive.Tip();
pfrom->PushMessage(NetMsgType::HEADERS, vHeaders);
}
else if (strCommand == NetMsgType::TX)
{
// Stop processing the transaction early if
// We are in blocks only mode and peer is either not whitelisted or whitelistrelay is off
if (!fRelayTxes && (!pfrom->fWhitelisted || !GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)))
{
LogPrint("net", "transaction sent in violation of protocol peer=%d\n", pfrom->id);
return true;
}
vector<uint256> vWorkQueue;
vector<uint256> vEraseQueue;
CTransaction tx;
vRecv >> tx;
CInv inv(MSG_TX, tx.GetHash());
pfrom->AddInventoryKnown(inv);
LOCK(cs_main);
bool fMissingInputs = false;
CValidationState state;
pfrom->setAskFor.erase(inv.hash);
mapAlreadyAskedFor.erase(inv.hash);
if (!AlreadyHave(inv) && AcceptToMemoryPool(mempool, state, tx, true, &fMissingInputs)) {
mempool.check(pcoinsTip);
RelayTransaction(tx);
vWorkQueue.push_back(inv.hash);
pfrom->nLastTXTime = GetTime();
LogPrint("mempool", "AcceptToMemoryPool: peer=%d: accepted %s (poolsz %u txn, %u kB)\n",
pfrom->id,
tx.GetHash().ToString(),
mempool.size(), mempool.DynamicMemoryUsage() / 1000);
// Recursively process any orphan transactions that depended on this one
set<NodeId> setMisbehaving;
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
map<uint256, set<uint256> >::iterator itByPrev = mapOrphanTransactionsByPrev.find(vWorkQueue[i]);
if (itByPrev == mapOrphanTransactionsByPrev.end())
continue;
for (set<uint256>::iterator mi = itByPrev->second.begin();
mi != itByPrev->second.end();
++mi)
{
const uint256& orphanHash = *mi;
const CTransaction& orphanTx = mapOrphanTransactions[orphanHash].tx;
NodeId fromPeer = mapOrphanTransactions[orphanHash].fromPeer;
bool fMissingInputs2 = false;
// Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan
// resolution (that is, feeding people an invalid transaction based on LegitTxX in order to get
// anyone relaying LegitTxX banned)
CValidationState stateDummy;
if (setMisbehaving.count(fromPeer))
continue;
if (AcceptToMemoryPool(mempool, stateDummy, orphanTx, true, &fMissingInputs2)) {
LogPrint("mempool", " accepted orphan tx %s\n", orphanHash.ToString());
RelayTransaction(orphanTx);
vWorkQueue.push_back(orphanHash);
vEraseQueue.push_back(orphanHash);
}
else if (!fMissingInputs2)
{
int nDos = 0;
if (stateDummy.IsInvalid(nDos) && nDos > 0)
{
// Punish peer that gave us an invalid orphan tx
Misbehaving(fromPeer, nDos);
setMisbehaving.insert(fromPeer);
LogPrint("mempool", " invalid orphan tx %s\n", orphanHash.ToString());
}
// Has inputs but not accepted to mempool
// Probably non-standard or insufficient fee/priority
LogPrint("mempool", " removed orphan tx %s\n", orphanHash.ToString());
vEraseQueue.push_back(orphanHash);
assert(recentRejects);
recentRejects->insert(orphanHash);
}
mempool.check(pcoinsTip);
}
}
BOOST_FOREACH(uint256 hash, vEraseQueue)
EraseOrphanTx(hash);
}
else if (fMissingInputs)
{
AddOrphanTx(tx, pfrom->GetId());
// DoS prevention: do not allow mapOrphanTransactions to grow unbounded
unsigned int nMaxOrphanTx = (unsigned int)std::max((int64_t)0, GetArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS));
unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx);
if (nEvicted > 0)
LogPrint("mempool", "mapOrphan overflow, removed %u tx\n", nEvicted);
} else {
assert(recentRejects);
recentRejects->insert(tx.GetHash());
if (pfrom->fWhitelisted && GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) {
// Always relay transactions received from whitelisted peers, even
// if they were already in the mempool or rejected from it due
// to policy, allowing the node to function as a gateway for
// nodes hidden behind it.
//
// Never relay transactions that we would assign a non-zero DoS
// score for, as we expect peers to do the same with us in that
// case.
int nDoS = 0;
if (!state.IsInvalid(nDoS) || nDoS == 0) {
LogPrintf("Force relaying tx %s from whitelisted peer=%d\n", tx.GetHash().ToString(), pfrom->id);
RelayTransaction(tx);
} else {
LogPrintf("Not relaying invalid transaction %s from whitelisted peer=%d (%s)\n", tx.GetHash().ToString(), pfrom->id, FormatStateMessage(state));
}
}
}
int nDoS = 0;
if (state.IsInvalid(nDoS))
{
LogPrint("mempoolrej", "%s from peer=%d was not accepted: %s\n", tx.GetHash().ToString(),
pfrom->id,
FormatStateMessage(state));
if (state.GetRejectCode() < REJECT_INTERNAL) // Never send AcceptToMemoryPool's internal codes over P2P
pfrom->PushMessage(NetMsgType::REJECT, strCommand, (unsigned char)state.GetRejectCode(),
state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), inv.hash);
if (nDoS > 0)
Misbehaving(pfrom->GetId(), nDoS);
}
FlushStateToDisk(state, FLUSH_STATE_PERIODIC);
}
else if (strCommand == NetMsgType::HEADERS && !fImporting && !fReindex) // Ignore headers received while importing
{
std::vector<CBlockHeader> headers;
// Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
unsigned int nCount = ReadCompactSize(vRecv);
if (nCount > MAX_HEADERS_RESULTS) {
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 20);
return error("headers message size = %u", nCount);
}
headers.resize(nCount);
for (unsigned int n = 0; n < nCount; n++) {
vRecv >> headers[n];
ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
}
{
LOCK(cs_main);
if (nCount == 0) {
// Nothing interesting. Stop asking this peers for more headers.
return true;
}
// If we already know the last header in the message, then it contains
// no new information for us. In this case, we do not request
// more headers later. This prevents multiple chains of redundant
// getheader requests from running in parallel if triggered by incoming
// blocks while the node is still in initial headers sync.
const bool hasNewHeaders = (mapBlockIndex.count(headers.back().GetHash()) == 0);
CBlockIndex *pindexLast = NULL;
BOOST_FOREACH(const CBlockHeader& header, headers) {
CValidationState state;
if (pindexLast != NULL && header.hashPrevBlock != pindexLast->GetBlockHash()) {
Misbehaving(pfrom->GetId(), 20);
return error("non-continuous headers sequence");
}
if (!AcceptBlockHeader(header, state, chainparams, &pindexLast)) {
int nDoS;
if (state.IsInvalid(nDoS)) {
if (nDoS > 0)
Misbehaving(pfrom->GetId(), nDoS);
return error("invalid header received");
}
}
}
assert(pindexLast);
UpdateBlockAvailability(pfrom->GetId(), pindexLast->GetBlockHash());
if (nCount == MAX_HEADERS_RESULTS && hasNewHeaders) {
// Headers message had its maximum size; the peer may have more headers.
// TODO: optimize: if pindexLast is an ancestor of chainActive.Tip or pindexBestHeader, continue
// from there instead.
LogPrint("net", "more getheaders (%d) to end to peer=%d (startheight:%d)\n", pindexLast->nHeight, pfrom->id, pfrom->nStartingHeight);
pfrom->PushMessage(NetMsgType::GETHEADERS, chainActive.GetLocator(pindexLast), uint256());
}
bool fCanDirectFetch = CanDirectFetch(chainparams.GetConsensus());
CNodeState *nodestate = State(pfrom->GetId());
// If this set of headers is valid and ends in a block with at least as
// much work as our tip, download as much as possible.
if (fCanDirectFetch && pindexLast->IsValid(BLOCK_VALID_TREE) && chainActive.Tip()->nChainWork <= pindexLast->nChainWork) {
vector<CBlockIndex *> vToFetch;
CBlockIndex *pindexWalk = pindexLast;
// Calculate all the blocks we'd need to switch to pindexLast, up to a limit.
while (pindexWalk && !chainActive.Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
!mapBlocksInFlight.count(pindexWalk->GetBlockHash())) {
// We don't have this block, and it's not yet in flight.
vToFetch.push_back(pindexWalk);
}
pindexWalk = pindexWalk->pprev;
}
// If pindexWalk still isn't on our main chain, we're looking at a
// very large reorg at a time we think we're close to caught up to
// the main chain -- this shouldn't really happen. Bail out on the
// direct fetch and rely on parallel download instead.
if (!chainActive.Contains(pindexWalk)) {
LogPrint("net", "Large reorg, won't direct fetch to %s (%d)\n",
pindexLast->GetBlockHash().ToString(),
pindexLast->nHeight);
} else {
vector<CInv> vGetData;
// Download as much as possible, from earliest to latest.
BOOST_REVERSE_FOREACH(CBlockIndex *pindex, vToFetch) {
if (nodestate->nBlocksInFlight >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
// Can't download any more from this peer
break;
}
vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash()));
MarkBlockAsInFlight(pfrom->GetId(), pindex->GetBlockHash(), chainparams.GetConsensus(), pindex);
LogPrint("net", "Requesting block %s from peer=%d\n",
pindex->GetBlockHash().ToString(), pfrom->id);
}
if (vGetData.size() > 1) {
LogPrint("net", "Downloading blocks toward %s (%d) via headers direct fetch\n",
pindexLast->GetBlockHash().ToString(), pindexLast->nHeight);
}
if (vGetData.size() > 0) {
pfrom->PushMessage(NetMsgType::GETDATA, vGetData);
}
}
}
CheckBlockIndex(chainparams.GetConsensus());
}
NotifyHeaderTip();
}
else if (strCommand == NetMsgType::BLOCK && !fImporting && !fReindex) // Ignore blocks received while importing
{
CBlock block;
vRecv >> block;
LogPrint("net", "received block %s peer=%d\n", block.GetHash().ToString(), pfrom->id);
CValidationState state;
// Process all blocks from whitelisted peers, even if not requested,
// unless we're still syncing with the network.
// Such an unrequested block may still be processed, subject to the
// conditions in AcceptBlock().
bool forceProcessing = pfrom->fWhitelisted && !IsInitialBlockDownload();
ProcessNewBlock(state, chainparams, pfrom, &block, forceProcessing, NULL);
int nDoS;
if (state.IsInvalid(nDoS)) {
assert (state.GetRejectCode() < REJECT_INTERNAL); // Blocks are never rejected with internal reject codes
pfrom->PushMessage(NetMsgType::REJECT, strCommand, (unsigned char)state.GetRejectCode(),
state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), block.GetHash());
if (nDoS > 0) {
LOCK(cs_main);
Misbehaving(pfrom->GetId(), nDoS);
}
}
}
else if (strCommand == NetMsgType::GETADDR)
{
// This asymmetric behavior for inbound and outbound connections was introduced
// to prevent a fingerprinting attack: an attacker can send specific fake addresses
// to users' AddrMan and later request them by sending getaddr messages.
// Making nodes which are behind NAT and can only make outgoing connections ignore
// the getaddr message mitigates the attack.
if (!pfrom->fInbound) {
LogPrint("net", "Ignoring \"getaddr\" from outbound connection. peer=%d\n", pfrom->id);
return true;
}
// Only send one GetAddr response per connection to reduce resource waste
// and discourage addr stamping of INV announcements.
if (pfrom->fSentAddr) {
LogPrint("net", "Ignoring repeated \"getaddr\". peer=%d\n", pfrom->id);
return true;
}
pfrom->fSentAddr = true;
pfrom->vAddrToSend.clear();
vector<CAddress> vAddr = addrman.GetAddr();
BOOST_FOREACH(const CAddress &addr, vAddr)
pfrom->PushAddress(addr);
}
else if (strCommand == NetMsgType::MEMPOOL)
{
if (!(nLocalServices & NODE_BLOOM) && !pfrom->fWhitelisted)
{
LogPrint("net", "mempool request with bloom filters disabled, disconnect peer=%d\n", pfrom->GetId());
pfrom->fDisconnect = true;
return true;
}
if (CNode::OutboundTargetReached(false) && !pfrom->fWhitelisted)
{
LogPrint("net", "mempool request with bandwidth limit reached, disconnect peer=%d\n", pfrom->GetId());
pfrom->fDisconnect = true;
return true;
}
LOCK(pfrom->cs_inventory);
pfrom->fSendMempool = true;
}
else if (strCommand == NetMsgType::PING)
{
if (pfrom->nVersion > BIP0031_VERSION)
{
uint64_t nonce = 0;
vRecv >> nonce;
// Echo the message back with the nonce. This allows for two useful features:
//
// 1) A remote node can quickly check if the connection is operational
// 2) Remote nodes can measure the latency of the network thread. If this node
// is overloaded it won't respond to pings quickly and the remote node can
// avoid sending us more work, like chain download requests.
//
// The nonce stops the remote getting confused between different pings: without
// it, if the remote node sends a ping once per second and this node takes 5
// seconds to respond to each, the 5th ping the remote sends would appear to
// return very quickly.
pfrom->PushMessage(NetMsgType::PONG, nonce);
}
}
else if (strCommand == NetMsgType::PONG)
{
int64_t pingUsecEnd = nTimeReceived;
uint64_t nonce = 0;
size_t nAvail = vRecv.in_avail();
bool bPingFinished = false;
std::string sProblem;
if (nAvail >= sizeof(nonce)) {
vRecv >> nonce;
// Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
if (pfrom->nPingNonceSent != 0) {
if (nonce == pfrom->nPingNonceSent) {
// Matching pong received, this ping is no longer outstanding
bPingFinished = true;
int64_t pingUsecTime = pingUsecEnd - pfrom->nPingUsecStart;
if (pingUsecTime > 0) {
// Successful ping time measurement, replace previous
pfrom->nPingUsecTime = pingUsecTime;
pfrom->nMinPingUsecTime = std::min(pfrom->nMinPingUsecTime, pingUsecTime);
} else {
// This should never happen
sProblem = "Timing mishap";
}
} else {
// Nonce mismatches are normal when pings are overlapping
sProblem = "Nonce mismatch";
if (nonce == 0) {
// This is most likely a bug in another implementation somewhere; cancel this ping
bPingFinished = true;
sProblem = "Nonce zero";
}
}
} else {
sProblem = "Unsolicited pong without ping";
}
} else {
// This is most likely a bug in another implementation somewhere; cancel this ping
bPingFinished = true;
sProblem = "Short payload";
}
if (!(sProblem.empty())) {
LogPrint("net", "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
pfrom->id,
sProblem,
pfrom->nPingNonceSent,
nonce,
nAvail);
}
if (bPingFinished) {
pfrom->nPingNonceSent = 0;
}
}
else if (strCommand == NetMsgType::FILTERLOAD)
{
CBloomFilter filter;
vRecv >> filter;
LOCK(pfrom->cs_filter);
if (!filter.IsWithinSizeConstraints())
{
// There is no excuse for sending a too-large filter
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 100);
}
else
{
delete pfrom->pfilter;
pfrom->pfilter = new CBloomFilter(filter);
pfrom->pfilter->UpdateEmptyFull();
}
pfrom->fRelayTxes = true;
}
else if (strCommand == NetMsgType::FILTERADD)
{
vector<unsigned char> vData;
vRecv >> vData;
// Nodes must NEVER send a data item > 520 bytes (the max size for a script data object,
// and thus, the maximum size any matched object can have) in a filteradd message
if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE)
{
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 100);
} else {
LOCK(pfrom->cs_filter);
if (pfrom->pfilter)
pfrom->pfilter->insert(vData);
else
{
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 100);
}
}
}
else if (strCommand == NetMsgType::FILTERCLEAR)
{
LOCK(pfrom->cs_filter);
delete pfrom->pfilter;
pfrom->pfilter = new CBloomFilter();
pfrom->fRelayTxes = true;
}
else if (strCommand == NetMsgType::REJECT)
{
if (fDebug) {
try {
string strMsg; unsigned char ccode; string strReason;
vRecv >> LIMITED_STRING(strMsg, CMessageHeader::COMMAND_SIZE) >> ccode >> LIMITED_STRING(strReason, MAX_REJECT_MESSAGE_LENGTH);
ostringstream ss;
ss << strMsg << " code " << itostr(ccode) << ": " << strReason;
if (strMsg == NetMsgType::BLOCK || strMsg == NetMsgType::TX)
{
uint256 hash;
vRecv >> hash;
ss << ": hash " << hash.ToString();
}
LogPrint("net", "Reject %s\n", SanitizeString(ss.str()));
} catch (const std::ios_base::failure&) {
// Avoid feedback loops by preventing reject messages from triggering a new reject message.
LogPrint("net", "Unparseable reject message received\n");
}
}
}
else if (strCommand == NetMsgType::FEEFILTER) {
CAmount newFeeFilter = 0;
vRecv >> newFeeFilter;
if (MoneyRange(newFeeFilter)) {
{
LOCK(pfrom->cs_feeFilter);
pfrom->minFeeFilter = newFeeFilter;
}
LogPrint("net", "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom->id);
}
}
else {
// Ignore unknown commands for extensibility
LogPrint("net", "Unknown command \"%s\" from peer=%d\n", SanitizeString(strCommand), pfrom->id);
}
return true;
}
// requires LOCK(cs_vRecvMsg)
bool ProcessMessages(CNode* pfrom)
{
const CChainParams& chainparams = Params();
//if (fDebug)
// LogPrintf("%s(%u messages)\n", __func__, pfrom->vRecvMsg.size());
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
bool fOk = true;
if (!pfrom->vRecvGetData.empty())
ProcessGetData(pfrom, chainparams.GetConsensus());
// this maintains the order of responses
if (!pfrom->vRecvGetData.empty()) return fOk;
std::deque<CNetMessage>::iterator it = pfrom->vRecvMsg.begin();
while (!pfrom->fDisconnect && it != pfrom->vRecvMsg.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= SendBufferSize())
break;
// get next message
CNetMessage& msg = *it;
//if (fDebug)
// LogPrintf("%s(message %u msgsz, %u bytes, complete:%s)\n", __func__,
// msg.hdr.nMessageSize, msg.vRecv.size(),
// msg.complete() ? "Y" : "N");
// end, if an incomplete message is found
if (!msg.complete())
break;
// at this point, any failure means we can delete the current message
it++;
// Scan for message start
if (memcmp(msg.hdr.pchMessageStart, chainparams.MessageStart(), MESSAGE_START_SIZE) != 0) {
LogPrintf("PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n", SanitizeString(msg.hdr.GetCommand()), pfrom->id);
fOk = false;
break;
}
// Read header
CMessageHeader& hdr = msg.hdr;
if (!hdr.IsValid(chainparams.MessageStart()))
{
LogPrintf("PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n", SanitizeString(hdr.GetCommand()), pfrom->id);
continue;
}
string strCommand = hdr.GetCommand();
// Message size
unsigned int nMessageSize = hdr.nMessageSize;
// Checksum
CDataStream& vRecv = msg.vRecv;
uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize);
unsigned int nChecksum = ReadLE32((unsigned char*)&hash);
if (nChecksum != hdr.nChecksum)
{
LogPrintf("%s(%s, %u bytes): CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n", __func__,
SanitizeString(strCommand), nMessageSize, nChecksum, hdr.nChecksum);
continue;
}
// Process message
bool fRet = false;
try
{
fRet = ProcessMessage(pfrom, strCommand, vRecv, msg.nTime, chainparams);
boost::this_thread::interruption_point();
}
catch (const std::ios_base::failure& e)
{
pfrom->PushMessage(NetMsgType::REJECT, strCommand, REJECT_MALFORMED, string("error parsing message"));
if (strstr(e.what(), "end of data"))
{
// Allow exceptions from under-length message on vRecv
LogPrintf("%s(%s, %u bytes): Exception '%s' caught, normally caused by a message being shorter than its stated length\n", __func__, SanitizeString(strCommand), nMessageSize, e.what());
}
else if (strstr(e.what(), "size too large"))
{
// Allow exceptions from over-long size
LogPrintf("%s(%s, %u bytes): Exception '%s' caught\n", __func__, SanitizeString(strCommand), nMessageSize, e.what());
}
else if (strstr(e.what(), "non-canonical ReadCompactSize()"))
{
// Allow exceptions from non-canonical encoding
LogPrintf("%s(%s, %u bytes): Exception '%s' caught\n", __func__, SanitizeString(strCommand), nMessageSize, e.what());
}
else
{
PrintExceptionContinue(&e, "ProcessMessages()");
}
}
catch (const boost::thread_interrupted&) {
throw;
}
catch (const std::exception& e) {
PrintExceptionContinue(&e, "ProcessMessages()");
} catch (...) {
PrintExceptionContinue(NULL, "ProcessMessages()");
}
if (!fRet)
LogPrintf("%s(%s, %u bytes) FAILED peer=%d\n", __func__, SanitizeString(strCommand), nMessageSize, pfrom->id);
break;
}
// In case the connection got shut down, its receive buffer was wiped
if (!pfrom->fDisconnect)
pfrom->vRecvMsg.erase(pfrom->vRecvMsg.begin(), it);
return fOk;
}
class CompareInvMempoolOrder
{
CTxMemPool *mp;
public:
CompareInvMempoolOrder(CTxMemPool *mempool)
{
mp = mempool;
}
bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
{
/* As std::make_heap produces a max-heap, we want the entries with the
* fewest ancestors/highest fee to sort later. */
return mp->CompareDepthAndScore(*b, *a);
}
};
bool SendMessages(CNode* pto)
{
const Consensus::Params& consensusParams = Params().GetConsensus();
{
// Don't send anything until we get its version message
if (pto->nVersion == 0)
return true;
//
// Message: ping
//
bool pingSend = false;
if (pto->fPingQueued) {
// RPC ping request by user
pingSend = true;
}
if (pto->nPingNonceSent == 0 && pto->nPingUsecStart + PING_INTERVAL * 1000000 < GetTimeMicros()) {
// Ping automatically sent as a latency probe & keepalive.
pingSend = true;
}
if (pingSend) {
uint64_t nonce = 0;
while (nonce == 0) {
GetRandBytes((unsigned char*)&nonce, sizeof(nonce));
}
pto->fPingQueued = false;
pto->nPingUsecStart = GetTimeMicros();
if (pto->nVersion > BIP0031_VERSION) {
pto->nPingNonceSent = nonce;
pto->PushMessage(NetMsgType::PING, nonce);
} else {
// Peer is too old to support ping command with nonce, pong will never arrive.
pto->nPingNonceSent = 0;
pto->PushMessage(NetMsgType::PING);
}
}
TRY_LOCK(cs_main, lockMain); // Acquire cs_main for IsInitialBlockDownload() and CNodeState()
if (!lockMain)
return true;
// Address refresh broadcast
int64_t nNow = GetTimeMicros();
if (!IsInitialBlockDownload() && pto->nNextLocalAddrSend < nNow) {
AdvertiseLocal(pto);
pto->nNextLocalAddrSend = PoissonNextSend(nNow, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
}
//
// Message: addr
//
if (pto->nNextAddrSend < nNow) {
pto->nNextAddrSend = PoissonNextSend(nNow, AVG_ADDRESS_BROADCAST_INTERVAL);
vector<CAddress> vAddr;
vAddr.reserve(pto->vAddrToSend.size());
BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend)
{
if (!pto->addrKnown.contains(addr.GetKey()))
{
pto->addrKnown.insert(addr.GetKey());
vAddr.push_back(addr);
// receiver rejects addr messages larger than 1000
if (vAddr.size() >= 1000)
{
pto->PushMessage(NetMsgType::ADDR, vAddr);
vAddr.clear();
}
}
}
pto->vAddrToSend.clear();
if (!vAddr.empty())
pto->PushMessage(NetMsgType::ADDR, vAddr);
// we only send the big addr message once
if (pto->vAddrToSend.capacity() > 40)
pto->vAddrToSend.shrink_to_fit();
}
CNodeState &state = *State(pto->GetId());
if (state.fShouldBan) {
if (pto->fWhitelisted)
LogPrintf("Warning: not punishing whitelisted peer %s!\n", pto->addr.ToString());
else {
pto->fDisconnect = true;
if (pto->addr.IsLocal())
LogPrintf("Warning: not banning local peer %s!\n", pto->addr.ToString());
else
{
CNode::Ban(pto->addr, BanReasonNodeMisbehaving);
}
}
state.fShouldBan = false;
}
BOOST_FOREACH(const CBlockReject& reject, state.rejects)
pto->PushMessage(NetMsgType::REJECT, (string)NetMsgType::BLOCK, reject.chRejectCode, reject.strRejectReason, reject.hashBlock);
state.rejects.clear();
// Start block sync
if (pindexBestHeader == NULL)
pindexBestHeader = chainActive.Tip();
bool fFetch = state.fPreferredDownload || (nPreferredDownload == 0 && !pto->fClient && !pto->fOneShot); // Download if this is a nice peer, or we have no nice peers and this one might do.
if (!state.fSyncStarted && !pto->fClient && !fImporting && !fReindex) {
// Only actively request headers from a single peer, unless we're close to today.
if ((nSyncStarted == 0 && fFetch) || pindexBestHeader->GetBlockTime() > GetAdjustedTime() - 24 * 60 * 60) {
state.fSyncStarted = true;
nSyncStarted++;
const CBlockIndex *pindexStart = pindexBestHeader;
/* If possible, start at the block preceding the currently
best known header. This ensures that we always get a
non-empty list of headers back as long as the peer
is up-to-date. With a non-empty response, we can initialise
the peer's known best block. This wouldn't be possible
if we requested starting at pindexBestHeader and
got back an empty response. */
if (pindexStart->pprev)
pindexStart = pindexStart->pprev;
LogPrint("net", "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->id, pto->nStartingHeight);
pto->PushMessage(NetMsgType::GETHEADERS, chainActive.GetLocator(pindexStart), uint256());
}
}
// Resend wallet transactions that haven't gotten in a block yet
// Except during reindex, importing and IBD, when old wallet
// transactions become unconfirmed and spams other nodes.
if (!fReindex && !fImporting && !IsInitialBlockDownload())
{
GetMainSignals().Broadcast(nTimeBestReceived);
}
//
// Try sending block announcements via headers
//
{
// If we have less than MAX_BLOCKS_TO_ANNOUNCE in our
// list of block hashes we're relaying, and our peer wants
// headers announcements, then find the first header
// not yet known to our peer but would connect, and send.
// If no header would connect, or if we have too many
// blocks, or if the peer doesn't want headers, just
// add all to the inv queue.
LOCK(pto->cs_inventory);
vector<CBlock> vHeaders;
bool fRevertToInv = (!state.fPreferHeaders || pto->vBlockHashesToAnnounce.size() > MAX_BLOCKS_TO_ANNOUNCE);
CBlockIndex *pBestIndex = NULL; // last header queued for delivery
ProcessBlockAvailability(pto->id); // ensure pindexBestKnownBlock is up-to-date
if (!fRevertToInv) {
bool fFoundStartingHeader = false;
// Try to find first header that our peer doesn't have, and
// then send all headers past that one. If we come across any
// headers that aren't on chainActive, give up.
BOOST_FOREACH(const uint256 &hash, pto->vBlockHashesToAnnounce) {
BlockMap::iterator mi = mapBlockIndex.find(hash);
assert(mi != mapBlockIndex.end());
CBlockIndex *pindex = mi->second;
if (chainActive[pindex->nHeight] != pindex) {
// Bail out if we reorged away from this block
fRevertToInv = true;
break;
}
if (pBestIndex != NULL && pindex->pprev != pBestIndex) {
// This means that the list of blocks to announce don't
// connect to each other.
// This shouldn't really be possible to hit during
// regular operation (because reorgs should take us to
// a chain that has some block not on the prior chain,
// which should be caught by the prior check), but one
// way this could happen is by using invalidateblock /
// reconsiderblock repeatedly on the tip, causing it to
// be added multiple times to vBlockHashesToAnnounce.
// Robustly deal with this rare situation by reverting
// to an inv.
fRevertToInv = true;
break;
}
pBestIndex = pindex;
if (fFoundStartingHeader) {
// add this to the headers message
vHeaders.push_back(pindex->GetBlockHeader());
} else if (PeerHasHeader(&state, pindex)) {
continue; // keep looking for the first new block
} else if (pindex->pprev == NULL || PeerHasHeader(&state, pindex->pprev)) {
// Peer doesn't have this header but they do have the prior one.
// Start sending headers.
fFoundStartingHeader = true;
vHeaders.push_back(pindex->GetBlockHeader());
} else {
// Peer doesn't have this header or the prior one -- nothing will
// connect, so bail out.
fRevertToInv = true;
break;
}
}
}
if (fRevertToInv) {
// If falling back to using an inv, just try to inv the tip.
// The last entry in vBlockHashesToAnnounce was our tip at some point
// in the past.
if (!pto->vBlockHashesToAnnounce.empty()) {
const uint256 &hashToAnnounce = pto->vBlockHashesToAnnounce.back();
BlockMap::iterator mi = mapBlockIndex.find(hashToAnnounce);
assert(mi != mapBlockIndex.end());
CBlockIndex *pindex = mi->second;
// Warn if we're announcing a block that is not on the main chain.
// This should be very rare and could be optimized out.
// Just log for now.
if (chainActive[pindex->nHeight] != pindex) {
LogPrint("net", "Announcing block %s not on main chain (tip=%s)\n",
hashToAnnounce.ToString(), chainActive.Tip()->GetBlockHash().ToString());
}
// If the peer's chain has this block, don't inv it back.
if (!PeerHasHeader(&state, pindex)) {
pto->PushInventory(CInv(MSG_BLOCK, hashToAnnounce));
LogPrint("net", "%s: sending inv peer=%d hash=%s\n", __func__,
pto->id, hashToAnnounce.ToString());
}
}
} else if (!vHeaders.empty()) {
if (vHeaders.size() > 1) {
LogPrint("net", "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
vHeaders.size(),
vHeaders.front().GetHash().ToString(),
vHeaders.back().GetHash().ToString(), pto->id);
} else {
LogPrint("net", "%s: sending header %s to peer=%d\n", __func__,
vHeaders.front().GetHash().ToString(), pto->id);
}
pto->PushMessage(NetMsgType::HEADERS, vHeaders);
state.pindexBestHeaderSent = pBestIndex;
}
pto->vBlockHashesToAnnounce.clear();
}
//
// Message: inventory
//
vector<CInv> vInv;
{
LOCK(pto->cs_inventory);
vInv.reserve(std::max<size_t>(pto->vInventoryBlockToSend.size(), INVENTORY_BROADCAST_MAX));
// Add blocks
BOOST_FOREACH(const uint256& hash, pto->vInventoryBlockToSend) {
vInv.push_back(CInv(MSG_BLOCK, hash));
if (vInv.size() == MAX_INV_SZ) {
pto->PushMessage(NetMsgType::INV, vInv);
vInv.clear();
}
}
pto->vInventoryBlockToSend.clear();
// Check whether periodic sends should happen
bool fSendTrickle = pto->fWhitelisted;
if (pto->nNextInvSend < nNow) {
fSendTrickle = true;
// Use half the delay for outbound peers, as there is less privacy concern for them.
pto->nNextInvSend = PoissonNextSend(nNow, INVENTORY_BROADCAST_INTERVAL >> !pto->fInbound);
}
// Time to send but the peer has requested we not relay transactions.
if (fSendTrickle) {
LOCK(pto->cs_filter);
if (!pto->fRelayTxes) pto->setInventoryTxToSend.clear();
}
// Respond to BIP35 mempool requests
if (fSendTrickle && pto->fSendMempool) {
auto vtxinfo = mempool.infoAll();
pto->fSendMempool = false;
CAmount filterrate = 0;
{
LOCK(pto->cs_feeFilter);
filterrate = pto->minFeeFilter;
}
LOCK(pto->cs_filter);
for (const auto& txinfo : vtxinfo) {
const uint256& hash = txinfo.tx->GetHash();
CInv inv(MSG_TX, hash);
pto->setInventoryTxToSend.erase(hash);
if (filterrate) {
if (txinfo.feeRate.GetFeePerK() < filterrate)
continue;
}
if (pto->pfilter) {
if (!pto->pfilter->IsRelevantAndUpdate(*txinfo.tx)) continue;
}
pto->filterInventoryKnown.insert(hash);
vInv.push_back(inv);
if (vInv.size() == MAX_INV_SZ) {
pto->PushMessage(NetMsgType::INV, vInv);
vInv.clear();
}
}
pto->timeLastMempoolReq = GetTime();
}
// Determine transactions to relay
if (fSendTrickle) {
// Produce a vector with all candidates for sending
vector<std::set<uint256>::iterator> vInvTx;
vInvTx.reserve(pto->setInventoryTxToSend.size());
for (std::set<uint256>::iterator it = pto->setInventoryTxToSend.begin(); it != pto->setInventoryTxToSend.end(); it++) {
vInvTx.push_back(it);
}
CAmount filterrate = 0;
{
LOCK(pto->cs_feeFilter);
filterrate = pto->minFeeFilter;
}
// Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
// A heap is used so that not all items need sorting if only a few are being sent.
CompareInvMempoolOrder compareInvMempoolOrder(&mempool);
std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
// No reason to drain out at many times the network's capacity,
// especially since we have many peers and some will draw much shorter delays.
unsigned int nRelayedTransactions = 0;
LOCK(pto->cs_filter);
while (!vInvTx.empty() && nRelayedTransactions < INVENTORY_BROADCAST_MAX) {
// Fetch the top element from the heap
std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
std::set<uint256>::iterator it = vInvTx.back();
vInvTx.pop_back();
uint256 hash = *it;
// Remove it from the to-be-sent set
pto->setInventoryTxToSend.erase(it);
// Check if not in the filter already
if (pto->filterInventoryKnown.contains(hash)) {
continue;
}
// Not in the mempool anymore? don't bother sending it.
auto txinfo = mempool.info(hash);
if (!txinfo.tx) {
continue;
}
if (filterrate && txinfo.feeRate.GetFeePerK() < filterrate) {
continue;
}
if (pto->pfilter && !pto->pfilter->IsRelevantAndUpdate(*txinfo.tx)) continue;
// Send
vInv.push_back(CInv(MSG_TX, hash));
nRelayedTransactions++;
{
// Expire old relay messages
while (!vRelayExpiration.empty() && vRelayExpiration.front().first < nNow)
{
mapRelay.erase(vRelayExpiration.front().second);
vRelayExpiration.pop_front();
}
auto ret = mapRelay.insert(std::make_pair(hash, std::move(txinfo.tx)));
if (ret.second) {
vRelayExpiration.push_back(std::make_pair(nNow + 15 * 60 * 1000000, ret.first));
}
}
if (vInv.size() == MAX_INV_SZ) {
pto->PushMessage(NetMsgType::INV, vInv);
vInv.clear();
}
pto->filterInventoryKnown.insert(hash);
}
}
}
if (!vInv.empty())
pto->PushMessage(NetMsgType::INV, vInv);
// Detect whether we're stalling
nNow = GetTimeMicros();
if (!pto->fDisconnect && state.nStallingSince && state.nStallingSince < nNow - 1000000 * BLOCK_STALLING_TIMEOUT) {
// Stalling only triggers when the block download window cannot move. During normal steady state,
// the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
// should only happen during initial block download.
LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->id);
pto->fDisconnect = true;
}
// In case there is a block that has been in flight from this peer for 2 + 0.5 * N times the block interval
// (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
// We compensate for other peers to prevent killing off peers due to our own downstream link
// being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
// to unreasonably increase our timeout.
if (!pto->fDisconnect && state.vBlocksInFlight.size() > 0) {
QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
int nOtherPeersWithValidatedDownloads = nPeersWithValidatedDownloads - (state.nBlocksInFlightValidHeaders > 0);
if (nNow > state.nDownloadingSince + consensusParams.nPowTargetSpacing * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
LogPrintf("Timeout downloading block %s from peer=%d, disconnecting\n", queuedBlock.hash.ToString(), pto->id);
pto->fDisconnect = true;
}
}
//
// Message: getdata (blocks)
//
vector<CInv> vGetData;
if (!pto->fDisconnect && !pto->fClient && (fFetch || !IsInitialBlockDownload()) && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
vector<CBlockIndex*> vToDownload;
NodeId staller = -1;
FindNextBlocksToDownload(pto->GetId(), MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller);
BOOST_FOREACH(CBlockIndex *pindex, vToDownload) {
vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash()));
MarkBlockAsInFlight(pto->GetId(), pindex->GetBlockHash(), consensusParams, pindex);
LogPrint("net", "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
pindex->nHeight, pto->id);
}
if (state.nBlocksInFlight == 0 && staller != -1) {
if (State(staller)->nStallingSince == 0) {
State(staller)->nStallingSince = nNow;
LogPrint("net", "Stall started peer=%d\n", staller);
}
}
}
//
// Message: getdata (non-blocks)
//
while (!pto->fDisconnect && !pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow)
{
const CInv& inv = (*pto->mapAskFor.begin()).second;
if (!AlreadyHave(inv))
{
if (fDebug)
LogPrint("net", "Requesting %s peer=%d\n", inv.ToString(), pto->id);
vGetData.push_back(inv);
if (vGetData.size() >= 1000)
{
pto->PushMessage(NetMsgType::GETDATA, vGetData);
vGetData.clear();
}
} else {
//If we're not going to ask, don't expect a response.
pto->setAskFor.erase(inv.hash);
}
pto->mapAskFor.erase(pto->mapAskFor.begin());
}
if (!vGetData.empty())
pto->PushMessage(NetMsgType::GETDATA, vGetData);
//
// Message: feefilter
//
// We don't want white listed peers to filter txs to us if we have -whitelistforcerelay
if (pto->nVersion >= FEEFILTER_VERSION && GetBoolArg("-feefilter", DEFAULT_FEEFILTER) &&
!(pto->fWhitelisted && GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY))) {
CAmount currentFilter = mempool.GetMinFee(GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000).GetFeePerK();
int64_t timeNow = GetTimeMicros();
if (timeNow > pto->nextSendTimeFeeFilter) {
CAmount filterToSend = filterRounder.round(currentFilter);
if (filterToSend != pto->lastSentFeeFilter) {
pto->PushMessage(NetMsgType::FEEFILTER, filterToSend);
pto->lastSentFeeFilter = filterToSend;
}
pto->nextSendTimeFeeFilter = PoissonNextSend(timeNow, AVG_FEEFILTER_BROADCAST_INTERVAL);
}
// If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
// until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
else if (timeNow + MAX_FEEFILTER_CHANGE_DELAY * 1000000 < pto->nextSendTimeFeeFilter &&
(currentFilter < 3 * pto->lastSentFeeFilter / 4 || currentFilter > 4 * pto->lastSentFeeFilter / 3)) {
pto->nextSendTimeFeeFilter = timeNow + (insecure_rand() % MAX_FEEFILTER_CHANGE_DELAY) * 1000000;
}
}
}
return true;
}
std::string CBlockFileInfo::ToString() const {
return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, DateTimeStrFormat("%Y-%m-%d", nTimeFirst), DateTimeStrFormat("%Y-%m-%d", nTimeLast));
}
ThresholdState VersionBitsTipState(const Consensus::Params& params, Consensus::DeploymentPos pos)
{
LOCK(cs_main);
return VersionBitsState(chainActive.Tip(), params, pos, versionbitscache);
}
class CMainCleanup
{
public:
CMainCleanup() {}
~CMainCleanup() {
// block headers
BlockMap::iterator it1 = mapBlockIndex.begin();
for (; it1 != mapBlockIndex.end(); it1++)
delete (*it1).second;
mapBlockIndex.clear();
// orphan transactions
mapOrphanTransactions.clear();
mapOrphanTransactionsByPrev.clear();
}
} instance_of_cmaincleanup;