You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
302 lines
9.3 KiB
302 lines
9.3 KiB
// Copyright (c) 2009-2017 The Bitcoin Core developers |
|
// Copyright (c) 2017 The Zcash developers |
|
// Distributed under the MIT software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#include <pubkey.h> |
|
|
|
#include <secp256k1.h> |
|
#include <secp256k1_recovery.h> |
|
|
|
namespace |
|
{ |
|
/* Global secp256k1_context object used for verification. */ |
|
secp256k1_context* secp256k1_context_verify = nullptr; |
|
} // namespace |
|
|
|
/** This function is taken from the libsecp256k1 distribution and implements |
|
* DER parsing for ECDSA signatures, while supporting an arbitrary subset of |
|
* format violations. |
|
* |
|
* Supported violations include negative integers, excessive padding, garbage |
|
* at the end, and overly long length descriptors. This is safe to use in |
|
* Bitcoin because since the activation of BIP66, signatures are verified to be |
|
* strict DER before being passed to this module, and we know it supports all |
|
* violations present in the blockchain before that point. |
|
*/ |
|
static int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) { |
|
size_t rpos, rlen, spos, slen; |
|
size_t pos = 0; |
|
size_t lenbyte; |
|
unsigned char tmpsig[64] = {0}; |
|
int overflow = 0; |
|
|
|
/* Hack to initialize sig with a correctly-parsed but invalid signature. */ |
|
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig); |
|
|
|
/* Sequence tag byte */ |
|
if (pos == inputlen || input[pos] != 0x30) { |
|
return 0; |
|
} |
|
pos++; |
|
|
|
/* Sequence length bytes */ |
|
if (pos == inputlen) { |
|
return 0; |
|
} |
|
lenbyte = input[pos++]; |
|
if (lenbyte & 0x80) { |
|
lenbyte -= 0x80; |
|
if (lenbyte > inputlen - pos) { |
|
return 0; |
|
} |
|
pos += lenbyte; |
|
} |
|
|
|
/* Integer tag byte for R */ |
|
if (pos == inputlen || input[pos] != 0x02) { |
|
return 0; |
|
} |
|
pos++; |
|
|
|
/* Integer length for R */ |
|
if (pos == inputlen) { |
|
return 0; |
|
} |
|
lenbyte = input[pos++]; |
|
if (lenbyte & 0x80) { |
|
lenbyte -= 0x80; |
|
if (lenbyte > inputlen - pos) { |
|
return 0; |
|
} |
|
while (lenbyte > 0 && input[pos] == 0) { |
|
pos++; |
|
lenbyte--; |
|
} |
|
static_assert(sizeof(size_t) >= 4, "size_t too small"); |
|
if (lenbyte >= 4) { |
|
return 0; |
|
} |
|
rlen = 0; |
|
while (lenbyte > 0) { |
|
rlen = (rlen << 8) + input[pos]; |
|
pos++; |
|
lenbyte--; |
|
} |
|
} else { |
|
rlen = lenbyte; |
|
} |
|
if (rlen > inputlen - pos) { |
|
return 0; |
|
} |
|
rpos = pos; |
|
pos += rlen; |
|
|
|
/* Integer tag byte for S */ |
|
if (pos == inputlen || input[pos] != 0x02) { |
|
return 0; |
|
} |
|
pos++; |
|
|
|
/* Integer length for S */ |
|
if (pos == inputlen) { |
|
return 0; |
|
} |
|
lenbyte = input[pos++]; |
|
if (lenbyte & 0x80) { |
|
lenbyte -= 0x80; |
|
if (lenbyte > inputlen - pos) { |
|
return 0; |
|
} |
|
while (lenbyte > 0 && input[pos] == 0) { |
|
pos++; |
|
lenbyte--; |
|
} |
|
static_assert(sizeof(size_t) >= 4, "size_t too small"); |
|
if (lenbyte >= 4) { |
|
return 0; |
|
} |
|
slen = 0; |
|
while (lenbyte > 0) { |
|
slen = (slen << 8) + input[pos]; |
|
pos++; |
|
lenbyte--; |
|
} |
|
} else { |
|
slen = lenbyte; |
|
} |
|
if (slen > inputlen - pos) { |
|
return 0; |
|
} |
|
spos = pos; |
|
|
|
/* Ignore leading zeroes in R */ |
|
while (rlen > 0 && input[rpos] == 0) { |
|
rlen--; |
|
rpos++; |
|
} |
|
/* Copy R value */ |
|
if (rlen > 32) { |
|
overflow = 1; |
|
} else { |
|
memcpy(tmpsig + 32 - rlen, input + rpos, rlen); |
|
} |
|
|
|
/* Ignore leading zeroes in S */ |
|
while (slen > 0 && input[spos] == 0) { |
|
slen--; |
|
spos++; |
|
} |
|
/* Copy S value */ |
|
if (slen > 32) { |
|
overflow = 1; |
|
} else { |
|
memcpy(tmpsig + 64 - slen, input + spos, slen); |
|
} |
|
|
|
if (!overflow) { |
|
overflow = !secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig); |
|
} |
|
if (overflow) { |
|
/* Overwrite the result again with a correctly-parsed but invalid |
|
signature if parsing failed. */ |
|
memset(tmpsig, 0, 64); |
|
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig); |
|
} |
|
return 1; |
|
} |
|
|
|
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const { |
|
if (!IsValid()) |
|
return false; |
|
secp256k1_pubkey pubkey; |
|
secp256k1_ecdsa_signature sig; |
|
if (!secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, &(*this)[0], size())) { |
|
return false; |
|
} |
|
if (!ecdsa_signature_parse_der_lax(secp256k1_context_verify, &sig, vchSig.data(), vchSig.size())) { |
|
return false; |
|
} |
|
/* libsecp256k1's ECDSA verification requires lower-S signatures, which have |
|
* not historically been enforced in Bitcoin, so normalize them first. */ |
|
secp256k1_ecdsa_signature_normalize(secp256k1_context_verify, &sig, &sig); |
|
return secp256k1_ecdsa_verify(secp256k1_context_verify, &sig, hash.begin(), &pubkey); |
|
} |
|
|
|
bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) { |
|
if (vchSig.size() != COMPACT_SIGNATURE_SIZE) |
|
return false; |
|
int recid = (vchSig[0] - 27) & 3; |
|
bool fComp = ((vchSig[0] - 27) & 4) != 0; |
|
secp256k1_pubkey pubkey; |
|
secp256k1_ecdsa_recoverable_signature sig; |
|
if (!secp256k1_ecdsa_recoverable_signature_parse_compact(secp256k1_context_verify, &sig, &vchSig[1], recid)) { |
|
return false; |
|
} |
|
if (!secp256k1_ecdsa_recover(secp256k1_context_verify, &pubkey, &sig, hash.begin())) { |
|
return false; |
|
} |
|
unsigned char pub[PUBLIC_KEY_SIZE]; |
|
size_t publen = PUBLIC_KEY_SIZE; |
|
secp256k1_ec_pubkey_serialize(secp256k1_context_verify, pub, &publen, &pubkey, fComp ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED); |
|
Set(pub, pub + publen); |
|
return true; |
|
} |
|
|
|
bool CPubKey::IsFullyValid() const { |
|
if (!IsValid()) |
|
return false; |
|
secp256k1_pubkey pubkey; |
|
return secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, &(*this)[0], size()); |
|
} |
|
|
|
bool CPubKey::Decompress() { |
|
if (!IsValid()) |
|
return false; |
|
secp256k1_pubkey pubkey; |
|
if (!secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, &(*this)[0], size())) { |
|
return false; |
|
} |
|
unsigned char pub[PUBLIC_KEY_SIZE]; |
|
size_t publen = PUBLIC_KEY_SIZE; |
|
secp256k1_ec_pubkey_serialize(secp256k1_context_verify, pub, &publen, &pubkey, SECP256K1_EC_UNCOMPRESSED); |
|
Set(pub, pub + publen); |
|
return true; |
|
} |
|
|
|
bool CPubKey::Derive(CPubKey& pubkeyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const { |
|
assert(IsValid()); |
|
assert((nChild >> 31) == 0); |
|
assert(size() == COMPRESSED_PUBLIC_KEY_SIZE); |
|
unsigned char out[64]; |
|
BIP32Hash(cc, nChild, *begin(), begin()+1, out); |
|
memcpy(ccChild.begin(), out+32, 32); |
|
secp256k1_pubkey pubkey; |
|
if (!secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, &(*this)[0], size())) { |
|
return false; |
|
} |
|
if (!secp256k1_ec_pubkey_tweak_add(secp256k1_context_verify, &pubkey, out)) { |
|
return false; |
|
} |
|
unsigned char pub[COMPRESSED_PUBLIC_KEY_SIZE]; |
|
size_t publen = COMPRESSED_PUBLIC_KEY_SIZE; |
|
secp256k1_ec_pubkey_serialize(secp256k1_context_verify, pub, &publen, &pubkey, SECP256K1_EC_COMPRESSED); |
|
pubkeyChild.Set(pub, pub + publen); |
|
return true; |
|
} |
|
|
|
void CExtPubKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const { |
|
code[0] = nDepth; |
|
memcpy(code+1, vchFingerprint, 4); |
|
code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF; |
|
code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF; |
|
memcpy(code+9, chaincode.begin(), 32); |
|
assert(pubkey.size() == CPubKey::COMPRESSED_PUBLIC_KEY_SIZE); |
|
memcpy(code+41, pubkey.begin(), CPubKey::COMPRESSED_PUBLIC_KEY_SIZE); |
|
} |
|
|
|
void CExtPubKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) { |
|
nDepth = code[0]; |
|
memcpy(vchFingerprint, code+1, 4); |
|
nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8]; |
|
memcpy(chaincode.begin(), code+9, 32); |
|
pubkey.Set(code+41, code+BIP32_EXTKEY_SIZE); |
|
} |
|
|
|
bool CExtPubKey::Derive(CExtPubKey &out, unsigned int _nChild) const { |
|
out.nDepth = nDepth + 1; |
|
CKeyID id = pubkey.GetID(); |
|
memcpy(&out.vchFingerprint[0], &id, 4); |
|
out.nChild = _nChild; |
|
return pubkey.Derive(out.pubkey, out.chaincode, _nChild, chaincode); |
|
} |
|
|
|
/* static */ bool CPubKey::CheckLowS(const std::vector<unsigned char>& vchSig) { |
|
secp256k1_ecdsa_signature sig; |
|
if (!ecdsa_signature_parse_der_lax(secp256k1_context_verify, &sig, vchSig.data(), vchSig.size())) { |
|
return false; |
|
} |
|
return (!secp256k1_ecdsa_signature_normalize(secp256k1_context_verify, nullptr, &sig)); |
|
} |
|
|
|
/* static */ int ECCVerifyHandle::refcount = 0; |
|
|
|
ECCVerifyHandle::ECCVerifyHandle() |
|
{ |
|
if (refcount == 0) { |
|
assert(secp256k1_context_verify == nullptr); |
|
secp256k1_context_verify = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); |
|
assert(secp256k1_context_verify != nullptr); |
|
} |
|
refcount++; |
|
} |
|
|
|
ECCVerifyHandle::~ECCVerifyHandle() |
|
{ |
|
refcount--; |
|
if (refcount == 0) { |
|
assert(secp256k1_context_verify != nullptr); |
|
secp256k1_context_destroy(secp256k1_context_verify); |
|
secp256k1_context_verify = nullptr; |
|
} |
|
}
|
|
|