kevacoin/src/hash.h
practicalswift 64fb0ac016 Declare single-argument (non-converting) constructors "explicit"
In order to avoid unintended implicit conversions.
2017-08-16 16:33:25 +02:00

247 lines
7.2 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_HASH_H
#define BITCOIN_HASH_H
#include "crypto/ripemd160.h"
#include "crypto/sha256.h"
#include "prevector.h"
#include "serialize.h"
#include "uint256.h"
#include "version.h"
#include <vector>
typedef uint256 ChainCode;
/** A hasher class for Bitcoin's 256-bit hash (double SHA-256). */
class CHash256 {
private:
CSHA256 sha;
public:
static const size_t OUTPUT_SIZE = CSHA256::OUTPUT_SIZE;
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
unsigned char buf[CSHA256::OUTPUT_SIZE];
sha.Finalize(buf);
sha.Reset().Write(buf, CSHA256::OUTPUT_SIZE).Finalize(hash);
}
CHash256& Write(const unsigned char *data, size_t len) {
sha.Write(data, len);
return *this;
}
CHash256& Reset() {
sha.Reset();
return *this;
}
};
/** A hasher class for Bitcoin's 160-bit hash (SHA-256 + RIPEMD-160). */
class CHash160 {
private:
CSHA256 sha;
public:
static const size_t OUTPUT_SIZE = CRIPEMD160::OUTPUT_SIZE;
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
unsigned char buf[CSHA256::OUTPUT_SIZE];
sha.Finalize(buf);
CRIPEMD160().Write(buf, CSHA256::OUTPUT_SIZE).Finalize(hash);
}
CHash160& Write(const unsigned char *data, size_t len) {
sha.Write(data, len);
return *this;
}
CHash160& Reset() {
sha.Reset();
return *this;
}
};
/** Compute the 256-bit hash of an object. */
template<typename T1>
inline uint256 Hash(const T1 pbegin, const T1 pend)
{
static const unsigned char pblank[1] = {};
uint256 result;
CHash256().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
.Finalize((unsigned char*)&result);
return result;
}
/** Compute the 256-bit hash of the concatenation of two objects. */
template<typename T1, typename T2>
inline uint256 Hash(const T1 p1begin, const T1 p1end,
const T2 p2begin, const T2 p2end) {
static const unsigned char pblank[1] = {};
uint256 result;
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
.Finalize((unsigned char*)&result);
return result;
}
/** Compute the 256-bit hash of the concatenation of three objects. */
template<typename T1, typename T2, typename T3>
inline uint256 Hash(const T1 p1begin, const T1 p1end,
const T2 p2begin, const T2 p2end,
const T3 p3begin, const T3 p3end) {
static const unsigned char pblank[1] = {};
uint256 result;
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
.Write(p3begin == p3end ? pblank : (const unsigned char*)&p3begin[0], (p3end - p3begin) * sizeof(p3begin[0]))
.Finalize((unsigned char*)&result);
return result;
}
/** Compute the 160-bit hash an object. */
template<typename T1>
inline uint160 Hash160(const T1 pbegin, const T1 pend)
{
static unsigned char pblank[1] = {};
uint160 result;
CHash160().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
.Finalize((unsigned char*)&result);
return result;
}
/** Compute the 160-bit hash of a vector. */
inline uint160 Hash160(const std::vector<unsigned char>& vch)
{
return Hash160(vch.begin(), vch.end());
}
/** Compute the 160-bit hash of a vector. */
template<unsigned int N>
inline uint160 Hash160(const prevector<N, unsigned char>& vch)
{
return Hash160(vch.begin(), vch.end());
}
/** A writer stream (for serialization) that computes a 256-bit hash. */
class CHashWriter
{
private:
CHash256 ctx;
const int nType;
const int nVersion;
public:
CHashWriter(int nTypeIn, int nVersionIn) : nType(nTypeIn), nVersion(nVersionIn) {}
int GetType() const { return nType; }
int GetVersion() const { return nVersion; }
void write(const char *pch, size_t size) {
ctx.Write((const unsigned char*)pch, size);
}
// invalidates the object
uint256 GetHash() {
uint256 result;
ctx.Finalize((unsigned char*)&result);
return result;
}
template<typename T>
CHashWriter& operator<<(const T& obj) {
// Serialize to this stream
::Serialize(*this, obj);
return (*this);
}
};
/** Reads data from an underlying stream, while hashing the read data. */
template<typename Source>
class CHashVerifier : public CHashWriter
{
private:
Source* source;
public:
explicit CHashVerifier(Source* source_) : CHashWriter(source_->GetType(), source_->GetVersion()), source(source_) {}
void read(char* pch, size_t nSize)
{
source->read(pch, nSize);
this->write(pch, nSize);
}
void ignore(size_t nSize)
{
char data[1024];
while (nSize > 0) {
size_t now = std::min<size_t>(nSize, 1024);
read(data, now);
nSize -= now;
}
}
template<typename T>
CHashVerifier<Source>& operator>>(T& obj)
{
// Unserialize from this stream
::Unserialize(*this, obj);
return (*this);
}
};
/** Compute the 256-bit hash of an object's serialization. */
template<typename T>
uint256 SerializeHash(const T& obj, int nType=SER_GETHASH, int nVersion=PROTOCOL_VERSION)
{
CHashWriter ss(nType, nVersion);
ss << obj;
return ss.GetHash();
}
unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char>& vDataToHash);
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]);
/** SipHash-2-4 */
class CSipHasher
{
private:
uint64_t v[4];
uint64_t tmp;
int count;
public:
/** Construct a SipHash calculator initialized with 128-bit key (k0, k1) */
CSipHasher(uint64_t k0, uint64_t k1);
/** Hash a 64-bit integer worth of data
* It is treated as if this was the little-endian interpretation of 8 bytes.
* This function can only be used when a multiple of 8 bytes have been written so far.
*/
CSipHasher& Write(uint64_t data);
/** Hash arbitrary bytes. */
CSipHasher& Write(const unsigned char* data, size_t size);
/** Compute the 64-bit SipHash-2-4 of the data written so far. The object remains untouched. */
uint64_t Finalize() const;
};
/** Optimized SipHash-2-4 implementation for uint256.
*
* It is identical to:
* SipHasher(k0, k1)
* .Write(val.GetUint64(0))
* .Write(val.GetUint64(1))
* .Write(val.GetUint64(2))
* .Write(val.GetUint64(3))
* .Finalize()
*/
uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val);
uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256& val, uint32_t extra);
#endif // BITCOIN_HASH_H