You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
264 lines
9.3 KiB
264 lines
9.3 KiB
# Prover implementation for Weierstrass curves of the form |
|
# y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws |
|
# operating on affine and Jacobian coordinates, including the point at infinity |
|
# represented by a 4th variable in coordinates. |
|
|
|
load("group_prover.sage") |
|
|
|
|
|
class affinepoint: |
|
def __init__(self, x, y, infinity=0): |
|
self.x = x |
|
self.y = y |
|
self.infinity = infinity |
|
def __str__(self): |
|
return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity) |
|
|
|
|
|
class jacobianpoint: |
|
def __init__(self, x, y, z, infinity=0): |
|
self.X = x |
|
self.Y = y |
|
self.Z = z |
|
self.Infinity = infinity |
|
def __str__(self): |
|
return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity) |
|
|
|
|
|
def point_at_infinity(): |
|
return jacobianpoint(1, 1, 1, 1) |
|
|
|
|
|
def negate(p): |
|
if p.__class__ == affinepoint: |
|
return affinepoint(p.x, -p.y) |
|
if p.__class__ == jacobianpoint: |
|
return jacobianpoint(p.X, -p.Y, p.Z) |
|
assert(False) |
|
|
|
|
|
def on_weierstrass_curve(A, B, p): |
|
"""Return a set of zero-expressions for an affine point to be on the curve""" |
|
return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'}) |
|
|
|
|
|
def tangential_to_weierstrass_curve(A, B, p12, p3): |
|
"""Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)""" |
|
return constraints(zero={ |
|
(p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve' |
|
}) |
|
|
|
|
|
def colinear(p1, p2, p3): |
|
"""Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear""" |
|
return constraints(zero={ |
|
(p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1', |
|
(p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2', |
|
(p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3' |
|
}) |
|
|
|
|
|
def good_affine_point(p): |
|
return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'}) |
|
|
|
|
|
def good_jacobian_point(p): |
|
return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'}) |
|
|
|
|
|
def good_point(p): |
|
return constraints(nonzero={p.Z^6 : 'nonzero_X'}) |
|
|
|
|
|
def finite(p, *affine_fns): |
|
con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'}) |
|
if p.Z != 0: |
|
return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con) |
|
else: |
|
return con |
|
|
|
def infinite(p): |
|
return constraints(nonzero={p.Infinity : 'infinite_point'}) |
|
|
|
|
|
def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC): |
|
"""Check whether the passed set of coordinates is a valid Jacobian add, given assumptions""" |
|
assumeLaw = (good_affine_point(pa) + |
|
good_affine_point(pb) + |
|
good_jacobian_point(pA) + |
|
good_jacobian_point(pB) + |
|
on_weierstrass_curve(A, B, pa) + |
|
on_weierstrass_curve(A, B, pb) + |
|
finite(pA) + |
|
finite(pB) + |
|
constraints(nonzero={pa.x - pb.x : 'different_x'})) |
|
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) + |
|
colinear(pa, pb, negate(pc)))) |
|
return (assumeLaw, require) |
|
|
|
|
|
def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC): |
|
"""Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions""" |
|
assumeLaw = (good_affine_point(pa) + |
|
good_affine_point(pb) + |
|
good_jacobian_point(pA) + |
|
good_jacobian_point(pB) + |
|
on_weierstrass_curve(A, B, pa) + |
|
on_weierstrass_curve(A, B, pb) + |
|
finite(pA) + |
|
finite(pB) + |
|
constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'})) |
|
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) + |
|
tangential_to_weierstrass_curve(A, B, pa, negate(pc)))) |
|
return (assumeLaw, require) |
|
|
|
|
|
def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC): |
|
assumeLaw = (good_affine_point(pa) + |
|
good_affine_point(pb) + |
|
good_jacobian_point(pA) + |
|
good_jacobian_point(pB) + |
|
on_weierstrass_curve(A, B, pa) + |
|
on_weierstrass_curve(A, B, pb) + |
|
finite(pA) + |
|
finite(pB) + |
|
constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'})) |
|
require = infinite(pC) |
|
return (assumeLaw, require) |
|
|
|
|
|
def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC): |
|
assumeLaw = (good_affine_point(pa) + |
|
good_affine_point(pb) + |
|
good_jacobian_point(pA) + |
|
good_jacobian_point(pB) + |
|
on_weierstrass_curve(A, B, pb) + |
|
infinite(pA) + |
|
finite(pB)) |
|
require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'})) |
|
return (assumeLaw, require) |
|
|
|
|
|
def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC): |
|
assumeLaw = (good_affine_point(pa) + |
|
good_affine_point(pb) + |
|
good_jacobian_point(pA) + |
|
good_jacobian_point(pB) + |
|
on_weierstrass_curve(A, B, pa) + |
|
infinite(pB) + |
|
finite(pA)) |
|
require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'})) |
|
return (assumeLaw, require) |
|
|
|
|
|
def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC): |
|
assumeLaw = (good_affine_point(pa) + |
|
good_affine_point(pb) + |
|
good_jacobian_point(pA) + |
|
good_jacobian_point(pB) + |
|
infinite(pA) + |
|
infinite(pB)) |
|
require = infinite(pC) |
|
return (assumeLaw, require) |
|
|
|
|
|
laws_jacobian_weierstrass = { |
|
'add': law_jacobian_weierstrass_add, |
|
'double': law_jacobian_weierstrass_double, |
|
'add_opposite': law_jacobian_weierstrass_add_opposites, |
|
'add_infinite_a': law_jacobian_weierstrass_add_infinite_a, |
|
'add_infinite_b': law_jacobian_weierstrass_add_infinite_b, |
|
'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab |
|
} |
|
|
|
|
|
def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p): |
|
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field""" |
|
F = Integers(p) |
|
print "Formula %s on Z%i:" % (name, p) |
|
points = [] |
|
for x in xrange(0, p): |
|
for y in xrange(0, p): |
|
point = affinepoint(F(x), F(y)) |
|
r, e = concrete_verify(on_weierstrass_curve(A, B, point)) |
|
if r: |
|
points.append(point) |
|
|
|
for za in xrange(1, p): |
|
for zb in xrange(1, p): |
|
for pa in points: |
|
for pb in points: |
|
for ia in xrange(2): |
|
for ib in xrange(2): |
|
pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia) |
|
pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib) |
|
for branch in xrange(0, branches): |
|
assumeAssert, assumeBranch, pC = formula(branch, pA, pB) |
|
pC.X = F(pC.X) |
|
pC.Y = F(pC.Y) |
|
pC.Z = F(pC.Z) |
|
pC.Infinity = F(pC.Infinity) |
|
r, e = concrete_verify(assumeAssert + assumeBranch) |
|
if r: |
|
match = False |
|
for key in laws_jacobian_weierstrass: |
|
assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC) |
|
r, e = concrete_verify(assumeLaw) |
|
if r: |
|
if match: |
|
print " multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity) |
|
else: |
|
match = True |
|
r, e = concrete_verify(require) |
|
if not r: |
|
print " failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e) |
|
print |
|
|
|
|
|
def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC): |
|
assumeLaw, require = f(A, B, pa, pb, pA, pB, pC) |
|
return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require) |
|
|
|
def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula): |
|
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically""" |
|
R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex') |
|
lift = lambda x: fastfrac(R,x) |
|
ax = lift(ax) |
|
ay = lift(ay) |
|
Az = lift(Az) |
|
bx = lift(bx) |
|
by = lift(by) |
|
Bz = lift(Bz) |
|
Ai = lift(Ai) |
|
Bi = lift(Bi) |
|
|
|
pa = affinepoint(ax, ay, Ai) |
|
pb = affinepoint(bx, by, Bi) |
|
pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai) |
|
pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi) |
|
|
|
res = {} |
|
|
|
for key in laws_jacobian_weierstrass: |
|
res[key] = [] |
|
|
|
print ("Formula " + name + ":") |
|
count = 0 |
|
for branch in xrange(branches): |
|
assumeFormula, assumeBranch, pC = formula(branch, pA, pB) |
|
pC.X = lift(pC.X) |
|
pC.Y = lift(pC.Y) |
|
pC.Z = lift(pC.Z) |
|
pC.Infinity = lift(pC.Infinity) |
|
|
|
for key in laws_jacobian_weierstrass: |
|
res[key].append((check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC), branch)) |
|
|
|
for key in res: |
|
print " %s:" % key |
|
val = res[key] |
|
for x in val: |
|
if x[0] is not None: |
|
print " branch %i: %s" % (x[1], x[0]) |
|
|
|
print
|
|
|