Kevacoin source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

128 lines
4.0 KiB

// Copyright (c) 2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "scheduler.h"
#include <assert.h>
#include <boost/bind.hpp>
#include <utility>
CScheduler::CScheduler() : nThreadsServicingQueue(0), stopRequested(false), stopWhenEmpty(false)
{
}
CScheduler::~CScheduler()
{
assert(nThreadsServicingQueue == 0);
}
#if BOOST_VERSION < 105000
static boost::system_time toPosixTime(const boost::chrono::system_clock::time_point& t)
{
return boost::posix_time::from_time_t(boost::chrono::system_clock::to_time_t(t));
}
#endif
void CScheduler::serviceQueue()
{
boost::unique_lock<boost::mutex> lock(newTaskMutex);
++nThreadsServicingQueue;
// newTaskMutex is locked throughout this loop EXCEPT
// when the thread is waiting or when the user's function
// is called.
while (!shouldStop()) {
try {
while (!shouldStop() && taskQueue.empty()) {
// Wait until there is something to do.
newTaskScheduled.wait(lock);
}
// Wait until either there is a new task, or until
// the time of the first item on the queue:
// wait_until needs boost 1.50 or later; older versions have timed_wait:
#if BOOST_VERSION < 105000
while (!shouldStop() && !taskQueue.empty() &&
newTaskScheduled.timed_wait(lock, toPosixTime(taskQueue.begin()->first))) {
// Keep waiting until timeout
}
#else
// Some boost versions have a conflicting overload of wait_until that returns void.
// Explicitly use a template here to avoid hitting that overload.
while (!shouldStop() && !taskQueue.empty() &&
newTaskScheduled.wait_until<>(lock, taskQueue.begin()->first) != boost::cv_status::timeout) {
// Keep waiting until timeout
}
#endif
// If there are multiple threads, the queue can empty while we're waiting (another
// thread may service the task we were waiting on).
if (shouldStop() || taskQueue.empty())
continue;
Function f = taskQueue.begin()->second;
taskQueue.erase(taskQueue.begin());
// Unlock before calling f, so it can reschedule itself or another task
// without deadlocking:
lock.unlock();
f();
lock.lock();
} catch (...) {
--nThreadsServicingQueue;
throw;
}
}
--nThreadsServicingQueue;
}
void CScheduler::stop(bool drain)
{
{
boost::unique_lock<boost::mutex> lock(newTaskMutex);
if (drain)
stopWhenEmpty = true;
else
stopRequested = true;
}
newTaskScheduled.notify_all();
}
void CScheduler::schedule(CScheduler::Function f, boost::chrono::system_clock::time_point t)
{
{
boost::unique_lock<boost::mutex> lock(newTaskMutex);
taskQueue.insert(std::make_pair(t, f));
}
newTaskScheduled.notify_one();
}
void CScheduler::scheduleFromNow(CScheduler::Function f, int64_t deltaSeconds)
{
schedule(f, boost::chrono::system_clock::now() + boost::chrono::seconds(deltaSeconds));
}
static void Repeat(CScheduler* s, CScheduler::Function f, int64_t deltaSeconds)
{
f();
s->scheduleFromNow(boost::bind(&Repeat, s, f, deltaSeconds), deltaSeconds);
}
void CScheduler::scheduleEvery(CScheduler::Function f, int64_t deltaSeconds)
{
scheduleFromNow(boost::bind(&Repeat, this, f, deltaSeconds), deltaSeconds);
}
size_t CScheduler::getQueueInfo(boost::chrono::system_clock::time_point &first,
boost::chrono::system_clock::time_point &last) const
{
boost::unique_lock<boost::mutex> lock(newTaskMutex);
size_t result = taskQueue.size();
if (!taskQueue.empty()) {
first = taskQueue.begin()->first;
last = taskQueue.rbegin()->first;
}
return result;
}