Kevacoin source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2107 lines
70 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "wallet.h"
#include "base58.h"
#include "checkpoints.h"
#include "coincontrol.h"
#include "net.h"
#include "timedata.h"
#include <boost/algorithm/string/replace.hpp>
#include <openssl/rand.h>
using namespace std;
// Settings
CFeeRate payTxFee(DEFAULT_TRANSACTION_FEE);
bool bSpendZeroConfChange = true;
//////////////////////////////////////////////////////////////////////////////
//
// mapWallet
//
struct CompareValueOnly
{
bool operator()(const pair<int64_t, pair<const CWalletTx*, unsigned int> >& t1,
const pair<int64_t, pair<const CWalletTx*, unsigned int> >& t2) const
{
return t1.first < t2.first;
}
};
const CWalletTx* CWallet::GetWalletTx(const uint256& hash) const
{
LOCK(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator it = mapWallet.find(hash);
if (it == mapWallet.end())
return NULL;
return &(it->second);
}
CPubKey CWallet::GenerateNewKey()
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
bool fCompressed = CanSupportFeature(FEATURE_COMPRPUBKEY); // default to compressed public keys if we want 0.6.0 wallets
RandAddSeedPerfmon();
CKey secret;
secret.MakeNewKey(fCompressed);
// Compressed public keys were introduced in version 0.6.0
if (fCompressed)
SetMinVersion(FEATURE_COMPRPUBKEY);
CPubKey pubkey = secret.GetPubKey();
// Create new metadata
int64_t nCreationTime = GetTime();
mapKeyMetadata[pubkey.GetID()] = CKeyMetadata(nCreationTime);
if (!nTimeFirstKey || nCreationTime < nTimeFirstKey)
nTimeFirstKey = nCreationTime;
if (!AddKeyPubKey(secret, pubkey))
throw std::runtime_error("CWallet::GenerateNewKey() : AddKey failed");
return pubkey;
}
bool CWallet::AddKeyPubKey(const CKey& secret, const CPubKey &pubkey)
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
if (!CCryptoKeyStore::AddKeyPubKey(secret, pubkey))
return false;
if (!fFileBacked)
return true;
if (!IsCrypted()) {
return CWalletDB(strWalletFile).WriteKey(pubkey,
secret.GetPrivKey(),
mapKeyMetadata[pubkey.GetID()]);
}
return true;
}
bool CWallet::AddCryptedKey(const CPubKey &vchPubKey,
const vector<unsigned char> &vchCryptedSecret)
{
if (!CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret))
return false;
if (!fFileBacked)
return true;
{
LOCK(cs_wallet);
if (pwalletdbEncryption)
return pwalletdbEncryption->WriteCryptedKey(vchPubKey,
vchCryptedSecret,
mapKeyMetadata[vchPubKey.GetID()]);
else
return CWalletDB(strWalletFile).WriteCryptedKey(vchPubKey,
vchCryptedSecret,
mapKeyMetadata[vchPubKey.GetID()]);
}
return false;
}
bool CWallet::LoadKeyMetadata(const CPubKey &pubkey, const CKeyMetadata &meta)
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
if (meta.nCreateTime && (!nTimeFirstKey || meta.nCreateTime < nTimeFirstKey))
nTimeFirstKey = meta.nCreateTime;
mapKeyMetadata[pubkey.GetID()] = meta;
return true;
}
bool CWallet::LoadCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret)
{
return CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret);
}
bool CWallet::AddCScript(const CScript& redeemScript)
{
if (!CCryptoKeyStore::AddCScript(redeemScript))
return false;
if (!fFileBacked)
return true;
return CWalletDB(strWalletFile).WriteCScript(Hash160(redeemScript), redeemScript);
}
bool CWallet::LoadCScript(const CScript& redeemScript)
{
/* A sanity check was added in pull #3843 to avoid adding redeemScripts
* that never can be redeemed. However, old wallets may still contain
* these. Do not add them to the wallet and warn. */
if (redeemScript.size() > MAX_SCRIPT_ELEMENT_SIZE)
{
std::string strAddr = CBitcoinAddress(redeemScript.GetID()).ToString();
LogPrintf("%s: Warning: This wallet contains a redeemScript of size %i which exceeds maximum size %i thus can never be redeemed. Do not use address %s.\n",
__func__, redeemScript.size(), MAX_SCRIPT_ELEMENT_SIZE, strAddr);
return true;
}
return CCryptoKeyStore::AddCScript(redeemScript);
}
bool CWallet::Unlock(const SecureString& strWalletPassphrase)
{
CCrypter crypter;
CKeyingMaterial vMasterKey;
{
LOCK(cs_wallet);
BOOST_FOREACH(const MasterKeyMap::value_type& pMasterKey, mapMasterKeys)
{
if(!crypter.SetKeyFromPassphrase(strWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, vMasterKey))
continue; // try another master key
if (CCryptoKeyStore::Unlock(vMasterKey))
return true;
}
}
return false;
}
bool CWallet::ChangeWalletPassphrase(const SecureString& strOldWalletPassphrase, const SecureString& strNewWalletPassphrase)
{
bool fWasLocked = IsLocked();
{
LOCK(cs_wallet);
Lock();
CCrypter crypter;
CKeyingMaterial vMasterKey;
BOOST_FOREACH(MasterKeyMap::value_type& pMasterKey, mapMasterKeys)
{
if(!crypter.SetKeyFromPassphrase(strOldWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, vMasterKey))
return false;
if (CCryptoKeyStore::Unlock(vMasterKey))
{
int64_t nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod);
pMasterKey.second.nDeriveIterations = pMasterKey.second.nDeriveIterations * (100 / ((double)(GetTimeMillis() - nStartTime)));
nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod);
pMasterKey.second.nDeriveIterations = (pMasterKey.second.nDeriveIterations + pMasterKey.second.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2;
if (pMasterKey.second.nDeriveIterations < 25000)
pMasterKey.second.nDeriveIterations = 25000;
LogPrintf("Wallet passphrase changed to an nDeriveIterations of %i\n", pMasterKey.second.nDeriveIterations);
if (!crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Encrypt(vMasterKey, pMasterKey.second.vchCryptedKey))
return false;
CWalletDB(strWalletFile).WriteMasterKey(pMasterKey.first, pMasterKey.second);
if (fWasLocked)
Lock();
return true;
}
}
}
return false;
}
void CWallet::SetBestChain(const CBlockLocator& loc)
{
CWalletDB walletdb(strWalletFile);
walletdb.WriteBestBlock(loc);
}
bool CWallet::SetMinVersion(enum WalletFeature nVersion, CWalletDB* pwalletdbIn, bool fExplicit)
{
LOCK(cs_wallet); // nWalletVersion
if (nWalletVersion >= nVersion)
return true;
// when doing an explicit upgrade, if we pass the max version permitted, upgrade all the way
if (fExplicit && nVersion > nWalletMaxVersion)
nVersion = FEATURE_LATEST;
nWalletVersion = nVersion;
if (nVersion > nWalletMaxVersion)
nWalletMaxVersion = nVersion;
if (fFileBacked)
{
CWalletDB* pwalletdb = pwalletdbIn ? pwalletdbIn : new CWalletDB(strWalletFile);
if (nWalletVersion > 40000)
pwalletdb->WriteMinVersion(nWalletVersion);
if (!pwalletdbIn)
delete pwalletdb;
}
return true;
}
bool CWallet::SetMaxVersion(int nVersion)
{
LOCK(cs_wallet); // nWalletVersion, nWalletMaxVersion
// cannot downgrade below current version
if (nWalletVersion > nVersion)
return false;
nWalletMaxVersion = nVersion;
return true;
}
set<uint256> CWallet::GetConflicts(const uint256& txid, bool includeEquivalent) const
{
set<uint256> result;
AssertLockHeld(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator it = mapWallet.find(txid);
if (it == mapWallet.end())
return result;
const CWalletTx& wtx = it->second;
std::pair<TxSpends::const_iterator, TxSpends::const_iterator> range;
BOOST_FOREACH(const CTxIn& txin, wtx.vin)
{
if (mapTxSpends.count(txin.prevout) <= 1)
continue; // No conflict if zero or one spends
range = mapTxSpends.equal_range(txin.prevout);
for (TxSpends::const_iterator it = range.first; it != range.second; ++it)
if (includeEquivalent || !wtx.IsEquivalentTo(mapWallet.at(it->second)))
result.insert(it->second);
}
return result;
}
void CWallet::SyncMetaData(pair<TxSpends::iterator, TxSpends::iterator> range)
{
// We want all the wallet transactions in range to have the same metadata as
// the oldest (smallest nOrderPos).
// So: find smallest nOrderPos:
int nMinOrderPos = std::numeric_limits<int>::max();
const CWalletTx* copyFrom = NULL;
for (TxSpends::iterator it = range.first; it != range.second; ++it)
{
const uint256& hash = it->second;
int n = mapWallet[hash].nOrderPos;
if (n < nMinOrderPos)
{
nMinOrderPos = n;
copyFrom = &mapWallet[hash];
}
}
// Now copy data from copyFrom to rest:
for (TxSpends::iterator it = range.first; it != range.second; ++it)
{
const uint256& hash = it->second;
CWalletTx* copyTo = &mapWallet[hash];
if (copyFrom == copyTo) continue;
if (!copyFrom->IsEquivalentTo(*copyTo)) continue;
copyTo->mapValue = copyFrom->mapValue;
copyTo->vOrderForm = copyFrom->vOrderForm;
// fTimeReceivedIsTxTime not copied on purpose
// nTimeReceived not copied on purpose
copyTo->nTimeSmart = copyFrom->nTimeSmart;
copyTo->fFromMe = copyFrom->fFromMe;
copyTo->strFromAccount = copyFrom->strFromAccount;
// nOrderPos not copied on purpose
// cached members not copied on purpose
}
}
// Outpoint is spent if any non-conflicted transaction
// spends it:
bool CWallet::IsSpent(const uint256& hash, unsigned int n) const
{
const COutPoint outpoint(hash, n);
pair<TxSpends::const_iterator, TxSpends::const_iterator> range;
range = mapTxSpends.equal_range(outpoint);
for (TxSpends::const_iterator it = range.first; it != range.second; ++it)
{
const uint256& wtxid = it->second;
std::map<uint256, CWalletTx>::const_iterator mit = mapWallet.find(wtxid);
if (mit != mapWallet.end() && mit->second.GetDepthInMainChain() >= 0)
return true; // Spent
}
return false;
}
void CWallet::AddToSpends(const COutPoint& outpoint, const uint256& wtxid)
{
mapTxSpends.insert(make_pair(outpoint, wtxid));
pair<TxSpends::iterator, TxSpends::iterator> range;
range = mapTxSpends.equal_range(outpoint);
SyncMetaData(range);
}
void CWallet::AddToSpends(const uint256& wtxid)
{
assert(mapWallet.count(wtxid));
CWalletTx& thisTx = mapWallet[wtxid];
if (thisTx.IsCoinBase()) // Coinbases don't spend anything!
return;
BOOST_FOREACH(const CTxIn& txin, thisTx.vin)
AddToSpends(txin.prevout, wtxid);
}
bool CWallet::EncryptWallet(const SecureString& strWalletPassphrase)
{
if (IsCrypted())
return false;
CKeyingMaterial vMasterKey;
RandAddSeedPerfmon();
vMasterKey.resize(WALLET_CRYPTO_KEY_SIZE);
RAND_bytes(&vMasterKey[0], WALLET_CRYPTO_KEY_SIZE);
CMasterKey kMasterKey;
RandAddSeedPerfmon();
kMasterKey.vchSalt.resize(WALLET_CRYPTO_SALT_SIZE);
RAND_bytes(&kMasterKey.vchSalt[0], WALLET_CRYPTO_SALT_SIZE);
CCrypter crypter;
int64_t nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, 25000, kMasterKey.nDerivationMethod);
kMasterKey.nDeriveIterations = 2500000 / ((double)(GetTimeMillis() - nStartTime));
nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod);
kMasterKey.nDeriveIterations = (kMasterKey.nDeriveIterations + kMasterKey.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2;
if (kMasterKey.nDeriveIterations < 25000)
kMasterKey.nDeriveIterations = 25000;
LogPrintf("Encrypting Wallet with an nDeriveIterations of %i\n", kMasterKey.nDeriveIterations);
if (!crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod))
return false;
if (!crypter.Encrypt(vMasterKey, kMasterKey.vchCryptedKey))
return false;
{
LOCK(cs_wallet);
mapMasterKeys[++nMasterKeyMaxID] = kMasterKey;
if (fFileBacked)
{
pwalletdbEncryption = new CWalletDB(strWalletFile);
if (!pwalletdbEncryption->TxnBegin())
return false;
pwalletdbEncryption->WriteMasterKey(nMasterKeyMaxID, kMasterKey);
}
if (!EncryptKeys(vMasterKey))
{
if (fFileBacked)
pwalletdbEncryption->TxnAbort();
exit(1); //We now probably have half of our keys encrypted in memory, and half not...die and let the user reload their unencrypted wallet.
}
// Encryption was introduced in version 0.4.0
SetMinVersion(FEATURE_WALLETCRYPT, pwalletdbEncryption, true);
if (fFileBacked)
{
if (!pwalletdbEncryption->TxnCommit())
exit(1); //We now have keys encrypted in memory, but no on disk...die to avoid confusion and let the user reload their unencrypted wallet.
delete pwalletdbEncryption;
pwalletdbEncryption = NULL;
}
Lock();
Unlock(strWalletPassphrase);
NewKeyPool();
Lock();
// Need to completely rewrite the wallet file; if we don't, bdb might keep
// bits of the unencrypted private key in slack space in the database file.
CDB::Rewrite(strWalletFile);
}
NotifyStatusChanged(this);
return true;
}
int64_t CWallet::IncOrderPosNext(CWalletDB *pwalletdb)
{
AssertLockHeld(cs_wallet); // nOrderPosNext
int64_t nRet = nOrderPosNext++;
if (pwalletdb) {
pwalletdb->WriteOrderPosNext(nOrderPosNext);
} else {
CWalletDB(strWalletFile).WriteOrderPosNext(nOrderPosNext);
}
return nRet;
}
CWallet::TxItems CWallet::OrderedTxItems(std::list<CAccountingEntry>& acentries, std::string strAccount)
{
AssertLockHeld(cs_wallet); // mapWallet
CWalletDB walletdb(strWalletFile);
// First: get all CWalletTx and CAccountingEntry into a sorted-by-order multimap.
TxItems txOrdered;
// Note: maintaining indices in the database of (account,time) --> txid and (account, time) --> acentry
// would make this much faster for applications that do this a lot.
for (map<uint256, CWalletTx>::iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
CWalletTx* wtx = &((*it).second);
txOrdered.insert(make_pair(wtx->nOrderPos, TxPair(wtx, (CAccountingEntry*)0)));
}
acentries.clear();
walletdb.ListAccountCreditDebit(strAccount, acentries);
BOOST_FOREACH(CAccountingEntry& entry, acentries)
{
txOrdered.insert(make_pair(entry.nOrderPos, TxPair((CWalletTx*)0, &entry)));
}
return txOrdered;
}
void CWallet::MarkDirty()
{
{
LOCK(cs_wallet);
BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet)
item.second.MarkDirty();
}
}
bool CWallet::AddToWallet(const CWalletTx& wtxIn, bool fFromLoadWallet)
{
uint256 hash = wtxIn.GetHash();
if (fFromLoadWallet)
{
mapWallet[hash] = wtxIn;
mapWallet[hash].BindWallet(this);
AddToSpends(hash);
}
else
{
LOCK(cs_wallet);
// Inserts only if not already there, returns tx inserted or tx found
pair<map<uint256, CWalletTx>::iterator, bool> ret = mapWallet.insert(make_pair(hash, wtxIn));
CWalletTx& wtx = (*ret.first).second;
wtx.BindWallet(this);
bool fInsertedNew = ret.second;
if (fInsertedNew)
{
wtx.nTimeReceived = GetAdjustedTime();
wtx.nOrderPos = IncOrderPosNext();
wtx.nTimeSmart = wtx.nTimeReceived;
if (wtxIn.hashBlock != 0)
{
if (mapBlockIndex.count(wtxIn.hashBlock))
{
unsigned int latestNow = wtx.nTimeReceived;
unsigned int latestEntry = 0;
{
// Tolerate times up to the last timestamp in the wallet not more than 5 minutes into the future
int64_t latestTolerated = latestNow + 300;
std::list<CAccountingEntry> acentries;
TxItems txOrdered = OrderedTxItems(acentries);
for (TxItems::reverse_iterator it = txOrdered.rbegin(); it != txOrdered.rend(); ++it)
{
CWalletTx *const pwtx = (*it).second.first;
if (pwtx == &wtx)
continue;
CAccountingEntry *const pacentry = (*it).second.second;
int64_t nSmartTime;
if (pwtx)
{
nSmartTime = pwtx->nTimeSmart;
if (!nSmartTime)
nSmartTime = pwtx->nTimeReceived;
}
else
nSmartTime = pacentry->nTime;
if (nSmartTime <= latestTolerated)
{
latestEntry = nSmartTime;
if (nSmartTime > latestNow)
latestNow = nSmartTime;
break;
}
}
}
unsigned int& blocktime = mapBlockIndex[wtxIn.hashBlock]->nTime;
wtx.nTimeSmart = std::max(latestEntry, std::min(blocktime, latestNow));
}
else
LogPrintf("AddToWallet() : found %s in block %s not in index\n",
wtxIn.GetHash().ToString(),
wtxIn.hashBlock.ToString());
}
AddToSpends(hash);
}
bool fUpdated = false;
if (!fInsertedNew)
{
// Merge
if (wtxIn.hashBlock != 0 && wtxIn.hashBlock != wtx.hashBlock)
{
wtx.hashBlock = wtxIn.hashBlock;
fUpdated = true;
}
if (wtxIn.nIndex != -1 && (wtxIn.vMerkleBranch != wtx.vMerkleBranch || wtxIn.nIndex != wtx.nIndex))
{
wtx.vMerkleBranch = wtxIn.vMerkleBranch;
wtx.nIndex = wtxIn.nIndex;
fUpdated = true;
}
if (wtxIn.fFromMe && wtxIn.fFromMe != wtx.fFromMe)
{
wtx.fFromMe = wtxIn.fFromMe;
fUpdated = true;
}
}
//// debug print
LogPrintf("AddToWallet %s %s%s\n", wtxIn.GetHash().ToString(), (fInsertedNew ? "new" : ""), (fUpdated ? "update" : ""));
// Write to disk
if (fInsertedNew || fUpdated)
if (!wtx.WriteToDisk())
return false;
// Break debit/credit balance caches:
wtx.MarkDirty();
// Notify UI of new or updated transaction
NotifyTransactionChanged(this, hash, fInsertedNew ? CT_NEW : CT_UPDATED);
// Notifications for existing transactions that now have conflicts with this one
if (fInsertedNew)
{
BOOST_FOREACH(const uint256& conflictHash, wtxIn.GetConflicts(false))
{
CWalletTx& txConflict = mapWallet[conflictHash];
NotifyTransactionChanged(this, conflictHash, CT_UPDATED); //Updates UI table
if (IsFromMe(txConflict) || IsMine(txConflict))
{
NotifyTransactionChanged(this, conflictHash, CT_GOT_CONFLICT); //Throws dialog
// external respend notify
std::string strCmd = GetArg("-respendnotify", "");
if (!strCmd.empty())
{
boost::replace_all(strCmd, "%s", wtxIn.GetHash().GetHex());
boost::replace_all(strCmd, "%t", conflictHash.GetHex());
boost::thread t(runCommand, strCmd); // thread runs free
}
}
}
}
// notify an external script when a wallet transaction comes in or is updated
std::string strCmd = GetArg("-walletnotify", "");
if ( !strCmd.empty())
{
boost::replace_all(strCmd, "%s", wtxIn.GetHash().GetHex());
boost::thread t(runCommand, strCmd); // thread runs free
}
}
return true;
}
// Add a transaction to the wallet, or update it.
// pblock is optional, but should be provided if the transaction is known to be in a block.
// If fUpdate is true, existing transactions will be updated.
bool CWallet::AddToWalletIfInvolvingMe(const CTransaction& tx, const CBlock* pblock, bool fUpdate)
{
{
AssertLockHeld(cs_wallet);
bool fExisted = mapWallet.count(tx.GetHash());
if (fExisted && !fUpdate) return false;
bool fIsConflicting = IsConflicting(tx);
if (fIsConflicting)
nConflictsReceived++;
if (fExisted || IsMine(tx) || IsFromMe(tx) || fIsConflicting)
{
CWalletTx wtx(this,tx);
// Get merkle branch if transaction was found in a block
if (pblock)
wtx.SetMerkleBranch(pblock);
return AddToWallet(wtx);
}
}
return false;
}
void CWallet::SyncTransaction(const CTransaction& tx, const CBlock* pblock)
{
LOCK2(cs_main, cs_wallet);
if (!AddToWalletIfInvolvingMe(tx, pblock, true))
return; // Not one of ours
// If a transaction changes 'conflicted' state, that changes the balance
// available of the outputs it spends. So force those to be
// recomputed, also:
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
if (mapWallet.count(txin.prevout.hash))
mapWallet[txin.prevout.hash].MarkDirty();
}
}
void CWallet::EraseFromWallet(const uint256 &hash)
{
if (!fFileBacked)
return;
{
LOCK(cs_wallet);
if (mapWallet.erase(hash))
CWalletDB(strWalletFile).EraseTx(hash);
}
return;
}
bool CWallet::IsMine(const CTxIn &txin) const
{
{
LOCK(cs_wallet);
map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n < prev.vout.size())
if (IsMine(prev.vout[txin.prevout.n]))
return true;
}
}
return false;
}
int64_t CWallet::GetDebit(const CTxIn &txin) const
{
{
LOCK(cs_wallet);
map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n < prev.vout.size())
if (IsMine(prev.vout[txin.prevout.n]))
return prev.vout[txin.prevout.n].nValue;
}
}
return 0;
}
bool CWallet::IsChange(const CTxOut& txout) const
{
CTxDestination address;
// TODO: fix handling of 'change' outputs. The assumption is that any
// payment to a TX_PUBKEYHASH that is mine but isn't in the address book
// is change. That assumption is likely to break when we implement multisignature
// wallets that return change back into a multi-signature-protected address;
// a better way of identifying which outputs are 'the send' and which are
// 'the change' will need to be implemented (maybe extend CWalletTx to remember
// which output, if any, was change).
if (ExtractDestination(txout.scriptPubKey, address) && ::IsMine(*this, address))
{
LOCK(cs_wallet);
if (!mapAddressBook.count(address))
return true;
}
return false;
}
int64_t CWalletTx::GetTxTime() const
{
int64_t n = nTimeSmart;
return n ? n : nTimeReceived;
}
int CWalletTx::GetRequestCount() const
{
// Returns -1 if it wasn't being tracked
int nRequests = -1;
{
LOCK(pwallet->cs_wallet);
if (IsCoinBase())
{
// Generated block
if (hashBlock != 0)
{
map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(hashBlock);
if (mi != pwallet->mapRequestCount.end())
nRequests = (*mi).second;
}
}
else
{
// Did anyone request this transaction?
map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(GetHash());
if (mi != pwallet->mapRequestCount.end())
{
nRequests = (*mi).second;
// How about the block it's in?
if (nRequests == 0 && hashBlock != 0)
{
map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(hashBlock);
if (mi != pwallet->mapRequestCount.end())
nRequests = (*mi).second;
else
nRequests = 1; // If it's in someone else's block it must have got out
}
}
}
}
return nRequests;
}
void CWalletTx::GetAmounts(list<pair<CTxDestination, int64_t> >& listReceived,
list<pair<CTxDestination, int64_t> >& listSent, int64_t& nFee, string& strSentAccount) const
{
nFee = 0;
listReceived.clear();
listSent.clear();
strSentAccount = strFromAccount;
// Compute fee:
int64_t nDebit = GetDebit();
if (nDebit > 0) // debit>0 means we signed/sent this transaction
{
int64_t nValueOut = GetValueOut();
nFee = nDebit - nValueOut;
}
// Sent/received.
BOOST_FOREACH(const CTxOut& txout, vout)
{
bool fIsMine;
// Only need to handle txouts if AT LEAST one of these is true:
// 1) they debit from us (sent)
// 2) the output is to us (received)
if (nDebit > 0)
{
// Don't report 'change' txouts
if (pwallet->IsChange(txout))
continue;
fIsMine = pwallet->IsMine(txout);
}
else if (!(fIsMine = pwallet->IsMine(txout)))
continue;
// In either case, we need to get the destination address
CTxDestination address;
if (!ExtractDestination(txout.scriptPubKey, address))
{
LogPrintf("CWalletTx::GetAmounts: Unknown transaction type found, txid %s\n",
this->GetHash().ToString());
address = CNoDestination();
}
// If we are debited by the transaction, add the output as a "sent" entry
if (nDebit > 0)
listSent.push_back(make_pair(address, txout.nValue));
// If we are receiving the output, add it as a "received" entry
if (fIsMine)
listReceived.push_back(make_pair(address, txout.nValue));
}
}
void CWalletTx::GetAccountAmounts(const string& strAccount, int64_t& nReceived,
int64_t& nSent, int64_t& nFee) const
{
nReceived = nSent = nFee = 0;
int64_t allFee;
string strSentAccount;
list<pair<CTxDestination, int64_t> > listReceived;
list<pair<CTxDestination, int64_t> > listSent;
GetAmounts(listReceived, listSent, allFee, strSentAccount);
if (strAccount == strSentAccount)
{
BOOST_FOREACH(const PAIRTYPE(CTxDestination,int64_t)& s, listSent)
nSent += s.second;
nFee = allFee;
}
{
LOCK(pwallet->cs_wallet);
BOOST_FOREACH(const PAIRTYPE(CTxDestination,int64_t)& r, listReceived)
{
if (pwallet->mapAddressBook.count(r.first))
{
map<CTxDestination, CAddressBookData>::const_iterator mi = pwallet->mapAddressBook.find(r.first);
if (mi != pwallet->mapAddressBook.end() && (*mi).second.name == strAccount)
nReceived += r.second;
}
else if (strAccount.empty())
{
nReceived += r.second;
}
}
}
}
bool CWalletTx::WriteToDisk()
{
return CWalletDB(pwallet->strWalletFile).WriteTx(GetHash(), *this);
}
// Scan the block chain (starting in pindexStart) for transactions
// from or to us. If fUpdate is true, found transactions that already
// exist in the wallet will be updated.
int CWallet::ScanForWalletTransactions(CBlockIndex* pindexStart, bool fUpdate)
{
int ret = 0;
int64_t nNow = GetTime();
CBlockIndex* pindex = pindexStart;
{
LOCK2(cs_main, cs_wallet);
// no need to read and scan block, if block was created before
// our wallet birthday (as adjusted for block time variability)
while (pindex && nTimeFirstKey && (pindex->nTime < (nTimeFirstKey - 7200)))
pindex = chainActive.Next(pindex);
ShowProgress(_("Rescanning..."), 0); // show rescan progress in GUI as dialog or on splashscreen, if -rescan on startup
double dProgressStart = Checkpoints::GuessVerificationProgress(pindex, false);
double dProgressTip = Checkpoints::GuessVerificationProgress(chainActive.Tip(), false);
while (pindex)
{
if (pindex->nHeight % 100 == 0 && dProgressTip - dProgressStart > 0.0)
ShowProgress(_("Rescanning..."), std::max(1, std::min(99, (int)((Checkpoints::GuessVerificationProgress(pindex, false) - dProgressStart) / (dProgressTip - dProgressStart) * 100))));
CBlock block;
ReadBlockFromDisk(block, pindex);
BOOST_FOREACH(CTransaction& tx, block.vtx)
{
if (AddToWalletIfInvolvingMe(tx, &block, fUpdate))
ret++;
}
pindex = chainActive.Next(pindex);
if (GetTime() >= nNow + 60) {
nNow = GetTime();
LogPrintf("Still rescanning. At block %d. Progress=%f\n", pindex->nHeight, Checkpoints::GuessVerificationProgress(pindex));
}
}
ShowProgress(_("Rescanning..."), 100); // hide progress dialog in GUI
}
return ret;
}
void CWallet::ReacceptWalletTransactions()
{
LOCK2(cs_main, cs_wallet);
BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet)
{
const uint256& wtxid = item.first;
CWalletTx& wtx = item.second;
assert(wtx.GetHash() == wtxid);
int nDepth = wtx.GetDepthInMainChain();
if (!wtx.IsCoinBase() && nDepth < 0 && (IsMine(wtx) || IsFromMe(wtx)))
{
// Try to add to memory pool
LOCK(mempool.cs);
wtx.AcceptToMemoryPool(false);
}
}
}
void CWalletTx::RelayWalletTransaction()
{
if (!IsCoinBase())
{
if (GetDepthInMainChain() == 0) {
LogPrintf("Relaying wtx %s\n", GetHash().ToString());
RelayTransaction((CTransaction)*this);
}
}
}
set<uint256> CWalletTx::GetConflicts(bool includeEquivalent) const
{
set<uint256> result;
if (pwallet != NULL)
{
uint256 myHash = GetHash();
result = pwallet->GetConflicts(myHash, includeEquivalent);
result.erase(myHash);
}
return result;
}
void CWallet::ResendWalletTransactions()
{
// Do this infrequently and randomly to avoid giving away
// that these are our transactions.
if (GetTime() < nNextResend)
return;
bool fFirst = (nNextResend == 0);
nNextResend = GetTime() + GetRand(30 * 60);
if (fFirst)
return;
// Only do it if there's been a new block since last time
if (nTimeBestReceived < nLastResend)
return;
nLastResend = GetTime();
// Rebroadcast any of our txes that aren't in a block yet
LogPrintf("ResendWalletTransactions()\n");
{
LOCK(cs_wallet);
// Sort them in chronological order
multimap<unsigned int, CWalletTx*> mapSorted;
BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet)
{
CWalletTx& wtx = item.second;
// Don't rebroadcast until it's had plenty of time that
// it should have gotten in already by now.
if (nTimeBestReceived - (int64_t)wtx.nTimeReceived > 5 * 60)
mapSorted.insert(make_pair(wtx.nTimeReceived, &wtx));
}
BOOST_FOREACH(PAIRTYPE(const unsigned int, CWalletTx*)& item, mapSorted)
{
CWalletTx& wtx = *item.second;
wtx.RelayWalletTransaction();
}
}
}
//////////////////////////////////////////////////////////////////////////////
//
// Actions
//
int64_t CWallet::GetBalance() const
{
int64_t nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (pcoin->IsTrusted())
nTotal += pcoin->GetAvailableCredit();
}
}
return nTotal;
}
int64_t CWallet::GetUnconfirmedBalance() const
{
int64_t nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (!IsFinalTx(*pcoin) || (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0))
nTotal += pcoin->GetAvailableCredit();
}
}
return nTotal;
}
int64_t CWallet::GetImmatureBalance() const
{
int64_t nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
nTotal += pcoin->GetImmatureCredit();
}
}
return nTotal;
}
// populate vCoins with vector of spendable COutputs
void CWallet::AvailableCoins(vector<COutput>& vCoins, bool fOnlyConfirmed, const CCoinControl *coinControl) const
{
vCoins.clear();
{
LOCK2(cs_main, cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const uint256& wtxid = it->first;
const CWalletTx* pcoin = &(*it).second;
if (!IsFinalTx(*pcoin))
continue;
if (fOnlyConfirmed && !pcoin->IsTrusted())
continue;
if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0)
continue;
int nDepth = pcoin->GetDepthInMainChain();
if (nDepth < 0)
continue;
for (unsigned int i = 0; i < pcoin->vout.size(); i++) {
if (!(IsSpent(wtxid, i)) && IsMine(pcoin->vout[i]) &&
!IsLockedCoin((*it).first, i) && pcoin->vout[i].nValue > 0 &&
(!coinControl || !coinControl->HasSelected() || coinControl->IsSelected((*it).first, i)))
vCoins.push_back(COutput(pcoin, i, nDepth));
}
}
}
}
static void ApproximateBestSubset(vector<pair<int64_t, pair<const CWalletTx*,unsigned int> > >vValue, int64_t nTotalLower, int64_t nTargetValue,
vector<char>& vfBest, int64_t& nBest, int iterations = 1000)
{
vector<char> vfIncluded;
vfBest.assign(vValue.size(), true);
nBest = nTotalLower;
seed_insecure_rand();
for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++)
{
vfIncluded.assign(vValue.size(), false);
int64_t nTotal = 0;
bool fReachedTarget = false;
for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++)
{
for (unsigned int i = 0; i < vValue.size(); i++)
{
//The solver here uses a randomized algorithm,
//the randomness serves no real security purpose but is just
//needed to prevent degenerate behavior and it is important
//that the rng fast. We do not use a constant random sequence,
//because there may be some privacy improvement by making
//the selection random.
if (nPass == 0 ? insecure_rand()&1 : !vfIncluded[i])
{
nTotal += vValue[i].first;
vfIncluded[i] = true;
if (nTotal >= nTargetValue)
{
fReachedTarget = true;
if (nTotal < nBest)
{
nBest = nTotal;
vfBest = vfIncluded;
}
nTotal -= vValue[i].first;
vfIncluded[i] = false;
}
}
}
}
}
}
bool CWallet::SelectCoinsMinConf(int64_t nTargetValue, int nConfMine, int nConfTheirs, vector<COutput> vCoins,
set<pair<const CWalletTx*,unsigned int> >& setCoinsRet, int64_t& nValueRet) const
{
setCoinsRet.clear();
nValueRet = 0;
// List of values less than target
pair<int64_t, pair<const CWalletTx*,unsigned int> > coinLowestLarger;
coinLowestLarger.first = std::numeric_limits<int64_t>::max();
coinLowestLarger.second.first = NULL;
vector<pair<int64_t, pair<const CWalletTx*,unsigned int> > > vValue;
int64_t nTotalLower = 0;
random_shuffle(vCoins.begin(), vCoins.end(), GetRandInt);
BOOST_FOREACH(COutput output, vCoins)
{
const CWalletTx *pcoin = output.tx;
if (output.nDepth < (pcoin->IsFromMe() ? nConfMine : nConfTheirs))
continue;
int i = output.i;
int64_t n = pcoin->vout[i].nValue;
pair<int64_t,pair<const CWalletTx*,unsigned int> > coin = make_pair(n,make_pair(pcoin, i));
if (n == nTargetValue)
{
setCoinsRet.insert(coin.second);
nValueRet += coin.first;
return true;
}
else if (n < nTargetValue + CENT)
{
vValue.push_back(coin);
nTotalLower += n;
}
else if (n < coinLowestLarger.first)
{
coinLowestLarger = coin;
}
}
if (nTotalLower == nTargetValue)
{
for (unsigned int i = 0; i < vValue.size(); ++i)
{
setCoinsRet.insert(vValue[i].second);
nValueRet += vValue[i].first;
}
return true;
}
if (nTotalLower < nTargetValue)
{
if (coinLowestLarger.second.first == NULL)
return false;
setCoinsRet.insert(coinLowestLarger.second);
nValueRet += coinLowestLarger.first;
return true;
}
// Solve subset sum by stochastic approximation
sort(vValue.rbegin(), vValue.rend(), CompareValueOnly());
vector<char> vfBest;
int64_t nBest;
ApproximateBestSubset(vValue, nTotalLower, nTargetValue, vfBest, nBest, 1000);
if (nBest != nTargetValue && nTotalLower >= nTargetValue + CENT)
ApproximateBestSubset(vValue, nTotalLower, nTargetValue + CENT, vfBest, nBest, 1000);
// If we have a bigger coin and (either the stochastic approximation didn't find a good solution,
// or the next bigger coin is closer), return the bigger coin
if (coinLowestLarger.second.first &&
((nBest != nTargetValue && nBest < nTargetValue + CENT) || coinLowestLarger.first <= nBest))
{
setCoinsRet.insert(coinLowestLarger.second);
nValueRet += coinLowestLarger.first;
}
else {
for (unsigned int i = 0; i < vValue.size(); i++)
if (vfBest[i])
{
setCoinsRet.insert(vValue[i].second);
nValueRet += vValue[i].first;
}
LogPrint("selectcoins", "SelectCoins() best subset: ");
for (unsigned int i = 0; i < vValue.size(); i++)
if (vfBest[i])
LogPrint("selectcoins", "%s ", FormatMoney(vValue[i].first));
LogPrint("selectcoins", "total %s\n", FormatMoney(nBest));
}
return true;
}
bool CWallet::SelectCoins(int64_t nTargetValue, set<pair<const CWalletTx*,unsigned int> >& setCoinsRet, int64_t& nValueRet, const CCoinControl* coinControl) const
{
vector<COutput> vCoins;
AvailableCoins(vCoins, true, coinControl);
// coin control -> return all selected outputs (we want all selected to go into the transaction for sure)
if (coinControl && coinControl->HasSelected())
{
BOOST_FOREACH(const COutput& out, vCoins)
{
nValueRet += out.tx->vout[out.i].nValue;
setCoinsRet.insert(make_pair(out.tx, out.i));
}
return (nValueRet >= nTargetValue);
}
return (SelectCoinsMinConf(nTargetValue, 1, 6, vCoins, setCoinsRet, nValueRet) ||
SelectCoinsMinConf(nTargetValue, 1, 1, vCoins, setCoinsRet, nValueRet) ||
(bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue, 0, 1, vCoins, setCoinsRet, nValueRet)));
}
bool CWallet::CreateTransaction(const vector<pair<CScript, int64_t> >& vecSend,
CWalletTx& wtxNew, CReserveKey& reservekey, int64_t& nFeeRet, std::string& strFailReason, const CCoinControl* coinControl)
{
int64_t nValue = 0;
BOOST_FOREACH (const PAIRTYPE(CScript, int64_t)& s, vecSend)
{
if (nValue < 0)
{
strFailReason = _("Transaction amounts must be positive");
return false;
}
nValue += s.second;
}
if (vecSend.empty() || nValue < 0)
{
strFailReason = _("Transaction amounts must be positive");
return false;
}
wtxNew.BindWallet(this);
CMutableTransaction txNew;
{
LOCK2(cs_main, cs_wallet);
{
nFeeRet = payTxFee.GetFeePerK();
while (true)
{
txNew.vin.clear();
txNew.vout.clear();
wtxNew.fFromMe = true;
int64_t nTotalValue = nValue + nFeeRet;
double dPriority = 0;
// vouts to the payees
BOOST_FOREACH (const PAIRTYPE(CScript, int64_t)& s, vecSend)
{
CTxOut txout(s.second, s.first);
if (txout.IsDust(CTransaction::minRelayTxFee))
{
strFailReason = _("Transaction amount too small");
return false;
}
txNew.vout.push_back(txout);
}
// Choose coins to use
set<pair<const CWalletTx*,unsigned int> > setCoins;
int64_t nValueIn = 0;
if (!SelectCoins(nTotalValue, setCoins, nValueIn, coinControl))
{
strFailReason = _("Insufficient funds");
return false;
}
BOOST_FOREACH(PAIRTYPE(const CWalletTx*, unsigned int) pcoin, setCoins)
{
int64_t nCredit = pcoin.first->vout[pcoin.second].nValue;
//The priority after the next block (depth+1) is used instead of the current,
//reflecting an assumption the user would accept a bit more delay for
//a chance at a free transaction.
dPriority += (double)nCredit * (pcoin.first->GetDepthInMainChain()+1);
}
int64_t nChange = nValueIn - nValue - nFeeRet;
if (nChange > 0)
{
// Fill a vout to ourself
// TODO: pass in scriptChange instead of reservekey so
// change transaction isn't always pay-to-bitcoin-address
CScript scriptChange;
// coin control: send change to custom address
if (coinControl && !boost::get<CNoDestination>(&coinControl->destChange))
scriptChange.SetDestination(coinControl->destChange);
// no coin control: send change to newly generated address
else
{
// Note: We use a new key here to keep it from being obvious which side is the change.
// The drawback is that by not reusing a previous key, the change may be lost if a
// backup is restored, if the backup doesn't have the new private key for the change.
// If we reused the old key, it would be possible to add code to look for and
// rediscover unknown transactions that were written with keys of ours to recover
// post-backup change.
// Reserve a new key pair from key pool
CPubKey vchPubKey;
bool ret;
ret = reservekey.GetReservedKey(vchPubKey);
assert(ret); // should never fail, as we just unlocked
scriptChange.SetDestination(vchPubKey.GetID());
}
CTxOut newTxOut(nChange, scriptChange);
// Never create dust outputs; if we would, just
// add the dust to the fee.
if (newTxOut.IsDust(CTransaction::minRelayTxFee))
{
nFeeRet += nChange;
reservekey.ReturnKey();
}
else
{
// Insert change txn at random position:
vector<CTxOut>::iterator position = txNew.vout.begin()+GetRandInt(txNew.vout.size()+1);
txNew.vout.insert(position, newTxOut);
}
}
else
reservekey.ReturnKey();
// Fill vin
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
txNew.vin.push_back(CTxIn(coin.first->GetHash(),coin.second));
// Sign
int nIn = 0;
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
if (!SignSignature(*this, *coin.first, txNew, nIn++))
{
strFailReason = _("Signing transaction failed");
return false;
}
// Embed the constructed transaction data in wtxNew.
*static_cast<CTransaction*>(&wtxNew) = CTransaction(txNew);
// Limit size
unsigned int nBytes = ::GetSerializeSize(*(CTransaction*)&wtxNew, SER_NETWORK, PROTOCOL_VERSION);
if (nBytes >= MAX_STANDARD_TX_SIZE)
{
strFailReason = _("Transaction too large");
return false;
}
dPriority = wtxNew.ComputePriority(dPriority, nBytes);
// Check that enough fee is included
int64_t nPayFee = payTxFee.GetFee(nBytes);
bool fAllowFree = AllowFree(dPriority);
int64_t nMinFee = GetMinFee(wtxNew, nBytes, fAllowFree, GMF_SEND);
if (nFeeRet < max(nPayFee, nMinFee))
{
nFeeRet = max(nPayFee, nMinFee);
continue;
}
wtxNew.fTimeReceivedIsTxTime = true;
break;
}
}
}
return true;
}
bool CWallet::CreateTransaction(CScript scriptPubKey, int64_t nValue,
CWalletTx& wtxNew, CReserveKey& reservekey, int64_t& nFeeRet, std::string& strFailReason, const CCoinControl* coinControl)
{
vector< pair<CScript, int64_t> > vecSend;
vecSend.push_back(make_pair(scriptPubKey, nValue));
return CreateTransaction(vecSend, wtxNew, reservekey, nFeeRet, strFailReason, coinControl);
}
// Call after CreateTransaction unless you want to abort
bool CWallet::CommitTransaction(CWalletTx& wtxNew, CReserveKey& reservekey)
{
{
LOCK2(cs_main, cs_wallet);
LogPrintf("CommitTransaction:\n%s", wtxNew.ToString());
{
// This is only to keep the database open to defeat the auto-flush for the
// duration of this scope. This is the only place where this optimization
// maybe makes sense; please don't do it anywhere else.
CWalletDB* pwalletdb = fFileBacked ? new CWalletDB(strWalletFile,"r") : NULL;
// Take key pair from key pool so it won't be used again
reservekey.KeepKey();
// Add tx to wallet, because if it has change it's also ours,
// otherwise just for transaction history.
AddToWallet(wtxNew);
// Notify that old coins are spent
set<CWalletTx*> setCoins;
BOOST_FOREACH(const CTxIn& txin, wtxNew.vin)
{
CWalletTx &coin = mapWallet[txin.prevout.hash];
coin.BindWallet(this);
NotifyTransactionChanged(this, coin.GetHash(), CT_UPDATED);
}
if (fFileBacked)
delete pwalletdb;
}
// Track how many getdata requests our transaction gets
mapRequestCount[wtxNew.GetHash()] = 0;
// Broadcast
if (!wtxNew.AcceptToMemoryPool(false))
{
// This must not fail. The transaction has already been signed and recorded.
LogPrintf("CommitTransaction() : Error: Transaction not valid");
return false;
}
wtxNew.RelayWalletTransaction();
}
return true;
}
string CWallet::SendMoney(CScript scriptPubKey, int64_t nValue, CWalletTx& wtxNew)
{
CReserveKey reservekey(this);
int64_t nFeeRequired;
if (IsLocked())
{
string strError = _("Error: Wallet locked, unable to create transaction!");
LogPrintf("SendMoney() : %s", strError);
return strError;
}
string strError;
if (!CreateTransaction(scriptPubKey, nValue, wtxNew, reservekey, nFeeRequired, strError))
{
if (nValue + nFeeRequired > GetBalance())
strError = strprintf(_("Error: This transaction requires a transaction fee of at least %s because of its amount, complexity, or use of recently received funds!"), FormatMoney(nFeeRequired));
LogPrintf("SendMoney() : %s\n", strError);
return strError;
}
if (!CommitTransaction(wtxNew, reservekey))
return _("Error: The transaction was rejected! This might happen if some of the coins in your wallet were already spent, such as if you used a copy of wallet.dat and coins were spent in the copy but not marked as spent here.");
return "";
}
string CWallet::SendMoneyToDestination(const CTxDestination& address, int64_t nValue, CWalletTx& wtxNew)
{
// Check amount
if (nValue <= 0)
return _("Invalid amount");
if (nValue > GetBalance())
return _("Insufficient funds");
// Parse Bitcoin address
CScript scriptPubKey;
scriptPubKey.SetDestination(address);
return SendMoney(scriptPubKey, nValue, wtxNew);
}
DBErrors CWallet::LoadWallet(bool& fFirstRunRet)
{
if (!fFileBacked)
return DB_LOAD_OK;
fFirstRunRet = false;
DBErrors nLoadWalletRet = CWalletDB(strWalletFile,"cr+").LoadWallet(this);
if (nLoadWalletRet == DB_NEED_REWRITE)
{
if (CDB::Rewrite(strWalletFile, "\x04pool"))
{
LOCK(cs_wallet);
setKeyPool.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// the requires a new key.
}
}
if (nLoadWalletRet != DB_LOAD_OK)
return nLoadWalletRet;
fFirstRunRet = !vchDefaultKey.IsValid();
uiInterface.LoadWallet(this);
return DB_LOAD_OK;
}
DBErrors CWallet::ZapWalletTx(std::vector<CWalletTx>& vWtx)
{
if (!fFileBacked)
return DB_LOAD_OK;
DBErrors nZapWalletTxRet = CWalletDB(strWalletFile,"cr+").ZapWalletTx(this, vWtx);
if (nZapWalletTxRet == DB_NEED_REWRITE)
{
if (CDB::Rewrite(strWalletFile, "\x04pool"))
{
LOCK(cs_wallet);
setKeyPool.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// the requires a new key.
}
}
if (nZapWalletTxRet != DB_LOAD_OK)
return nZapWalletTxRet;
return DB_LOAD_OK;
}
bool CWallet::SetAddressBook(const CTxDestination& address, const string& strName, const string& strPurpose)
{
bool fUpdated = false;
{
LOCK(cs_wallet); // mapAddressBook
std::map<CTxDestination, CAddressBookData>::iterator mi = mapAddressBook.find(address);
fUpdated = mi != mapAddressBook.end();
mapAddressBook[address].name = strName;
if (!strPurpose.empty()) /* update purpose only if requested */
mapAddressBook[address].purpose = strPurpose;
}
NotifyAddressBookChanged(this, address, strName, ::IsMine(*this, address),
strPurpose, (fUpdated ? CT_UPDATED : CT_NEW) );
if (!fFileBacked)
return false;
if (!strPurpose.empty() && !CWalletDB(strWalletFile).WritePurpose(CBitcoinAddress(address).ToString(), strPurpose))
return false;
return CWalletDB(strWalletFile).WriteName(CBitcoinAddress(address).ToString(), strName);
}
bool CWallet::DelAddressBook(const CTxDestination& address)
{
{
LOCK(cs_wallet); // mapAddressBook
if(fFileBacked)
{
// Delete destdata tuples associated with address
std::string strAddress = CBitcoinAddress(address).ToString();
BOOST_FOREACH(const PAIRTYPE(string, string) &item, mapAddressBook[address].destdata)
{
CWalletDB(strWalletFile).EraseDestData(strAddress, item.first);
}
}
mapAddressBook.erase(address);
}
NotifyAddressBookChanged(this, address, "", ::IsMine(*this, address), "", CT_DELETED);
if (!fFileBacked)
return false;
CWalletDB(strWalletFile).ErasePurpose(CBitcoinAddress(address).ToString());
return CWalletDB(strWalletFile).EraseName(CBitcoinAddress(address).ToString());
}
bool CWallet::SetDefaultKey(const CPubKey &vchPubKey)
{
if (fFileBacked)
{
if (!CWalletDB(strWalletFile).WriteDefaultKey(vchPubKey))
return false;
}
vchDefaultKey = vchPubKey;
return true;
}
//
// Mark old keypool keys as used,
// and generate all new keys
//
bool CWallet::NewKeyPool()
{
{
LOCK(cs_wallet);
CWalletDB walletdb(strWalletFile);
BOOST_FOREACH(int64_t nIndex, setKeyPool)
walletdb.ErasePool(nIndex);
setKeyPool.clear();
if (IsLocked())
return false;
int64_t nKeys = max(GetArg("-keypool", 100), (int64_t)0);
for (int i = 0; i < nKeys; i++)
{
int64_t nIndex = i+1;
walletdb.WritePool(nIndex, CKeyPool(GenerateNewKey()));
setKeyPool.insert(nIndex);
}
LogPrintf("CWallet::NewKeyPool wrote %d new keys\n", nKeys);
}
return true;
}
bool CWallet::TopUpKeyPool(unsigned int kpSize)
{
{
LOCK(cs_wallet);
if (IsLocked())
return false;
CWalletDB walletdb(strWalletFile);
// Top up key pool
unsigned int nTargetSize;
if (kpSize > 0)
nTargetSize = kpSize;
else
nTargetSize = max(GetArg("-keypool", 100), (int64_t) 0);
while (setKeyPool.size() < (nTargetSize + 1))
{
int64_t nEnd = 1;
if (!setKeyPool.empty())
nEnd = *(--setKeyPool.end()) + 1;
if (!walletdb.WritePool(nEnd, CKeyPool(GenerateNewKey())))
throw runtime_error("TopUpKeyPool() : writing generated key failed");
setKeyPool.insert(nEnd);
LogPrintf("keypool added key %d, size=%u\n", nEnd, setKeyPool.size());
}
}
return true;
}
void CWallet::ReserveKeyFromKeyPool(int64_t& nIndex, CKeyPool& keypool)
{
nIndex = -1;
keypool.vchPubKey = CPubKey();
{
LOCK(cs_wallet);
if (!IsLocked())
TopUpKeyPool();
// Get the oldest key
if(setKeyPool.empty())
return;
CWalletDB walletdb(strWalletFile);
nIndex = *(setKeyPool.begin());
setKeyPool.erase(setKeyPool.begin());
if (!walletdb.ReadPool(nIndex, keypool))
throw runtime_error("ReserveKeyFromKeyPool() : read failed");
if (!HaveKey(keypool.vchPubKey.GetID()))
throw runtime_error("ReserveKeyFromKeyPool() : unknown key in key pool");
assert(keypool.vchPubKey.IsValid());
LogPrintf("keypool reserve %d\n", nIndex);
}
}
void CWallet::KeepKey(int64_t nIndex)
{
// Remove from key pool
if (fFileBacked)
{
CWalletDB walletdb(strWalletFile);
walletdb.ErasePool(nIndex);
}
LogPrintf("keypool keep %d\n", nIndex);
}
void CWallet::ReturnKey(int64_t nIndex)
{
// Return to key pool
{
LOCK(cs_wallet);
setKeyPool.insert(nIndex);
}
LogPrintf("keypool return %d\n", nIndex);
}
bool CWallet::GetKeyFromPool(CPubKey& result)
{
int64_t nIndex = 0;
CKeyPool keypool;
{
LOCK(cs_wallet);
ReserveKeyFromKeyPool(nIndex, keypool);
if (nIndex == -1)
{
if (IsLocked()) return false;
result = GenerateNewKey();
return true;
}
KeepKey(nIndex);
result = keypool.vchPubKey;
}
return true;
}
int64_t CWallet::GetOldestKeyPoolTime()
{
int64_t nIndex = 0;
CKeyPool keypool;
ReserveKeyFromKeyPool(nIndex, keypool);
if (nIndex == -1)
return GetTime();
ReturnKey(nIndex);
return keypool.nTime;
}
std::map<CTxDestination, int64_t> CWallet::GetAddressBalances()
{
map<CTxDestination, int64_t> balances;
{
LOCK(cs_wallet);
BOOST_FOREACH(PAIRTYPE(uint256, CWalletTx) walletEntry, mapWallet)
{
CWalletTx *pcoin = &walletEntry.second;
if (!IsFinalTx(*pcoin) || !pcoin->IsTrusted())
continue;
if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0)
continue;
int nDepth = pcoin->GetDepthInMainChain();
if (nDepth < (pcoin->IsFromMe() ? 0 : 1))
continue;
for (unsigned int i = 0; i < pcoin->vout.size(); i++)
{
CTxDestination addr;
if (!IsMine(pcoin->vout[i]))
continue;
if(!ExtractDestination(pcoin->vout[i].scriptPubKey, addr))
continue;
int64_t n = IsSpent(walletEntry.first, i) ? 0 : pcoin->vout[i].nValue;
if (!balances.count(addr))
balances[addr] = 0;
balances[addr] += n;
}
}
}
return balances;
}
set< set<CTxDestination> > CWallet::GetAddressGroupings()
{
AssertLockHeld(cs_wallet); // mapWallet
set< set<CTxDestination> > groupings;
set<CTxDestination> grouping;
BOOST_FOREACH(PAIRTYPE(uint256, CWalletTx) walletEntry, mapWallet)
{
CWalletTx *pcoin = &walletEntry.second;
if (pcoin->vin.size() > 0)
{
bool any_mine = false;
// group all input addresses with each other
BOOST_FOREACH(CTxIn txin, pcoin->vin)
{
CTxDestination address;
if(!IsMine(txin)) /* If this input isn't mine, ignore it */
continue;
if(!ExtractDestination(mapWallet[txin.prevout.hash].vout[txin.prevout.n].scriptPubKey, address))
continue;
grouping.insert(address);
any_mine = true;
}
// group change with input addresses
if (any_mine)
{
BOOST_FOREACH(CTxOut txout, pcoin->vout)
if (IsChange(txout))
{
CTxDestination txoutAddr;
if(!ExtractDestination(txout.scriptPubKey, txoutAddr))
continue;
grouping.insert(txoutAddr);
}
}
if (grouping.size() > 0)
{
groupings.insert(grouping);
grouping.clear();
}
}
// group lone addrs by themselves
for (unsigned int i = 0; i < pcoin->vout.size(); i++)
if (IsMine(pcoin->vout[i]))
{
CTxDestination address;
if(!ExtractDestination(pcoin->vout[i].scriptPubKey, address))
continue;
grouping.insert(address);
groupings.insert(grouping);
grouping.clear();
}
}
set< set<CTxDestination>* > uniqueGroupings; // a set of pointers to groups of addresses
map< CTxDestination, set<CTxDestination>* > setmap; // map addresses to the unique group containing it
BOOST_FOREACH(set<CTxDestination> grouping, groupings)
{
// make a set of all the groups hit by this new group
set< set<CTxDestination>* > hits;
map< CTxDestination, set<CTxDestination>* >::iterator it;
BOOST_FOREACH(CTxDestination address, grouping)
if ((it = setmap.find(address)) != setmap.end())
hits.insert((*it).second);
// merge all hit groups into a new single group and delete old groups
set<CTxDestination>* merged = new set<CTxDestination>(grouping);
BOOST_FOREACH(set<CTxDestination>* hit, hits)
{
merged->insert(hit->begin(), hit->end());
uniqueGroupings.erase(hit);
delete hit;
}
uniqueGroupings.insert(merged);
// update setmap
BOOST_FOREACH(CTxDestination element, *merged)
setmap[element] = merged;
}
set< set<CTxDestination> > ret;
BOOST_FOREACH(set<CTxDestination>* uniqueGrouping, uniqueGroupings)
{
ret.insert(*uniqueGrouping);
delete uniqueGrouping;
}
return ret;
}
set<CTxDestination> CWallet::GetAccountAddresses(string strAccount) const
{
AssertLockHeld(cs_wallet); // mapWallet
set<CTxDestination> result;
BOOST_FOREACH(const PAIRTYPE(CTxDestination, CAddressBookData)& item, mapAddressBook)
{
const CTxDestination& address = item.first;
const string& strName = item.second.name;
if (strName == strAccount)
result.insert(address);
}
return result;
}
bool CReserveKey::GetReservedKey(CPubKey& pubkey)
{
if (nIndex == -1)
{
CKeyPool keypool;
pwallet->ReserveKeyFromKeyPool(nIndex, keypool);
if (nIndex != -1)
vchPubKey = keypool.vchPubKey;
else {
if (pwallet->vchDefaultKey.IsValid()) {
LogPrintf("CReserveKey::GetReservedKey(): Warning: Using default key instead of a new key, top up your keypool!");
vchPubKey = pwallet->vchDefaultKey;
} else
return false;
}
}
assert(vchPubKey.IsValid());
pubkey = vchPubKey;
return true;
}
void CReserveKey::KeepKey()
{
if (nIndex != -1)
pwallet->KeepKey(nIndex);
nIndex = -1;
vchPubKey = CPubKey();
}
void CReserveKey::ReturnKey()
{
if (nIndex != -1)
pwallet->ReturnKey(nIndex);
nIndex = -1;
vchPubKey = CPubKey();
}
void CWallet::GetAllReserveKeys(set<CKeyID>& setAddress) const
{
setAddress.clear();
CWalletDB walletdb(strWalletFile);
LOCK2(cs_main, cs_wallet);
BOOST_FOREACH(const int64_t& id, setKeyPool)
{
CKeyPool keypool;
if (!walletdb.ReadPool(id, keypool))
throw runtime_error("GetAllReserveKeyHashes() : read failed");
assert(keypool.vchPubKey.IsValid());
CKeyID keyID = keypool.vchPubKey.GetID();
if (!HaveKey(keyID))
throw runtime_error("GetAllReserveKeyHashes() : unknown key in key pool");
setAddress.insert(keyID);
}
}
void CWallet::UpdatedTransaction(const uint256 &hashTx)
{
{
LOCK(cs_wallet);
// Only notify UI if this transaction is in this wallet
map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(hashTx);
if (mi != mapWallet.end())
NotifyTransactionChanged(this, hashTx, CT_UPDATED);
}
}
void CWallet::LockCoin(COutPoint& output)
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.insert(output);
}
void CWallet::UnlockCoin(COutPoint& output)
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.erase(output);
}
void CWallet::UnlockAllCoins()
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.clear();
}
bool CWallet::IsLockedCoin(uint256 hash, unsigned int n) const
{
AssertLockHeld(cs_wallet); // setLockedCoins
COutPoint outpt(hash, n);
return (setLockedCoins.count(outpt) > 0);
}
void CWallet::ListLockedCoins(std::vector<COutPoint>& vOutpts)
{
AssertLockHeld(cs_wallet); // setLockedCoins
for (std::set<COutPoint>::iterator it = setLockedCoins.begin();
it != setLockedCoins.end(); it++) {
COutPoint outpt = (*it);
vOutpts.push_back(outpt);
}
}
void CWallet::GetKeyBirthTimes(std::map<CKeyID, int64_t> &mapKeyBirth) const {
AssertLockHeld(cs_wallet); // mapKeyMetadata
mapKeyBirth.clear();
// get birth times for keys with metadata
for (std::map<CKeyID, CKeyMetadata>::const_iterator it = mapKeyMetadata.begin(); it != mapKeyMetadata.end(); it++)
if (it->second.nCreateTime)
mapKeyBirth[it->first] = it->second.nCreateTime;
// map in which we'll infer heights of other keys
CBlockIndex *pindexMax = chainActive[std::max(0, chainActive.Height() - 144)]; // the tip can be reorganised; use a 144-block safety margin
std::map<CKeyID, CBlockIndex*> mapKeyFirstBlock;
std::set<CKeyID> setKeys;
GetKeys(setKeys);
BOOST_FOREACH(const CKeyID &keyid, setKeys) {
if (mapKeyBirth.count(keyid) == 0)
mapKeyFirstBlock[keyid] = pindexMax;
}
setKeys.clear();
// if there are no such keys, we're done
if (mapKeyFirstBlock.empty())
return;
// find first block that affects those keys, if there are any left
std::vector<CKeyID> vAffected;
for (std::map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); it++) {
// iterate over all wallet transactions...
const CWalletTx &wtx = (*it).second;
std::map<uint256, CBlockIndex*>::const_iterator blit = mapBlockIndex.find(wtx.hashBlock);
if (blit != mapBlockIndex.end() && chainActive.Contains(blit->second)) {
// ... which are already in a block
int nHeight = blit->second->nHeight;
BOOST_FOREACH(const CTxOut &txout, wtx.vout) {
// iterate over all their outputs
::ExtractAffectedKeys(*this, txout.scriptPubKey, vAffected);
BOOST_FOREACH(const CKeyID &keyid, vAffected) {
// ... and all their affected keys
std::map<CKeyID, CBlockIndex*>::iterator rit = mapKeyFirstBlock.find(keyid);
if (rit != mapKeyFirstBlock.end() && nHeight < rit->second->nHeight)
rit->second = blit->second;
}
vAffected.clear();
}
}
}
// Extract block timestamps for those keys
for (std::map<CKeyID, CBlockIndex*>::const_iterator it = mapKeyFirstBlock.begin(); it != mapKeyFirstBlock.end(); it++)
mapKeyBirth[it->first] = it->second->nTime - 7200; // block times can be 2h off
}
bool CWallet::AddDestData(const CTxDestination &dest, const std::string &key, const std::string &value)
{
if (boost::get<CNoDestination>(&dest))
return false;
mapAddressBook[dest].destdata.insert(std::make_pair(key, value));
if (!fFileBacked)
return true;
return CWalletDB(strWalletFile).WriteDestData(CBitcoinAddress(dest).ToString(), key, value);
}
bool CWallet::EraseDestData(const CTxDestination &dest, const std::string &key)
{
if (!mapAddressBook[dest].destdata.erase(key))
return false;
if (!fFileBacked)
return true;
return CWalletDB(strWalletFile).EraseDestData(CBitcoinAddress(dest).ToString(), key);
}
bool CWallet::LoadDestData(const CTxDestination &dest, const std::string &key, const std::string &value)
{
mapAddressBook[dest].destdata.insert(std::make_pair(key, value));
return true;
}
bool CWallet::GetDestData(const CTxDestination &dest, const std::string &key, std::string *value) const
{
std::map<CTxDestination, CAddressBookData>::const_iterator i = mapAddressBook.find(dest);
if(i != mapAddressBook.end())
{
CAddressBookData::StringMap::const_iterator j = i->second.destdata.find(key);
if(j != i->second.destdata.end())
{
if(value)
*value = j->second;
return true;
}
}
return false;
}