You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
223 lines
6.6 KiB
223 lines
6.6 KiB
// Copyright (c) 2009-2014 The Bitcoin Core developers |
|
// Distributed under the MIT software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#include "key.h" |
|
|
|
#include "arith_uint256.h" |
|
#include "crypto/common.h" |
|
#include "crypto/hmac_sha512.h" |
|
#include "eccryptoverify.h" |
|
#include "pubkey.h" |
|
#include "random.h" |
|
|
|
#include <secp256k1.h> |
|
#include "ecwrapper.h" |
|
|
|
static secp256k1_context_t* secp256k1_context = NULL; |
|
|
|
bool CKey::Check(const unsigned char *vch) { |
|
return eccrypto::Check(vch); |
|
} |
|
|
|
void CKey::MakeNewKey(bool fCompressedIn) { |
|
RandAddSeedPerfmon(); |
|
do { |
|
GetRandBytes(vch, sizeof(vch)); |
|
} while (!Check(vch)); |
|
fValid = true; |
|
fCompressed = fCompressedIn; |
|
} |
|
|
|
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) { |
|
if (!secp256k1_ec_privkey_import(secp256k1_context, (unsigned char*)begin(), &privkey[0], privkey.size())) |
|
return false; |
|
fCompressed = fCompressedIn; |
|
fValid = true; |
|
return true; |
|
} |
|
|
|
CPrivKey CKey::GetPrivKey() const { |
|
assert(fValid); |
|
CPrivKey privkey; |
|
int privkeylen, ret; |
|
privkey.resize(279); |
|
privkeylen = 279; |
|
ret = secp256k1_ec_privkey_export(secp256k1_context, begin(), (unsigned char*)&privkey[0], &privkeylen, fCompressed); |
|
assert(ret); |
|
privkey.resize(privkeylen); |
|
return privkey; |
|
} |
|
|
|
CPubKey CKey::GetPubKey() const { |
|
assert(fValid); |
|
CPubKey result; |
|
int clen = 65; |
|
int ret = secp256k1_ec_pubkey_create(secp256k1_context, (unsigned char*)result.begin(), &clen, begin(), fCompressed); |
|
assert((int)result.size() == clen); |
|
assert(ret); |
|
assert(result.IsValid()); |
|
return result; |
|
} |
|
|
|
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, uint32_t test_case) const { |
|
if (!fValid) |
|
return false; |
|
vchSig.resize(72); |
|
int nSigLen = 72; |
|
unsigned char extra_entropy[32] = {0}; |
|
WriteLE32(extra_entropy, test_case); |
|
int ret = secp256k1_ecdsa_sign(secp256k1_context, hash.begin(), (unsigned char*)&vchSig[0], &nSigLen, begin(), secp256k1_nonce_function_rfc6979, test_case ? extra_entropy : NULL); |
|
assert(ret); |
|
vchSig.resize(nSigLen); |
|
return true; |
|
} |
|
|
|
bool CKey::VerifyPubKey(const CPubKey& pubkey) const { |
|
if (pubkey.IsCompressed() != fCompressed) { |
|
return false; |
|
} |
|
unsigned char rnd[8]; |
|
std::string str = "Bitcoin key verification\n"; |
|
GetRandBytes(rnd, sizeof(rnd)); |
|
uint256 hash; |
|
CHash256().Write((unsigned char*)str.data(), str.size()).Write(rnd, sizeof(rnd)).Finalize(hash.begin()); |
|
std::vector<unsigned char> vchSig; |
|
Sign(hash, vchSig); |
|
return pubkey.Verify(hash, vchSig); |
|
} |
|
|
|
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const { |
|
if (!fValid) |
|
return false; |
|
vchSig.resize(65); |
|
int rec = -1; |
|
int ret = secp256k1_ecdsa_sign_compact(secp256k1_context, hash.begin(), &vchSig[1], begin(), secp256k1_nonce_function_rfc6979, NULL, &rec); |
|
assert(ret); |
|
assert(rec != -1); |
|
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0); |
|
return true; |
|
} |
|
|
|
bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) { |
|
if (!secp256k1_ec_privkey_import(secp256k1_context, (unsigned char*)begin(), &privkey[0], privkey.size())) |
|
return false; |
|
fCompressed = vchPubKey.IsCompressed(); |
|
fValid = true; |
|
|
|
if (fSkipCheck) |
|
return true; |
|
|
|
return VerifyPubKey(vchPubKey); |
|
} |
|
|
|
bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const { |
|
assert(IsValid()); |
|
assert(IsCompressed()); |
|
unsigned char out[64]; |
|
LockObject(out); |
|
if ((nChild >> 31) == 0) { |
|
CPubKey pubkey = GetPubKey(); |
|
assert(pubkey.begin() + 33 == pubkey.end()); |
|
BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out); |
|
} else { |
|
assert(begin() + 32 == end()); |
|
BIP32Hash(cc, nChild, 0, begin(), out); |
|
} |
|
memcpy(ccChild.begin(), out+32, 32); |
|
memcpy((unsigned char*)keyChild.begin(), begin(), 32); |
|
bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context, (unsigned char*)keyChild.begin(), out); |
|
UnlockObject(out); |
|
keyChild.fCompressed = true; |
|
keyChild.fValid = ret; |
|
return ret; |
|
} |
|
|
|
bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const { |
|
out.nDepth = nDepth + 1; |
|
CKeyID id = key.GetPubKey().GetID(); |
|
memcpy(&out.vchFingerprint[0], &id, 4); |
|
out.nChild = nChild; |
|
return key.Derive(out.key, out.chaincode, nChild, chaincode); |
|
} |
|
|
|
void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) { |
|
static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'}; |
|
unsigned char out[64]; |
|
LockObject(out); |
|
CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out); |
|
key.Set(&out[0], &out[32], true); |
|
memcpy(chaincode.begin(), &out[32], 32); |
|
UnlockObject(out); |
|
nDepth = 0; |
|
nChild = 0; |
|
memset(vchFingerprint, 0, sizeof(vchFingerprint)); |
|
} |
|
|
|
CExtPubKey CExtKey::Neuter() const { |
|
CExtPubKey ret; |
|
ret.nDepth = nDepth; |
|
memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4); |
|
ret.nChild = nChild; |
|
ret.pubkey = key.GetPubKey(); |
|
ret.chaincode = chaincode; |
|
return ret; |
|
} |
|
|
|
void CExtKey::Encode(unsigned char code[74]) const { |
|
code[0] = nDepth; |
|
memcpy(code+1, vchFingerprint, 4); |
|
code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF; |
|
code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF; |
|
memcpy(code+9, chaincode.begin(), 32); |
|
code[41] = 0; |
|
assert(key.size() == 32); |
|
memcpy(code+42, key.begin(), 32); |
|
} |
|
|
|
void CExtKey::Decode(const unsigned char code[74]) { |
|
nDepth = code[0]; |
|
memcpy(vchFingerprint, code+1, 4); |
|
nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8]; |
|
memcpy(chaincode.begin(), code+9, 32); |
|
key.Set(code+42, code+74, true); |
|
} |
|
|
|
bool ECC_InitSanityCheck() { |
|
if (!CECKey::SanityCheck()) { |
|
return false; |
|
} |
|
CKey key; |
|
key.MakeNewKey(true); |
|
CPubKey pubkey = key.GetPubKey(); |
|
return key.VerifyPubKey(pubkey); |
|
} |
|
|
|
|
|
void ECC_Start() { |
|
assert(secp256k1_context == NULL); |
|
|
|
secp256k1_context_t *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); |
|
assert(ctx != NULL); |
|
|
|
{ |
|
// Pass in a random blinding seed to the secp256k1 context. |
|
unsigned char seed[32]; |
|
LockObject(seed); |
|
GetRandBytes(seed, 32); |
|
bool ret = secp256k1_context_randomize(ctx, seed); |
|
assert(ret); |
|
UnlockObject(seed); |
|
} |
|
|
|
secp256k1_context = ctx; |
|
} |
|
|
|
void ECC_Stop() { |
|
secp256k1_context_t *ctx = secp256k1_context; |
|
secp256k1_context = NULL; |
|
|
|
if (ctx) { |
|
secp256k1_context_destroy(ctx); |
|
} |
|
}
|
|
|