You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
394 lines
15 KiB
394 lines
15 KiB
// Copyright (c) 2012-2016 The Bitcoin Core developers |
|
// Distributed under the MIT software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
#include <boost/test/unit_test.hpp> |
|
#include "cuckoocache.h" |
|
#include "test/test_bitcoin.h" |
|
#include "random.h" |
|
#include <thread> |
|
#include <boost/thread.hpp> |
|
|
|
|
|
/** Test Suite for CuckooCache |
|
* |
|
* 1) All tests should have a deterministic result (using insecure rand |
|
* with deterministic seeds) |
|
* 2) Some test methods are templated to allow for easier testing |
|
* against new versions / comparing |
|
* 3) Results should be treated as a regression test, ie, did the behavior |
|
* change significantly from what was expected. This can be OK, depending on |
|
* the nature of the change, but requires updating the tests to reflect the new |
|
* expected behavior. For example improving the hit rate may cause some tests |
|
* using BOOST_CHECK_CLOSE to fail. |
|
* |
|
*/ |
|
FastRandomContext insecure_rand(true); |
|
|
|
BOOST_AUTO_TEST_SUITE(cuckoocache_tests); |
|
|
|
|
|
/** insecure_GetRandHash fills in a uint256 from insecure_rand |
|
*/ |
|
void insecure_GetRandHash(uint256& t) |
|
{ |
|
uint32_t* ptr = (uint32_t*)t.begin(); |
|
for (uint8_t j = 0; j < 8; ++j) |
|
*(ptr++) = insecure_rand.rand32(); |
|
} |
|
|
|
/** Definition copied from /src/script/sigcache.cpp |
|
*/ |
|
class uint256Hasher |
|
{ |
|
public: |
|
template <uint8_t hash_select> |
|
uint32_t operator()(const uint256& key) const |
|
{ |
|
static_assert(hash_select <8, "SignatureCacheHasher only has 8 hashes available."); |
|
uint32_t u; |
|
std::memcpy(&u, key.begin() + 4 * hash_select, 4); |
|
return u; |
|
} |
|
}; |
|
|
|
|
|
/* Test that no values not inserted into the cache are read out of it. |
|
* |
|
* There are no repeats in the first 200000 insecure_GetRandHash calls |
|
*/ |
|
BOOST_AUTO_TEST_CASE(test_cuckoocache_no_fakes) |
|
{ |
|
insecure_rand = FastRandomContext(true); |
|
CuckooCache::cache<uint256, uint256Hasher> cc{}; |
|
cc.setup_bytes(32 << 20); |
|
uint256 v; |
|
for (int x = 0; x < 100000; ++x) { |
|
insecure_GetRandHash(v); |
|
cc.insert(v); |
|
} |
|
for (int x = 0; x < 100000; ++x) { |
|
insecure_GetRandHash(v); |
|
BOOST_CHECK(!cc.contains(v, false)); |
|
} |
|
}; |
|
|
|
/** This helper returns the hit rate when megabytes*load worth of entries are |
|
* inserted into a megabytes sized cache |
|
*/ |
|
template <typename Cache> |
|
double test_cache(size_t megabytes, double load) |
|
{ |
|
insecure_rand = FastRandomContext(true); |
|
std::vector<uint256> hashes; |
|
Cache set{}; |
|
size_t bytes = megabytes * (1 << 20); |
|
set.setup_bytes(bytes); |
|
uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); |
|
hashes.resize(n_insert); |
|
for (uint32_t i = 0; i < n_insert; ++i) { |
|
uint32_t* ptr = (uint32_t*)hashes[i].begin(); |
|
for (uint8_t j = 0; j < 8; ++j) |
|
*(ptr++) = insecure_rand.rand32(); |
|
} |
|
/** We make a copy of the hashes because future optimizations of the |
|
* cuckoocache may overwrite the inserted element, so the test is |
|
* "future proofed". |
|
*/ |
|
std::vector<uint256> hashes_insert_copy = hashes; |
|
/** Do the insert */ |
|
for (uint256& h : hashes_insert_copy) |
|
set.insert(h); |
|
/** Count the hits */ |
|
uint32_t count = 0; |
|
for (uint256& h : hashes) |
|
count += set.contains(h, false); |
|
double hit_rate = ((double)count) / ((double)n_insert); |
|
return hit_rate; |
|
} |
|
|
|
/** The normalized hit rate for a given load. |
|
* |
|
* The semantics are a little confusing, so please see the below |
|
* explanation. |
|
* |
|
* Examples: |
|
* |
|
* 1) at load 0.5, we expect a perfect hit rate, so we multiply by |
|
* 1.0 |
|
* 2) at load 2.0, we expect to see half the entries, so a perfect hit rate |
|
* would be 0.5. Therefore, if we see a hit rate of 0.4, 0.4*2.0 = 0.8 is the |
|
* normalized hit rate. |
|
* |
|
* This is basically the right semantics, but has a bit of a glitch depending on |
|
* how you measure around load 1.0 as after load 1.0 your normalized hit rate |
|
* becomes effectively perfect, ignoring freshness. |
|
*/ |
|
double normalize_hit_rate(double hits, double load) |
|
{ |
|
return hits * std::max(load, 1.0); |
|
} |
|
|
|
/** Check the hit rate on loads ranging from 0.1 to 2.0 */ |
|
BOOST_AUTO_TEST_CASE(cuckoocache_hit_rate_ok) |
|
{ |
|
/** Arbitrarily selected Hit Rate threshold that happens to work for this test |
|
* as a lower bound on performance. |
|
*/ |
|
double HitRateThresh = 0.98; |
|
size_t megabytes = 32; |
|
for (double load = 0.1; load < 2; load *= 2) { |
|
double hits = test_cache<CuckooCache::cache<uint256, uint256Hasher>>(megabytes, load); |
|
BOOST_CHECK(normalize_hit_rate(hits, load) > HitRateThresh); |
|
} |
|
} |
|
|
|
|
|
/** This helper checks that erased elements are preferentially inserted onto and |
|
* that the hit rate of "fresher" keys is reasonable*/ |
|
template <typename Cache> |
|
void test_cache_erase(size_t megabytes) |
|
{ |
|
double load = 1; |
|
insecure_rand = FastRandomContext(true); |
|
std::vector<uint256> hashes; |
|
Cache set{}; |
|
size_t bytes = megabytes * (1 << 20); |
|
set.setup_bytes(bytes); |
|
uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); |
|
hashes.resize(n_insert); |
|
for (uint32_t i = 0; i < n_insert; ++i) { |
|
uint32_t* ptr = (uint32_t*)hashes[i].begin(); |
|
for (uint8_t j = 0; j < 8; ++j) |
|
*(ptr++) = insecure_rand.rand32(); |
|
} |
|
/** We make a copy of the hashes because future optimizations of the |
|
* cuckoocache may overwrite the inserted element, so the test is |
|
* "future proofed". |
|
*/ |
|
std::vector<uint256> hashes_insert_copy = hashes; |
|
|
|
/** Insert the first half */ |
|
for (uint32_t i = 0; i < (n_insert / 2); ++i) |
|
set.insert(hashes_insert_copy[i]); |
|
/** Erase the first quarter */ |
|
for (uint32_t i = 0; i < (n_insert / 4); ++i) |
|
set.contains(hashes[i], true); |
|
/** Insert the second half */ |
|
for (uint32_t i = (n_insert / 2); i < n_insert; ++i) |
|
set.insert(hashes_insert_copy[i]); |
|
|
|
/** elements that we marked erased but that are still there */ |
|
size_t count_erased_but_contained = 0; |
|
/** elements that we did not erase but are older */ |
|
size_t count_stale = 0; |
|
/** elements that were most recently inserted */ |
|
size_t count_fresh = 0; |
|
|
|
for (uint32_t i = 0; i < (n_insert / 4); ++i) |
|
count_erased_but_contained += set.contains(hashes[i], false); |
|
for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i) |
|
count_stale += set.contains(hashes[i], false); |
|
for (uint32_t i = (n_insert / 2); i < n_insert; ++i) |
|
count_fresh += set.contains(hashes[i], false); |
|
|
|
double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0); |
|
double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0); |
|
double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0); |
|
|
|
// Check that our hit_rate_fresh is perfect |
|
BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0); |
|
// Check that we have a more than 2x better hit rate on stale elements than |
|
// erased elements. |
|
BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained); |
|
} |
|
|
|
BOOST_AUTO_TEST_CASE(cuckoocache_erase_ok) |
|
{ |
|
size_t megabytes = 32; |
|
test_cache_erase<CuckooCache::cache<uint256, uint256Hasher>>(megabytes); |
|
} |
|
|
|
template <typename Cache> |
|
void test_cache_erase_parallel(size_t megabytes) |
|
{ |
|
double load = 1; |
|
insecure_rand = FastRandomContext(true); |
|
std::vector<uint256> hashes; |
|
Cache set{}; |
|
size_t bytes = megabytes * (1 << 20); |
|
set.setup_bytes(bytes); |
|
uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); |
|
hashes.resize(n_insert); |
|
for (uint32_t i = 0; i < n_insert; ++i) { |
|
uint32_t* ptr = (uint32_t*)hashes[i].begin(); |
|
for (uint8_t j = 0; j < 8; ++j) |
|
*(ptr++) = insecure_rand.rand32(); |
|
} |
|
/** We make a copy of the hashes because future optimizations of the |
|
* cuckoocache may overwrite the inserted element, so the test is |
|
* "future proofed". |
|
*/ |
|
std::vector<uint256> hashes_insert_copy = hashes; |
|
boost::shared_mutex mtx; |
|
|
|
{ |
|
/** Grab lock to make sure we release inserts */ |
|
boost::unique_lock<boost::shared_mutex> l(mtx); |
|
/** Insert the first half */ |
|
for (uint32_t i = 0; i < (n_insert / 2); ++i) |
|
set.insert(hashes_insert_copy[i]); |
|
} |
|
|
|
/** Spin up 3 threads to run contains with erase. |
|
*/ |
|
std::vector<std::thread> threads; |
|
/** Erase the first quarter */ |
|
for (uint32_t x = 0; x < 3; ++x) |
|
/** Each thread is emplaced with x copy-by-value |
|
*/ |
|
threads.emplace_back([&, x] { |
|
boost::shared_lock<boost::shared_mutex> l(mtx); |
|
size_t ntodo = (n_insert/4)/3; |
|
size_t start = ntodo*x; |
|
size_t end = ntodo*(x+1); |
|
for (uint32_t i = start; i < end; ++i) |
|
set.contains(hashes[i], true); |
|
}); |
|
|
|
/** Wait for all threads to finish |
|
*/ |
|
for (std::thread& t : threads) |
|
t.join(); |
|
/** Grab lock to make sure we observe erases */ |
|
boost::unique_lock<boost::shared_mutex> l(mtx); |
|
/** Insert the second half */ |
|
for (uint32_t i = (n_insert / 2); i < n_insert; ++i) |
|
set.insert(hashes_insert_copy[i]); |
|
|
|
/** elements that we marked erased but that are still there */ |
|
size_t count_erased_but_contained = 0; |
|
/** elements that we did not erase but are older */ |
|
size_t count_stale = 0; |
|
/** elements that were most recently inserted */ |
|
size_t count_fresh = 0; |
|
|
|
for (uint32_t i = 0; i < (n_insert / 4); ++i) |
|
count_erased_but_contained += set.contains(hashes[i], false); |
|
for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i) |
|
count_stale += set.contains(hashes[i], false); |
|
for (uint32_t i = (n_insert / 2); i < n_insert; ++i) |
|
count_fresh += set.contains(hashes[i], false); |
|
|
|
double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0); |
|
double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0); |
|
double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0); |
|
|
|
// Check that our hit_rate_fresh is perfect |
|
BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0); |
|
// Check that we have a more than 2x better hit rate on stale elements than |
|
// erased elements. |
|
BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained); |
|
} |
|
BOOST_AUTO_TEST_CASE(cuckoocache_erase_parallel_ok) |
|
{ |
|
size_t megabytes = 32; |
|
test_cache_erase_parallel<CuckooCache::cache<uint256, uint256Hasher>>(megabytes); |
|
} |
|
|
|
|
|
template <typename Cache> |
|
void test_cache_generations() |
|
{ |
|
// This test checks that for a simulation of network activity, the fresh hit |
|
// rate is never below 99%, and the number of times that it is worse than |
|
// 99.9% are less than 1% of the time. |
|
double min_hit_rate = 0.99; |
|
double tight_hit_rate = 0.999; |
|
double max_rate_less_than_tight_hit_rate = 0.01; |
|
// A cache that meets this specification is therefore shown to have a hit |
|
// rate of at least tight_hit_rate * (1 - max_rate_less_than_tight_hit_rate) + |
|
// min_hit_rate*max_rate_less_than_tight_hit_rate = 0.999*99%+0.99*1% == 99.89% |
|
// hit rate with low variance. |
|
|
|
// We use deterministic values, but this test has also passed on many |
|
// iterations with non-deterministic values, so it isn't "overfit" to the |
|
// specific entropy in FastRandomContext(true) and implementation of the |
|
// cache. |
|
insecure_rand = FastRandomContext(true); |
|
|
|
// block_activity models a chunk of network activity. n_insert elements are |
|
// adde to the cache. The first and last n/4 are stored for removal later |
|
// and the middle n/2 are not stored. This models a network which uses half |
|
// the signatures of recently (since the last block) added transactions |
|
// immediately and never uses the other half. |
|
struct block_activity { |
|
std::vector<uint256> reads; |
|
block_activity(uint32_t n_insert, Cache& c) : reads() |
|
{ |
|
std::vector<uint256> inserts; |
|
inserts.resize(n_insert); |
|
reads.reserve(n_insert / 2); |
|
for (uint32_t i = 0; i < n_insert; ++i) { |
|
uint32_t* ptr = (uint32_t*)inserts[i].begin(); |
|
for (uint8_t j = 0; j < 8; ++j) |
|
*(ptr++) = insecure_rand.rand32(); |
|
} |
|
for (uint32_t i = 0; i < n_insert / 4; ++i) |
|
reads.push_back(inserts[i]); |
|
for (uint32_t i = n_insert - (n_insert / 4); i < n_insert; ++i) |
|
reads.push_back(inserts[i]); |
|
for (auto h : inserts) |
|
c.insert(h); |
|
} |
|
}; |
|
|
|
const uint32_t BLOCK_SIZE = 10000; |
|
// We expect window size 60 to perform reasonably given that each epoch |
|
// stores 45% of the cache size (~472k). |
|
const uint32_t WINDOW_SIZE = 60; |
|
const uint32_t POP_AMOUNT = (BLOCK_SIZE / WINDOW_SIZE) / 2; |
|
const double load = 10; |
|
const size_t megabytes = 32; |
|
const size_t bytes = megabytes * (1 << 20); |
|
const uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); |
|
|
|
std::vector<block_activity> hashes; |
|
Cache set{}; |
|
set.setup_bytes(bytes); |
|
hashes.reserve(n_insert / BLOCK_SIZE); |
|
std::deque<block_activity> last_few; |
|
uint32_t out_of_tight_tolerance = 0; |
|
uint32_t total = n_insert / BLOCK_SIZE; |
|
// we use the deque last_few to model a sliding window of blocks. at each |
|
// step, each of the last WINDOW_SIZE block_activities checks the cache for |
|
// POP_AMOUNT of the hashes that they inserted, and marks these erased. |
|
for (uint32_t i = 0; i < total; ++i) { |
|
if (last_few.size() == WINDOW_SIZE) |
|
last_few.pop_front(); |
|
last_few.emplace_back(BLOCK_SIZE, set); |
|
uint32_t count = 0; |
|
for (auto& act : last_few) |
|
for (uint32_t k = 0; k < POP_AMOUNT; ++k) { |
|
count += set.contains(act.reads.back(), true); |
|
act.reads.pop_back(); |
|
} |
|
// We use last_few.size() rather than WINDOW_SIZE for the correct |
|
// behavior on the first WINDOW_SIZE iterations where the deque is not |
|
// full yet. |
|
double hit = (double(count)) / (last_few.size() * POP_AMOUNT); |
|
// Loose Check that hit rate is above min_hit_rate |
|
BOOST_CHECK(hit > min_hit_rate); |
|
// Tighter check, count number of times we are less than tight_hit_rate |
|
// (and implicityly, greater than min_hit_rate) |
|
out_of_tight_tolerance += hit < tight_hit_rate; |
|
} |
|
// Check that being out of tolerance happens less than |
|
// max_rate_less_than_tight_hit_rate of the time |
|
BOOST_CHECK(double(out_of_tight_tolerance) / double(total) < max_rate_less_than_tight_hit_rate); |
|
} |
|
BOOST_AUTO_TEST_CASE(cuckoocache_generations) |
|
{ |
|
test_cache_generations<CuckooCache::cache<uint256, uint256Hasher>>(); |
|
} |
|
|
|
BOOST_AUTO_TEST_SUITE_END();
|
|
|