You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
301 lines
9.6 KiB
301 lines
9.6 KiB
// Copyright (c) 2012-2015 The Bitcoin Core developers |
|
// Distributed under the MIT software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#include "bloom.h" |
|
|
|
#include "primitives/transaction.h" |
|
#include "hash.h" |
|
#include "script/script.h" |
|
#include "script/standard.h" |
|
#include "random.h" |
|
#include "streams.h" |
|
|
|
#include <math.h> |
|
#include <stdlib.h> |
|
|
|
#include <boost/foreach.hpp> |
|
|
|
#define LN2SQUARED 0.4804530139182014246671025263266649717305529515945455 |
|
#define LN2 0.6931471805599453094172321214581765680755001343602552 |
|
|
|
using namespace std; |
|
|
|
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn, unsigned char nFlagsIn) : |
|
/** |
|
* The ideal size for a bloom filter with a given number of elements and false positive rate is: |
|
* - nElements * log(fp rate) / ln(2)^2 |
|
* We ignore filter parameters which will create a bloom filter larger than the protocol limits |
|
*/ |
|
vData(min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8), |
|
/** |
|
* The ideal number of hash functions is filter size * ln(2) / number of elements |
|
* Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits |
|
* See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas |
|
*/ |
|
isFull(false), |
|
isEmpty(false), |
|
nHashFuncs(min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)), |
|
nTweak(nTweakIn), |
|
nFlags(nFlagsIn) |
|
{ |
|
} |
|
|
|
// Private constructor used by CRollingBloomFilter |
|
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn) : |
|
vData((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)) / 8), |
|
isFull(false), |
|
isEmpty(true), |
|
nHashFuncs((unsigned int)(vData.size() * 8 / nElements * LN2)), |
|
nTweak(nTweakIn), |
|
nFlags(BLOOM_UPDATE_NONE) |
|
{ |
|
} |
|
|
|
inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const |
|
{ |
|
// 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values. |
|
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8); |
|
} |
|
|
|
void CBloomFilter::insert(const vector<unsigned char>& vKey) |
|
{ |
|
if (isFull) |
|
return; |
|
for (unsigned int i = 0; i < nHashFuncs; i++) |
|
{ |
|
unsigned int nIndex = Hash(i, vKey); |
|
// Sets bit nIndex of vData |
|
vData[nIndex >> 3] |= (1 << (7 & nIndex)); |
|
} |
|
isEmpty = false; |
|
} |
|
|
|
void CBloomFilter::insert(const COutPoint& outpoint) |
|
{ |
|
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION); |
|
stream << outpoint; |
|
vector<unsigned char> data(stream.begin(), stream.end()); |
|
insert(data); |
|
} |
|
|
|
void CBloomFilter::insert(const uint256& hash) |
|
{ |
|
vector<unsigned char> data(hash.begin(), hash.end()); |
|
insert(data); |
|
} |
|
|
|
bool CBloomFilter::contains(const vector<unsigned char>& vKey) const |
|
{ |
|
if (isFull) |
|
return true; |
|
if (isEmpty) |
|
return false; |
|
for (unsigned int i = 0; i < nHashFuncs; i++) |
|
{ |
|
unsigned int nIndex = Hash(i, vKey); |
|
// Checks bit nIndex of vData |
|
if (!(vData[nIndex >> 3] & (1 << (7 & nIndex)))) |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool CBloomFilter::contains(const COutPoint& outpoint) const |
|
{ |
|
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION); |
|
stream << outpoint; |
|
vector<unsigned char> data(stream.begin(), stream.end()); |
|
return contains(data); |
|
} |
|
|
|
bool CBloomFilter::contains(const uint256& hash) const |
|
{ |
|
vector<unsigned char> data(hash.begin(), hash.end()); |
|
return contains(data); |
|
} |
|
|
|
void CBloomFilter::clear() |
|
{ |
|
vData.assign(vData.size(),0); |
|
isFull = false; |
|
isEmpty = true; |
|
} |
|
|
|
void CBloomFilter::reset(unsigned int nNewTweak) |
|
{ |
|
clear(); |
|
nTweak = nNewTweak; |
|
} |
|
|
|
bool CBloomFilter::IsWithinSizeConstraints() const |
|
{ |
|
return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS; |
|
} |
|
|
|
bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx) |
|
{ |
|
bool fFound = false; |
|
// Match if the filter contains the hash of tx |
|
// for finding tx when they appear in a block |
|
if (isFull) |
|
return true; |
|
if (isEmpty) |
|
return false; |
|
const uint256& hash = tx.GetHash(); |
|
if (contains(hash)) |
|
fFound = true; |
|
|
|
for (unsigned int i = 0; i < tx.vout.size(); i++) |
|
{ |
|
const CTxOut& txout = tx.vout[i]; |
|
// Match if the filter contains any arbitrary script data element in any scriptPubKey in tx |
|
// If this matches, also add the specific output that was matched. |
|
// This means clients don't have to update the filter themselves when a new relevant tx |
|
// is discovered in order to find spending transactions, which avoids round-tripping and race conditions. |
|
CScript::const_iterator pc = txout.scriptPubKey.begin(); |
|
vector<unsigned char> data; |
|
while (pc < txout.scriptPubKey.end()) |
|
{ |
|
opcodetype opcode; |
|
if (!txout.scriptPubKey.GetOp(pc, opcode, data)) |
|
break; |
|
if (data.size() != 0 && contains(data)) |
|
{ |
|
fFound = true; |
|
if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL) |
|
insert(COutPoint(hash, i)); |
|
else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY) |
|
{ |
|
txnouttype type; |
|
vector<vector<unsigned char> > vSolutions; |
|
if (Solver(txout.scriptPubKey, type, vSolutions) && |
|
(type == TX_PUBKEY || type == TX_MULTISIG)) |
|
insert(COutPoint(hash, i)); |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
|
|
if (fFound) |
|
return true; |
|
|
|
BOOST_FOREACH(const CTxIn& txin, tx.vin) |
|
{ |
|
// Match if the filter contains an outpoint tx spends |
|
if (contains(txin.prevout)) |
|
return true; |
|
|
|
// Match if the filter contains any arbitrary script data element in any scriptSig in tx |
|
CScript::const_iterator pc = txin.scriptSig.begin(); |
|
vector<unsigned char> data; |
|
while (pc < txin.scriptSig.end()) |
|
{ |
|
opcodetype opcode; |
|
if (!txin.scriptSig.GetOp(pc, opcode, data)) |
|
break; |
|
if (data.size() != 0 && contains(data)) |
|
return true; |
|
} |
|
} |
|
|
|
return false; |
|
} |
|
|
|
void CBloomFilter::UpdateEmptyFull() |
|
{ |
|
bool full = true; |
|
bool empty = true; |
|
for (unsigned int i = 0; i < vData.size(); i++) |
|
{ |
|
full &= vData[i] == 0xff; |
|
empty &= vData[i] == 0; |
|
} |
|
isFull = full; |
|
isEmpty = empty; |
|
} |
|
|
|
CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate) |
|
{ |
|
double logFpRate = log(fpRate); |
|
/* The optimal number of hash functions is log(fpRate) / log(0.5), but |
|
* restrict it to the range 1-50. */ |
|
nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50)); |
|
/* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */ |
|
nEntriesPerGeneration = (nElements + 1) / 2; |
|
uint32_t nMaxElements = nEntriesPerGeneration * 3; |
|
/* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs) |
|
* => pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits) |
|
* => 1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits) |
|
* => log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits |
|
* => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) |
|
* => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)) |
|
*/ |
|
uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))); |
|
data.clear(); |
|
/* We store up to 16 'bits' per data element. */ |
|
data.resize((nFilterBits + 15) / 16); |
|
reset(); |
|
} |
|
|
|
/* Similar to CBloomFilter::Hash */ |
|
inline unsigned int CRollingBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const { |
|
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (data.size() * 16); |
|
} |
|
|
|
void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey) |
|
{ |
|
if (nEntriesThisGeneration == nEntriesPerGeneration) { |
|
nEntriesThisGeneration = 0; |
|
nGeneration++; |
|
if (nGeneration == 4) { |
|
nGeneration = 1; |
|
} |
|
/* Wipe old entries that used this generation number. */ |
|
for (uint32_t p = 0; p < data.size() * 16; p++) { |
|
if (get(p) == nGeneration) { |
|
put(p, 0); |
|
} |
|
} |
|
} |
|
nEntriesThisGeneration++; |
|
|
|
for (int n = 0; n < nHashFuncs; n++) { |
|
uint32_t h = Hash(n, vKey); |
|
put(h, nGeneration); |
|
} |
|
} |
|
|
|
void CRollingBloomFilter::insert(const uint256& hash) |
|
{ |
|
vector<unsigned char> data(hash.begin(), hash.end()); |
|
insert(data); |
|
} |
|
|
|
bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const |
|
{ |
|
for (int n = 0; n < nHashFuncs; n++) { |
|
uint32_t h = Hash(n, vKey); |
|
if (get(h) == 0) { |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
bool CRollingBloomFilter::contains(const uint256& hash) const |
|
{ |
|
vector<unsigned char> data(hash.begin(), hash.end()); |
|
return contains(data); |
|
} |
|
|
|
void CRollingBloomFilter::reset() |
|
{ |
|
nTweak = GetRand(std::numeric_limits<unsigned int>::max()); |
|
nEntriesThisGeneration = 0; |
|
nGeneration = 1; |
|
for (std::vector<uint32_t>::iterator it = data.begin(); it != data.end(); it++) { |
|
*it = 0; |
|
} |
|
}
|
|
|