mirror of
https://github.com/kvazar-network/kevacoin.git
synced 2025-01-18 02:51:06 +00:00
261 lines
7.2 KiB
C++
261 lines
7.2 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2014 The Bitcoin developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include "arith_uint256.h"
|
|
|
|
#include "uint256.h"
|
|
#include "utilstrencodings.h"
|
|
#include "crypto/common.h"
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
template <unsigned int BITS>
|
|
base_uint<BITS>::base_uint(const std::string& str)
|
|
{
|
|
SetHex(str);
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
|
|
{
|
|
base_uint<BITS> a(*this);
|
|
for (int i = 0; i < WIDTH; i++)
|
|
pn[i] = 0;
|
|
int k = shift / 32;
|
|
shift = shift % 32;
|
|
for (int i = 0; i < WIDTH; i++) {
|
|
if (i + k + 1 < WIDTH && shift != 0)
|
|
pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
|
|
if (i + k < WIDTH)
|
|
pn[i + k] |= (a.pn[i] << shift);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
|
|
{
|
|
base_uint<BITS> a(*this);
|
|
for (int i = 0; i < WIDTH; i++)
|
|
pn[i] = 0;
|
|
int k = shift / 32;
|
|
shift = shift % 32;
|
|
for (int i = 0; i < WIDTH; i++) {
|
|
if (i - k - 1 >= 0 && shift != 0)
|
|
pn[i - k - 1] |= (a.pn[i] << (32 - shift));
|
|
if (i - k >= 0)
|
|
pn[i - k] |= (a.pn[i] >> shift);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
|
|
{
|
|
uint64_t carry = 0;
|
|
for (int i = 0; i < WIDTH; i++) {
|
|
uint64_t n = carry + (uint64_t)b32 * pn[i];
|
|
pn[i] = n & 0xffffffff;
|
|
carry = n >> 32;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
|
|
{
|
|
base_uint<BITS> a = *this;
|
|
*this = 0;
|
|
for (int j = 0; j < WIDTH; j++) {
|
|
uint64_t carry = 0;
|
|
for (int i = 0; i + j < WIDTH; i++) {
|
|
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
|
|
pn[i + j] = n & 0xffffffff;
|
|
carry = n >> 32;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
|
|
{
|
|
base_uint<BITS> div = b; // make a copy, so we can shift.
|
|
base_uint<BITS> num = *this; // make a copy, so we can subtract.
|
|
*this = 0; // the quotient.
|
|
int num_bits = num.bits();
|
|
int div_bits = div.bits();
|
|
if (div_bits == 0)
|
|
throw uint_error("Division by zero");
|
|
if (div_bits > num_bits) // the result is certainly 0.
|
|
return *this;
|
|
int shift = num_bits - div_bits;
|
|
div <<= shift; // shift so that div and num align.
|
|
while (shift >= 0) {
|
|
if (num >= div) {
|
|
num -= div;
|
|
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
|
|
}
|
|
div >>= 1; // shift back.
|
|
shift--;
|
|
}
|
|
// num now contains the remainder of the division.
|
|
return *this;
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const
|
|
{
|
|
for (int i = WIDTH - 1; i >= 0; i--) {
|
|
if (pn[i] < b.pn[i])
|
|
return -1;
|
|
if (pn[i] > b.pn[i])
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
bool base_uint<BITS>::EqualTo(uint64_t b) const
|
|
{
|
|
for (int i = WIDTH - 1; i >= 2; i--) {
|
|
if (pn[i])
|
|
return false;
|
|
}
|
|
if (pn[1] != (b >> 32))
|
|
return false;
|
|
if (pn[0] != (b & 0xfffffffful))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
double base_uint<BITS>::getdouble() const
|
|
{
|
|
double ret = 0.0;
|
|
double fact = 1.0;
|
|
for (int i = 0; i < WIDTH; i++) {
|
|
ret += fact * pn[i];
|
|
fact *= 4294967296.0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
std::string base_uint<BITS>::GetHex() const
|
|
{
|
|
return ArithToUint256(*this).GetHex();
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
void base_uint<BITS>::SetHex(const char* psz)
|
|
{
|
|
*this = UintToArith256(uint256S(psz));
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
void base_uint<BITS>::SetHex(const std::string& str)
|
|
{
|
|
SetHex(str.c_str());
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
std::string base_uint<BITS>::ToString() const
|
|
{
|
|
return (GetHex());
|
|
}
|
|
|
|
template <unsigned int BITS>
|
|
unsigned int base_uint<BITS>::bits() const
|
|
{
|
|
for (int pos = WIDTH - 1; pos >= 0; pos--) {
|
|
if (pn[pos]) {
|
|
for (int bits = 31; bits > 0; bits--) {
|
|
if (pn[pos] & 1 << bits)
|
|
return 32 * pos + bits + 1;
|
|
}
|
|
return 32 * pos + 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Explicit instantiations for base_uint<256>
|
|
template base_uint<256>::base_uint(const std::string&);
|
|
template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
|
|
template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
|
|
template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
|
|
template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b);
|
|
template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b);
|
|
template int base_uint<256>::CompareTo(const base_uint<256>&) const;
|
|
template bool base_uint<256>::EqualTo(uint64_t) const;
|
|
template double base_uint<256>::getdouble() const;
|
|
template std::string base_uint<256>::GetHex() const;
|
|
template std::string base_uint<256>::ToString() const;
|
|
template void base_uint<256>::SetHex(const char*);
|
|
template void base_uint<256>::SetHex(const std::string&);
|
|
template unsigned int base_uint<256>::bits() const;
|
|
|
|
// This implementation directly uses shifts instead of going
|
|
// through an intermediate MPI representation.
|
|
arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
|
|
{
|
|
int nSize = nCompact >> 24;
|
|
uint32_t nWord = nCompact & 0x007fffff;
|
|
if (nSize <= 3) {
|
|
nWord >>= 8 * (3 - nSize);
|
|
*this = nWord;
|
|
} else {
|
|
*this = nWord;
|
|
*this <<= 8 * (nSize - 3);
|
|
}
|
|
if (pfNegative)
|
|
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
|
|
if (pfOverflow)
|
|
*pfOverflow = nWord != 0 && ((nSize > 34) ||
|
|
(nWord > 0xff && nSize > 33) ||
|
|
(nWord > 0xffff && nSize > 32));
|
|
return *this;
|
|
}
|
|
|
|
uint32_t arith_uint256::GetCompact(bool fNegative) const
|
|
{
|
|
int nSize = (bits() + 7) / 8;
|
|
uint32_t nCompact = 0;
|
|
if (nSize <= 3) {
|
|
nCompact = GetLow64() << 8 * (3 - nSize);
|
|
} else {
|
|
arith_uint256 bn = *this >> 8 * (nSize - 3);
|
|
nCompact = bn.GetLow64();
|
|
}
|
|
// The 0x00800000 bit denotes the sign.
|
|
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
|
|
if (nCompact & 0x00800000) {
|
|
nCompact >>= 8;
|
|
nSize++;
|
|
}
|
|
assert((nCompact & ~0x007fffff) == 0);
|
|
assert(nSize < 256);
|
|
nCompact |= nSize << 24;
|
|
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
|
|
return nCompact;
|
|
}
|
|
|
|
uint256 ArithToUint256(const arith_uint256 &a)
|
|
{
|
|
uint256 b;
|
|
for(int x=0; x<a.WIDTH; ++x)
|
|
WriteLE32(b.begin() + x*4, a.pn[x]);
|
|
return b;
|
|
}
|
|
arith_uint256 UintToArith256(const uint256 &a)
|
|
{
|
|
arith_uint256 b;
|
|
for(int x=0; x<b.WIDTH; ++x)
|
|
b.pn[x] = ReadLE32(a.begin() + x*4);
|
|
return b;
|
|
}
|