You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2007 lines
89 KiB
2007 lines
89 KiB
#!/usr/bin/env python3 |
|
# Copyright (c) 2016 The Bitcoin Core developers |
|
# Distributed under the MIT software license, see the accompanying |
|
# file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
from test_framework.mininode import * |
|
from test_framework.test_framework import BitcoinTestFramework |
|
from test_framework.util import * |
|
from test_framework.script import * |
|
from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment, WITNESS_COMMITMENT_HEADER |
|
from test_framework.key import CECKey, CPubKey |
|
import time |
|
import random |
|
from binascii import hexlify |
|
|
|
# The versionbit bit used to signal activation of SegWit |
|
VB_WITNESS_BIT = 1 |
|
VB_PERIOD = 144 |
|
VB_ACTIVATION_THRESHOLD = 108 |
|
VB_TOP_BITS = 0x20000000 |
|
|
|
MAX_SIGOP_COST = 80000 |
|
|
|
''' |
|
SegWit p2p test. |
|
''' |
|
|
|
# Calculate the virtual size of a witness block: |
|
# (base + witness/4) |
|
def get_virtual_size(witness_block): |
|
base_size = len(witness_block.serialize()) |
|
total_size = len(witness_block.serialize(with_witness=True)) |
|
# the "+3" is so we round up |
|
vsize = int((3*base_size + total_size + 3)/4) |
|
return vsize |
|
|
|
# Note: we can reduce code by using SingleNodeConnCB (in master, not 0.12) |
|
class TestNode(NodeConnCB): |
|
def __init__(self): |
|
NodeConnCB.__init__(self) |
|
self.connection = None |
|
self.ping_counter = 1 |
|
self.last_pong = msg_pong(0) |
|
self.sleep_time = 0.05 |
|
self.getdataset = set() |
|
self.last_reject = None |
|
|
|
def add_connection(self, conn): |
|
self.connection = conn |
|
|
|
# Wrapper for the NodeConn's send_message function |
|
def send_message(self, message): |
|
self.connection.send_message(message) |
|
|
|
def on_inv(self, conn, message): |
|
self.last_inv = message |
|
|
|
def on_block(self, conn, message): |
|
self.last_block = message.block |
|
self.last_block.calc_sha256() |
|
|
|
def on_getdata(self, conn, message): |
|
for inv in message.inv: |
|
self.getdataset.add(inv.hash) |
|
self.last_getdata = message |
|
|
|
def on_pong(self, conn, message): |
|
self.last_pong = message |
|
|
|
def on_reject(self, conn, message): |
|
self.last_reject = message |
|
#print (message) |
|
|
|
# Syncing helpers |
|
def sync(self, test_function, timeout=60): |
|
while timeout > 0: |
|
with mininode_lock: |
|
if test_function(): |
|
return |
|
time.sleep(self.sleep_time) |
|
timeout -= self.sleep_time |
|
raise AssertionError("Sync failed to complete") |
|
|
|
def sync_with_ping(self, timeout=60): |
|
self.send_message(msg_ping(nonce=self.ping_counter)) |
|
test_function = lambda: self.last_pong.nonce == self.ping_counter |
|
self.sync(test_function, timeout) |
|
self.ping_counter += 1 |
|
return |
|
|
|
def wait_for_block(self, blockhash, timeout=60): |
|
test_function = lambda: self.last_block != None and self.last_block.sha256 == blockhash |
|
self.sync(test_function, timeout) |
|
return |
|
|
|
def wait_for_getdata(self, timeout=60): |
|
test_function = lambda: self.last_getdata != None |
|
self.sync(test_function, timeout) |
|
|
|
def wait_for_inv(self, expected_inv, timeout=60): |
|
test_function = lambda: self.last_inv != expected_inv |
|
self.sync(test_function, timeout) |
|
|
|
def announce_tx_and_wait_for_getdata(self, tx, timeout=60): |
|
with mininode_lock: |
|
self.last_getdata = None |
|
self.send_message(msg_inv(inv=[CInv(1, tx.sha256)])) |
|
self.wait_for_getdata(timeout) |
|
return |
|
|
|
def announce_block_and_wait_for_getdata(self, block, use_header, timeout=60): |
|
with mininode_lock: |
|
self.last_getdata = None |
|
if use_header: |
|
msg = msg_headers() |
|
msg.headers = [ CBlockHeader(block) ] |
|
self.send_message(msg) |
|
else: |
|
self.send_message(msg_inv(inv=[CInv(2, block.sha256)])) |
|
self.wait_for_getdata() |
|
return |
|
|
|
def announce_block(self, block, use_header): |
|
with mininode_lock: |
|
self.last_getdata = None |
|
if use_header: |
|
msg = msg_headers() |
|
msg.headers = [ CBlockHeader(block) ] |
|
self.send_message(msg) |
|
else: |
|
self.send_message(msg_inv(inv=[CInv(2, block.sha256)])) |
|
|
|
def request_block(self, blockhash, inv_type, timeout=60): |
|
with mininode_lock: |
|
self.last_block = None |
|
self.send_message(msg_getdata(inv=[CInv(inv_type, blockhash)])) |
|
self.wait_for_block(blockhash, timeout) |
|
return self.last_block |
|
|
|
def test_transaction_acceptance(self, tx, with_witness, accepted, reason=None): |
|
tx_message = msg_tx(tx) |
|
if with_witness: |
|
tx_message = msg_witness_tx(tx) |
|
self.send_message(tx_message) |
|
self.sync_with_ping() |
|
assert_equal(tx.hash in self.connection.rpc.getrawmempool(), accepted) |
|
if (reason != None and not accepted): |
|
# Check the rejection reason as well. |
|
with mininode_lock: |
|
assert_equal(self.last_reject.reason, reason) |
|
|
|
# Test whether a witness block had the correct effect on the tip |
|
def test_witness_block(self, block, accepted, with_witness=True): |
|
if with_witness: |
|
self.send_message(msg_witness_block(block)) |
|
else: |
|
self.send_message(msg_block(block)) |
|
self.sync_with_ping() |
|
assert_equal(self.connection.rpc.getbestblockhash() == block.hash, accepted) |
|
|
|
|
|
# Used to keep track of anyone-can-spend outputs that we can use in the tests |
|
class UTXO(object): |
|
def __init__(self, sha256, n, nValue): |
|
self.sha256 = sha256 |
|
self.n = n |
|
self.nValue = nValue |
|
|
|
# Helper for getting the script associated with a P2PKH |
|
def GetP2PKHScript(pubkeyhash): |
|
return CScript([CScriptOp(OP_DUP), CScriptOp(OP_HASH160), pubkeyhash, CScriptOp(OP_EQUALVERIFY), CScriptOp(OP_CHECKSIG)]) |
|
|
|
# Add signature for a P2PK witness program. |
|
def sign_P2PK_witness_input(script, txTo, inIdx, hashtype, value, key): |
|
tx_hash = SegwitVersion1SignatureHash(script, txTo, inIdx, hashtype, value) |
|
signature = key.sign(tx_hash) + chr(hashtype).encode('latin-1') |
|
txTo.wit.vtxinwit[inIdx].scriptWitness.stack = [signature, script] |
|
txTo.rehash() |
|
|
|
|
|
class SegWitTest(BitcoinTestFramework): |
|
def setup_chain(self): |
|
initialize_chain_clean(self.options.tmpdir, 3) |
|
|
|
def add_options(self, parser): |
|
parser.add_option("--oldbinary", dest="oldbinary", |
|
default=None, |
|
help="pre-segwit bitcoind binary for upgrade testing") |
|
|
|
def setup_network(self): |
|
self.nodes = [] |
|
self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-logtimemicros=1", "-whitelist=127.0.0.1"])) |
|
# Start a node for testing IsStandard rules. |
|
self.nodes.append(start_node(1, self.options.tmpdir, ["-debug", "-logtimemicros=1", "-whitelist=127.0.0.1", "-acceptnonstdtxn=0"])) |
|
connect_nodes(self.nodes[0], 1) |
|
|
|
# If an old bitcoind is given, do the upgrade-after-activation test. |
|
self.test_upgrade = False |
|
if (self.options.oldbinary != None): |
|
self.nodes.append(start_node(2, self.options.tmpdir, ["-debug", "-whitelist=127.0.0.1"], binary=self.options.oldbinary)) |
|
connect_nodes(self.nodes[0], 2) |
|
self.test_upgrade = True |
|
|
|
''' Helpers ''' |
|
# Build a block on top of node0's tip. |
|
def build_next_block(self, nVersion=4): |
|
tip = self.nodes[0].getbestblockhash() |
|
height = self.nodes[0].getblockcount() + 1 |
|
block_time = self.nodes[0].getblockheader(tip)["mediantime"] + 1 |
|
block = create_block(int(tip, 16), create_coinbase(height), block_time) |
|
block.nVersion = nVersion |
|
block.rehash() |
|
return block |
|
|
|
# Adds list of transactions to block, adds witness commitment, then solves. |
|
def update_witness_block_with_transactions(self, block, tx_list, nonce=0): |
|
block.vtx.extend(tx_list) |
|
add_witness_commitment(block, nonce) |
|
block.solve() |
|
return |
|
|
|
''' Individual tests ''' |
|
def test_witness_services(self): |
|
print("\tVerifying NODE_WITNESS service bit") |
|
assert((self.test_node.connection.nServices & NODE_WITNESS) != 0) |
|
|
|
|
|
# See if sending a regular transaction works, and create a utxo |
|
# to use in later tests. |
|
def test_non_witness_transaction(self): |
|
# Mine a block with an anyone-can-spend coinbase, |
|
# let it mature, then try to spend it. |
|
print("\tTesting non-witness transaction") |
|
block = self.build_next_block(nVersion=1) |
|
block.solve() |
|
self.test_node.send_message(msg_block(block)) |
|
self.test_node.sync_with_ping() # make sure the block was processed |
|
txid = block.vtx[0].sha256 |
|
|
|
self.nodes[0].generate(99) # let the block mature |
|
|
|
# Create a transaction that spends the coinbase |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(txid, 0), b"")) |
|
tx.vout.append(CTxOut(49*100000000, CScript([OP_TRUE]))) |
|
tx.calc_sha256() |
|
|
|
# Check that serializing it with or without witness is the same |
|
# This is a sanity check of our testing framework. |
|
assert_equal(msg_tx(tx).serialize(), msg_witness_tx(tx).serialize()) |
|
|
|
self.test_node.send_message(msg_witness_tx(tx)) |
|
self.test_node.sync_with_ping() # make sure the tx was processed |
|
assert(tx.hash in self.nodes[0].getrawmempool()) |
|
# Save this transaction for later |
|
self.utxo.append(UTXO(tx.sha256, 0, 49*100000000)) |
|
self.nodes[0].generate(1) |
|
|
|
|
|
# Verify that blocks with witnesses are rejected before activation. |
|
def test_unnecessary_witness_before_segwit_activation(self): |
|
print("\tTesting behavior of unnecessary witnesses") |
|
# For now, rely on earlier tests to have created at least one utxo for |
|
# us to use |
|
assert(len(self.utxo) > 0) |
|
assert(get_bip9_status(self.nodes[0], 'segwit')['status'] != 'active') |
|
|
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE]))) |
|
tx.wit.vtxinwit.append(CTxInWitness()) |
|
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)])] |
|
|
|
# Verify the hash with witness differs from the txid |
|
# (otherwise our testing framework must be broken!) |
|
tx.rehash() |
|
assert(tx.sha256 != tx.calc_sha256(with_witness=True)) |
|
|
|
# Construct a segwit-signaling block that includes the transaction. |
|
block = self.build_next_block(nVersion=(VB_TOP_BITS|(1 << VB_WITNESS_BIT))) |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
# Sending witness data before activation is not allowed (anti-spam |
|
# rule). |
|
self.test_node.test_witness_block(block, accepted=False) |
|
# TODO: fix synchronization so we can test reject reason |
|
# Right now, bitcoind delays sending reject messages for blocks |
|
# until the future, making synchronization here difficult. |
|
#assert_equal(self.test_node.last_reject.reason, "unexpected-witness") |
|
|
|
# But it should not be permanently marked bad... |
|
# Resend without witness information. |
|
self.test_node.send_message(msg_block(block)) |
|
self.test_node.sync_with_ping() |
|
assert_equal(self.nodes[0].getbestblockhash(), block.hash) |
|
|
|
sync_blocks(self.nodes) |
|
|
|
# Create a p2sh output -- this is so we can pass the standardness |
|
# rules (an anyone-can-spend OP_TRUE would be rejected, if not wrapped |
|
# in P2SH). |
|
p2sh_program = CScript([OP_TRUE]) |
|
p2sh_pubkey = hash160(p2sh_program) |
|
scriptPubKey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]) |
|
|
|
# Now check that unnecessary witnesses can't be used to blind a node |
|
# to a transaction, eg by violating standardness checks. |
|
tx2 = CTransaction() |
|
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) |
|
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptPubKey)) |
|
tx2.rehash() |
|
self.test_node.test_transaction_acceptance(tx2, False, True) |
|
self.nodes[0].generate(1) |
|
sync_blocks(self.nodes) |
|
|
|
# We'll add an unnecessary witness to this transaction that would cause |
|
# it to be non-standard, to test that violating policy with a witness before |
|
# segwit activation doesn't blind a node to a transaction. Transactions |
|
# rejected for having a witness before segwit activation shouldn't be added |
|
# to the rejection cache. |
|
tx3 = CTransaction() |
|
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), CScript([p2sh_program]))) |
|
tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, scriptPubKey)) |
|
tx3.wit.vtxinwit.append(CTxInWitness()) |
|
tx3.wit.vtxinwit[0].scriptWitness.stack = [b'a'*400000] |
|
tx3.rehash() |
|
# Note that this should be rejected for the premature witness reason, |
|
# rather than a policy check, since segwit hasn't activated yet. |
|
self.std_node.test_transaction_acceptance(tx3, True, False, b'no-witness-yet') |
|
|
|
# If we send without witness, it should be accepted. |
|
self.std_node.test_transaction_acceptance(tx3, False, True) |
|
|
|
# Now create a new anyone-can-spend utxo for the next test. |
|
tx4 = CTransaction() |
|
tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), CScript([p2sh_program]))) |
|
tx4.vout.append(CTxOut(tx3.vout[0].nValue-1000, CScript([OP_TRUE]))) |
|
tx4.rehash() |
|
self.test_node.test_transaction_acceptance(tx3, False, True) |
|
self.test_node.test_transaction_acceptance(tx4, False, True) |
|
|
|
self.nodes[0].generate(1) |
|
sync_blocks(self.nodes) |
|
|
|
# Update our utxo list; we spent the first entry. |
|
self.utxo.pop(0) |
|
self.utxo.append(UTXO(tx4.sha256, 0, tx4.vout[0].nValue)) |
|
|
|
|
|
# Mine enough blocks for segwit's vb state to be 'started'. |
|
def advance_to_segwit_started(self): |
|
height = self.nodes[0].getblockcount() |
|
# Will need to rewrite the tests here if we are past the first period |
|
assert(height < VB_PERIOD - 1) |
|
# Genesis block is 'defined'. |
|
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'defined') |
|
# Advance to end of period, status should now be 'started' |
|
self.nodes[0].generate(VB_PERIOD-height-1) |
|
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') |
|
|
|
# Mine enough blocks to lock in segwit, but don't activate. |
|
# TODO: we could verify that lockin only happens at the right threshold of |
|
# signalling blocks, rather than just at the right period boundary. |
|
def advance_to_segwit_lockin(self): |
|
height = self.nodes[0].getblockcount() |
|
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') |
|
# Advance to end of period, and verify lock-in happens at the end |
|
self.nodes[0].generate(VB_PERIOD-1) |
|
height = self.nodes[0].getblockcount() |
|
assert((height % VB_PERIOD) == VB_PERIOD - 2) |
|
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') |
|
self.nodes[0].generate(1) |
|
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') |
|
|
|
|
|
# Mine enough blocks to activate segwit. |
|
# TODO: we could verify that activation only happens at the right threshold |
|
# of signalling blocks, rather than just at the right period boundary. |
|
def advance_to_segwit_active(self): |
|
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') |
|
height = self.nodes[0].getblockcount() |
|
self.nodes[0].generate(VB_PERIOD - (height%VB_PERIOD) - 2) |
|
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') |
|
self.nodes[0].generate(1) |
|
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'active') |
|
|
|
|
|
# This test can only be run after segwit has activated |
|
def test_witness_commitments(self): |
|
print("\tTesting witness commitments") |
|
|
|
# First try a correct witness commitment. |
|
block = self.build_next_block() |
|
add_witness_commitment(block) |
|
block.solve() |
|
|
|
# Test the test -- witness serialization should be different |
|
assert(msg_witness_block(block).serialize() != msg_block(block).serialize()) |
|
|
|
# This empty block should be valid. |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
# Try to tweak the nonce |
|
block_2 = self.build_next_block() |
|
add_witness_commitment(block_2, nonce=28) |
|
block_2.solve() |
|
|
|
# The commitment should have changed! |
|
assert(block_2.vtx[0].vout[-1] != block.vtx[0].vout[-1]) |
|
|
|
# This should also be valid. |
|
self.test_node.test_witness_block(block_2, accepted=True) |
|
|
|
# Now test commitments with actual transactions |
|
assert (len(self.utxo) > 0) |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
|
|
# Let's construct a witness program |
|
witness_program = CScript([OP_TRUE]) |
|
witness_hash = sha256(witness_program) |
|
scriptPubKey = CScript([OP_0, witness_hash]) |
|
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) |
|
tx.rehash() |
|
|
|
# tx2 will spend tx1, and send back to a regular anyone-can-spend address |
|
tx2 = CTransaction() |
|
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) |
|
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program)) |
|
tx2.wit.vtxinwit.append(CTxInWitness()) |
|
tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] |
|
tx2.rehash() |
|
|
|
block_3 = self.build_next_block() |
|
self.update_witness_block_with_transactions(block_3, [tx, tx2], nonce=1) |
|
# Add an extra OP_RETURN output that matches the witness commitment template, |
|
# even though it has extra data after the incorrect commitment. |
|
# This block should fail. |
|
block_3.vtx[0].vout.append(CTxOut(0, CScript([OP_RETURN, WITNESS_COMMITMENT_HEADER + ser_uint256(2), 10]))) |
|
block_3.vtx[0].rehash() |
|
block_3.hashMerkleRoot = block_3.calc_merkle_root() |
|
block_3.rehash() |
|
block_3.solve() |
|
|
|
self.test_node.test_witness_block(block_3, accepted=False) |
|
|
|
# Add a different commitment with different nonce, but in the |
|
# right location, and with some funds burned(!). |
|
# This should succeed (nValue shouldn't affect finding the |
|
# witness commitment). |
|
add_witness_commitment(block_3, nonce=0) |
|
block_3.vtx[0].vout[0].nValue -= 1 |
|
block_3.vtx[0].vout[-1].nValue += 1 |
|
block_3.vtx[0].rehash() |
|
block_3.hashMerkleRoot = block_3.calc_merkle_root() |
|
block_3.rehash() |
|
assert(len(block_3.vtx[0].vout) == 4) # 3 OP_returns |
|
block_3.solve() |
|
self.test_node.test_witness_block(block_3, accepted=True) |
|
|
|
# Finally test that a block with no witness transactions can |
|
# omit the commitment. |
|
block_4 = self.build_next_block() |
|
tx3 = CTransaction() |
|
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) |
|
tx3.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program)) |
|
tx3.rehash() |
|
block_4.vtx.append(tx3) |
|
block_4.hashMerkleRoot = block_4.calc_merkle_root() |
|
block_4.solve() |
|
self.test_node.test_witness_block(block_4, with_witness=False, accepted=True) |
|
|
|
# Update available utxo's for use in later test. |
|
self.utxo.pop(0) |
|
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) |
|
|
|
|
|
def test_block_malleability(self): |
|
print("\tTesting witness block malleability") |
|
|
|
# Make sure that a block that has too big a virtual size |
|
# because of a too-large coinbase witness is not permanently |
|
# marked bad. |
|
block = self.build_next_block() |
|
add_witness_commitment(block) |
|
block.solve() |
|
|
|
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.append(b'a'*5000000) |
|
assert(get_virtual_size(block) > MAX_BLOCK_SIZE) |
|
|
|
# We can't send over the p2p network, because this is too big to relay |
|
# TODO: repeat this test with a block that can be relayed |
|
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) |
|
|
|
assert(self.nodes[0].getbestblockhash() != block.hash) |
|
|
|
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.pop() |
|
assert(get_virtual_size(block) < MAX_BLOCK_SIZE) |
|
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) |
|
|
|
assert(self.nodes[0].getbestblockhash() == block.hash) |
|
|
|
# Now make sure that malleating the witness nonce doesn't |
|
# result in a block permanently marked bad. |
|
block = self.build_next_block() |
|
add_witness_commitment(block) |
|
block.solve() |
|
|
|
# Change the nonce -- should not cause the block to be permanently |
|
# failed |
|
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(1) ] |
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Changing the witness nonce doesn't change the block hash |
|
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(0) ] |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
|
|
def test_witness_block_size(self): |
|
print("\tTesting witness block size limit") |
|
# TODO: Test that non-witness carrying blocks can't exceed 1MB |
|
# Skipping this test for now; this is covered in p2p-fullblocktest.py |
|
|
|
# Test that witness-bearing blocks are limited at ceil(base + wit/4) <= 1MB. |
|
block = self.build_next_block() |
|
|
|
assert(len(self.utxo) > 0) |
|
|
|
# Create a P2WSH transaction. |
|
# The witness program will be a bunch of OP_2DROP's, followed by OP_TRUE. |
|
# This should give us plenty of room to tweak the spending tx's |
|
# virtual size. |
|
NUM_DROPS = 200 # 201 max ops per script! |
|
NUM_OUTPUTS = 50 |
|
|
|
witness_program = CScript([OP_2DROP]*NUM_DROPS + [OP_TRUE]) |
|
witness_hash = uint256_from_str(sha256(witness_program)) |
|
scriptPubKey = CScript([OP_0, ser_uint256(witness_hash)]) |
|
|
|
prevout = COutPoint(self.utxo[0].sha256, self.utxo[0].n) |
|
value = self.utxo[0].nValue |
|
|
|
parent_tx = CTransaction() |
|
parent_tx.vin.append(CTxIn(prevout, b"")) |
|
child_value = int(value/NUM_OUTPUTS) |
|
for i in range(NUM_OUTPUTS): |
|
parent_tx.vout.append(CTxOut(child_value, scriptPubKey)) |
|
parent_tx.vout[0].nValue -= 50000 |
|
assert(parent_tx.vout[0].nValue > 0) |
|
parent_tx.rehash() |
|
|
|
child_tx = CTransaction() |
|
for i in range(NUM_OUTPUTS): |
|
child_tx.vin.append(CTxIn(COutPoint(parent_tx.sha256, i), b"")) |
|
child_tx.vout = [CTxOut(value - 100000, CScript([OP_TRUE]))] |
|
for i in range(NUM_OUTPUTS): |
|
child_tx.wit.vtxinwit.append(CTxInWitness()) |
|
child_tx.wit.vtxinwit[-1].scriptWitness.stack = [b'a'*195]*(2*NUM_DROPS) + [witness_program] |
|
child_tx.rehash() |
|
self.update_witness_block_with_transactions(block, [parent_tx, child_tx]) |
|
|
|
vsize = get_virtual_size(block) |
|
additional_bytes = (MAX_BLOCK_SIZE - vsize)*4 |
|
i = 0 |
|
while additional_bytes > 0: |
|
# Add some more bytes to each input until we hit MAX_BLOCK_SIZE+1 |
|
extra_bytes = min(additional_bytes+1, 55) |
|
block.vtx[-1].wit.vtxinwit[int(i/(2*NUM_DROPS))].scriptWitness.stack[i%(2*NUM_DROPS)] = b'a'*(195+extra_bytes) |
|
additional_bytes -= extra_bytes |
|
i += 1 |
|
|
|
block.vtx[0].vout.pop() # Remove old commitment |
|
add_witness_commitment(block) |
|
block.solve() |
|
vsize = get_virtual_size(block) |
|
assert_equal(vsize, MAX_BLOCK_SIZE + 1) |
|
# Make sure that our test case would exceed the old max-network-message |
|
# limit |
|
assert(len(block.serialize(True)) > 2*1024*1024) |
|
|
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Now resize the second transaction to make the block fit. |
|
cur_length = len(block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0]) |
|
block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(cur_length-1) |
|
block.vtx[0].vout.pop() |
|
add_witness_commitment(block) |
|
block.solve() |
|
assert(get_virtual_size(block) == MAX_BLOCK_SIZE) |
|
|
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
# Update available utxo's |
|
self.utxo.pop(0) |
|
self.utxo.append(UTXO(block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue)) |
|
|
|
|
|
# submitblock will try to add the nonce automatically, so that mining |
|
# software doesn't need to worry about doing so itself. |
|
def test_submit_block(self): |
|
block = self.build_next_block() |
|
|
|
# Try using a custom nonce and then don't supply it. |
|
# This shouldn't possibly work. |
|
add_witness_commitment(block, nonce=1) |
|
block.vtx[0].wit = CTxWitness() # drop the nonce |
|
block.solve() |
|
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) |
|
assert(self.nodes[0].getbestblockhash() != block.hash) |
|
|
|
# Now redo commitment with the standard nonce, but let bitcoind fill it in. |
|
add_witness_commitment(block, nonce=0) |
|
block.vtx[0].wit = CTxWitness() |
|
block.solve() |
|
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) |
|
assert_equal(self.nodes[0].getbestblockhash(), block.hash) |
|
|
|
# This time, add a tx with non-empty witness, but don't supply |
|
# the commitment. |
|
block_2 = self.build_next_block() |
|
|
|
add_witness_commitment(block_2) |
|
|
|
block_2.solve() |
|
|
|
# Drop commitment and nonce -- submitblock should not fill in. |
|
block_2.vtx[0].vout.pop() |
|
block_2.vtx[0].wit = CTxWitness() |
|
|
|
self.nodes[0].submitblock(bytes_to_hex_str(block_2.serialize(True))) |
|
# Tip should not advance! |
|
assert(self.nodes[0].getbestblockhash() != block_2.hash) |
|
|
|
|
|
# Consensus tests of extra witness data in a transaction. |
|
def test_extra_witness_data(self): |
|
print("\tTesting extra witness data in tx") |
|
|
|
assert(len(self.utxo) > 0) |
|
|
|
block = self.build_next_block() |
|
|
|
witness_program = CScript([OP_DROP, OP_TRUE]) |
|
witness_hash = sha256(witness_program) |
|
scriptPubKey = CScript([OP_0, witness_hash]) |
|
|
|
# First try extra witness data on a tx that doesn't require a witness |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
tx.vout.append(CTxOut(self.utxo[0].nValue-2000, scriptPubKey)) |
|
tx.vout.append(CTxOut(1000, CScript([OP_TRUE]))) # non-witness output |
|
tx.wit.vtxinwit.append(CTxInWitness()) |
|
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([])] |
|
tx.rehash() |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
|
|
# Extra witness data should not be allowed. |
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Try extra signature data. Ok if we're not spending a witness output. |
|
block.vtx[1].wit.vtxinwit = [] |
|
block.vtx[1].vin[0].scriptSig = CScript([OP_0]) |
|
block.vtx[1].rehash() |
|
add_witness_commitment(block) |
|
block.solve() |
|
|
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
# Now try extra witness/signature data on an input that DOES require a |
|
# witness |
|
tx2 = CTransaction() |
|
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) # witness output |
|
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 1), b"")) # non-witness |
|
tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) |
|
tx2.wit.vtxinwit.extend([CTxInWitness(), CTxInWitness()]) |
|
tx2.wit.vtxinwit[0].scriptWitness.stack = [ CScript([CScriptNum(1)]), CScript([CScriptNum(1)]), witness_program ] |
|
tx2.wit.vtxinwit[1].scriptWitness.stack = [ CScript([OP_TRUE]) ] |
|
|
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx2]) |
|
|
|
# This has extra witness data, so it should fail. |
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Now get rid of the extra witness, but add extra scriptSig data |
|
tx2.vin[0].scriptSig = CScript([OP_TRUE]) |
|
tx2.vin[1].scriptSig = CScript([OP_TRUE]) |
|
tx2.wit.vtxinwit[0].scriptWitness.stack.pop(0) |
|
tx2.wit.vtxinwit[1].scriptWitness.stack = [] |
|
tx2.rehash() |
|
add_witness_commitment(block) |
|
block.solve() |
|
|
|
# This has extra signature data for a witness input, so it should fail. |
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Now get rid of the extra scriptsig on the witness input, and verify |
|
# success (even with extra scriptsig data in the non-witness input) |
|
tx2.vin[0].scriptSig = b"" |
|
tx2.rehash() |
|
add_witness_commitment(block) |
|
block.solve() |
|
|
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
# Update utxo for later tests |
|
self.utxo.pop(0) |
|
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) |
|
|
|
|
|
def test_max_witness_push_length(self): |
|
''' Should only allow up to 520 byte pushes in witness stack ''' |
|
print("\tTesting maximum witness push size") |
|
MAX_SCRIPT_ELEMENT_SIZE = 520 |
|
assert(len(self.utxo)) |
|
|
|
block = self.build_next_block() |
|
|
|
witness_program = CScript([OP_DROP, OP_TRUE]) |
|
witness_hash = sha256(witness_program) |
|
scriptPubKey = CScript([OP_0, witness_hash]) |
|
|
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) |
|
tx.rehash() |
|
|
|
tx2 = CTransaction() |
|
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) |
|
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))) |
|
tx2.wit.vtxinwit.append(CTxInWitness()) |
|
# First try a 521-byte stack element |
|
tx2.wit.vtxinwit[0].scriptWitness.stack = [ b'a'*(MAX_SCRIPT_ELEMENT_SIZE+1), witness_program ] |
|
tx2.rehash() |
|
|
|
self.update_witness_block_with_transactions(block, [tx, tx2]) |
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Now reduce the length of the stack element |
|
tx2.wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(MAX_SCRIPT_ELEMENT_SIZE) |
|
|
|
add_witness_commitment(block) |
|
block.solve() |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
# Update the utxo for later tests |
|
self.utxo.pop() |
|
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) |
|
|
|
def test_max_witness_program_length(self): |
|
# Can create witness outputs that are long, but can't be greater than |
|
# 10k bytes to successfully spend |
|
print("\tTesting maximum witness program length") |
|
assert(len(self.utxo)) |
|
MAX_PROGRAM_LENGTH = 10000 |
|
|
|
# This program is 19 max pushes (9937 bytes), then 64 more opcode-bytes. |
|
long_witness_program = CScript([b'a'*520]*19 + [OP_DROP]*63 + [OP_TRUE]) |
|
assert(len(long_witness_program) == MAX_PROGRAM_LENGTH+1) |
|
long_witness_hash = sha256(long_witness_program) |
|
long_scriptPubKey = CScript([OP_0, long_witness_hash]) |
|
|
|
block = self.build_next_block() |
|
|
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, long_scriptPubKey)) |
|
tx.rehash() |
|
|
|
tx2 = CTransaction() |
|
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) |
|
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))) |
|
tx2.wit.vtxinwit.append(CTxInWitness()) |
|
tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*44 + [long_witness_program] |
|
tx2.rehash() |
|
|
|
self.update_witness_block_with_transactions(block, [tx, tx2]) |
|
|
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Try again with one less byte in the witness program |
|
witness_program = CScript([b'a'*520]*19 + [OP_DROP]*62 + [OP_TRUE]) |
|
assert(len(witness_program) == MAX_PROGRAM_LENGTH) |
|
witness_hash = sha256(witness_program) |
|
scriptPubKey = CScript([OP_0, witness_hash]) |
|
|
|
tx.vout[0] = CTxOut(tx.vout[0].nValue, scriptPubKey) |
|
tx.rehash() |
|
tx2.vin[0].prevout.hash = tx.sha256 |
|
tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*43 + [witness_program] |
|
tx2.rehash() |
|
block.vtx = [block.vtx[0]] |
|
self.update_witness_block_with_transactions(block, [tx, tx2]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
self.utxo.pop() |
|
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) |
|
|
|
|
|
def test_witness_input_length(self): |
|
''' Ensure that vin length must match vtxinwit length ''' |
|
print("\tTesting witness input length") |
|
assert(len(self.utxo)) |
|
|
|
witness_program = CScript([OP_DROP, OP_TRUE]) |
|
witness_hash = sha256(witness_program) |
|
scriptPubKey = CScript([OP_0, witness_hash]) |
|
|
|
# Create a transaction that splits our utxo into many outputs |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
nValue = self.utxo[0].nValue |
|
for i in range(10): |
|
tx.vout.append(CTxOut(int(nValue/10), scriptPubKey)) |
|
tx.vout[0].nValue -= 1000 |
|
assert(tx.vout[0].nValue >= 0) |
|
|
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
# Try various ways to spend tx that should all break. |
|
# This "broken" transaction serializer will not normalize |
|
# the length of vtxinwit. |
|
class BrokenCTransaction(CTransaction): |
|
def serialize_with_witness(self): |
|
flags = 0 |
|
if not self.wit.is_null(): |
|
flags |= 1 |
|
r = b"" |
|
r += struct.pack("<i", self.nVersion) |
|
if flags: |
|
dummy = [] |
|
r += ser_vector(dummy) |
|
r += struct.pack("<B", flags) |
|
r += ser_vector(self.vin) |
|
r += ser_vector(self.vout) |
|
if flags & 1: |
|
r += self.wit.serialize() |
|
r += struct.pack("<I", self.nLockTime) |
|
return r |
|
|
|
tx2 = BrokenCTransaction() |
|
for i in range(10): |
|
tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b"")) |
|
tx2.vout.append(CTxOut(nValue-3000, CScript([OP_TRUE]))) |
|
|
|
# First try using a too long vtxinwit |
|
for i in range(11): |
|
tx2.wit.vtxinwit.append(CTxInWitness()) |
|
tx2.wit.vtxinwit[i].scriptWitness.stack = [b'a', witness_program] |
|
|
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx2]) |
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Now try using a too short vtxinwit |
|
tx2.wit.vtxinwit.pop() |
|
tx2.wit.vtxinwit.pop() |
|
|
|
block.vtx = [block.vtx[0]] |
|
self.update_witness_block_with_transactions(block, [tx2]) |
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Now make one of the intermediate witnesses be incorrect |
|
tx2.wit.vtxinwit.append(CTxInWitness()) |
|
tx2.wit.vtxinwit[-1].scriptWitness.stack = [b'a', witness_program] |
|
tx2.wit.vtxinwit[5].scriptWitness.stack = [ witness_program ] |
|
|
|
block.vtx = [block.vtx[0]] |
|
self.update_witness_block_with_transactions(block, [tx2]) |
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Fix the broken witness and the block should be accepted. |
|
tx2.wit.vtxinwit[5].scriptWitness.stack = [b'a', witness_program] |
|
block.vtx = [block.vtx[0]] |
|
self.update_witness_block_with_transactions(block, [tx2]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
self.utxo.pop() |
|
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) |
|
|
|
|
|
def test_witness_tx_relay_before_segwit_activation(self): |
|
print("\tTesting relay of witness transactions") |
|
# Generate a transaction that doesn't require a witness, but send it |
|
# with a witness. Should be rejected for premature-witness, but should |
|
# not be added to recently rejected list. |
|
assert(len(self.utxo)) |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE]))) |
|
tx.wit.vtxinwit.append(CTxInWitness()) |
|
tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ] |
|
tx.rehash() |
|
|
|
tx_hash = tx.sha256 |
|
tx_value = tx.vout[0].nValue |
|
|
|
# Verify that if a peer doesn't set nServices to include NODE_WITNESS, |
|
# the getdata is just for the non-witness portion. |
|
self.old_node.announce_tx_and_wait_for_getdata(tx) |
|
assert(self.old_node.last_getdata.inv[0].type == 1) |
|
|
|
# Since we haven't delivered the tx yet, inv'ing the same tx from |
|
# a witness transaction ought not result in a getdata. |
|
try: |
|
self.test_node.announce_tx_and_wait_for_getdata(tx, timeout=2) |
|
print("Error: duplicate tx getdata!") |
|
assert(False) |
|
except AssertionError as e: |
|
pass |
|
|
|
# Delivering this transaction with witness should fail (no matter who |
|
# its from) |
|
assert_equal(len(self.nodes[0].getrawmempool()), 0) |
|
assert_equal(len(self.nodes[1].getrawmempool()), 0) |
|
self.old_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) |
|
self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) |
|
|
|
# But eliminating the witness should fix it |
|
self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) |
|
|
|
# Cleanup: mine the first transaction and update utxo |
|
self.nodes[0].generate(1) |
|
assert_equal(len(self.nodes[0].getrawmempool()), 0) |
|
|
|
self.utxo.pop(0) |
|
self.utxo.append(UTXO(tx_hash, 0, tx_value)) |
|
|
|
|
|
# After segwit activates, verify that mempool: |
|
# - rejects transactions with unnecessary/extra witnesses |
|
# - accepts transactions with valid witnesses |
|
# and that witness transactions are relayed to non-upgraded peers. |
|
def test_tx_relay_after_segwit_activation(self): |
|
print("\tTesting relay of witness transactions") |
|
# Generate a transaction that doesn't require a witness, but send it |
|
# with a witness. Should be rejected because we can't use a witness |
|
# when spending a non-witness output. |
|
assert(len(self.utxo)) |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE]))) |
|
tx.wit.vtxinwit.append(CTxInWitness()) |
|
tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ] |
|
tx.rehash() |
|
|
|
tx_hash = tx.sha256 |
|
tx_value = tx.vout[0].nValue |
|
|
|
# Verify that unnecessary witnesses are rejected. |
|
self.test_node.announce_tx_and_wait_for_getdata(tx) |
|
assert_equal(len(self.nodes[0].getrawmempool()), 0) |
|
self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) |
|
|
|
# Verify that removing the witness succeeds. |
|
self.test_node.announce_tx_and_wait_for_getdata(tx) |
|
self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) |
|
|
|
# Now try to add extra witness data to a valid witness tx. |
|
witness_program = CScript([OP_TRUE]) |
|
witness_hash = sha256(witness_program) |
|
scriptPubKey = CScript([OP_0, witness_hash]) |
|
tx2 = CTransaction() |
|
tx2.vin.append(CTxIn(COutPoint(tx_hash, 0), b"")) |
|
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptPubKey)) |
|
tx2.rehash() |
|
|
|
tx3 = CTransaction() |
|
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) |
|
tx3.wit.vtxinwit.append(CTxInWitness()) |
|
|
|
# Add too-large for IsStandard witness and check that it does not enter reject filter |
|
p2sh_program = CScript([OP_TRUE]) |
|
p2sh_pubkey = hash160(p2sh_program) |
|
witness_program2 = CScript([b'a'*400000]) |
|
tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]))) |
|
tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program2] |
|
tx3.rehash() |
|
|
|
# Node will not be blinded to the transaction |
|
self.std_node.announce_tx_and_wait_for_getdata(tx3) |
|
self.std_node.test_transaction_acceptance(tx3, True, False, b'tx-size') |
|
self.std_node.announce_tx_and_wait_for_getdata(tx3) |
|
self.std_node.test_transaction_acceptance(tx3, True, False, b'tx-size') |
|
|
|
# Remove witness stuffing, instead add extra witness push on stack |
|
tx3.vout[0] = CTxOut(tx2.vout[0].nValue-1000, CScript([OP_TRUE])) |
|
tx3.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)]), witness_program ] |
|
tx3.rehash() |
|
|
|
self.test_node.test_transaction_acceptance(tx2, with_witness=True, accepted=True) |
|
self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=False) |
|
|
|
# Get rid of the extra witness, and verify acceptance. |
|
tx3.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ] |
|
# Also check that old_node gets a tx announcement, even though this is |
|
# a witness transaction. |
|
self.old_node.wait_for_inv(CInv(1, tx2.sha256)) # wait until tx2 was inv'ed |
|
self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=True) |
|
self.old_node.wait_for_inv(CInv(1, tx3.sha256)) |
|
|
|
# Test that getrawtransaction returns correct witness information |
|
# hash, size, vsize |
|
raw_tx = self.nodes[0].getrawtransaction(tx3.hash, 1) |
|
assert_equal(int(raw_tx["hash"], 16), tx3.calc_sha256(True)) |
|
assert_equal(raw_tx["size"], len(tx3.serialize_with_witness())) |
|
vsize = (len(tx3.serialize_with_witness()) + 3*len(tx3.serialize_without_witness()) + 3) / 4 |
|
assert_equal(raw_tx["vsize"], vsize) |
|
assert_equal(len(raw_tx["vin"][0]["txinwitness"]), 1) |
|
assert_equal(raw_tx["vin"][0]["txinwitness"][0], hexlify(witness_program).decode('ascii')) |
|
assert(vsize != raw_tx["size"]) |
|
|
|
# Cleanup: mine the transactions and update utxo for next test |
|
self.nodes[0].generate(1) |
|
assert_equal(len(self.nodes[0].getrawmempool()), 0) |
|
|
|
self.utxo.pop(0) |
|
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) |
|
|
|
|
|
# Test that block requests to NODE_WITNESS peer are with MSG_WITNESS_FLAG |
|
# This is true regardless of segwit activation. |
|
# Also test that we don't ask for blocks from unupgraded peers |
|
def test_block_relay(self, segwit_activated): |
|
print("\tTesting block relay") |
|
|
|
blocktype = 2|MSG_WITNESS_FLAG |
|
|
|
# test_node has set NODE_WITNESS, so all getdata requests should be for |
|
# witness blocks. |
|
# Test announcing a block via inv results in a getdata, and that |
|
# announcing a version 4 or random VB block with a header results in a getdata |
|
block1 = self.build_next_block() |
|
block1.solve() |
|
|
|
self.test_node.announce_block_and_wait_for_getdata(block1, use_header=False) |
|
assert(self.test_node.last_getdata.inv[0].type == blocktype) |
|
self.test_node.test_witness_block(block1, True) |
|
|
|
block2 = self.build_next_block(nVersion=4) |
|
block2.solve() |
|
|
|
self.test_node.announce_block_and_wait_for_getdata(block2, use_header=True) |
|
assert(self.test_node.last_getdata.inv[0].type == blocktype) |
|
self.test_node.test_witness_block(block2, True) |
|
|
|
block3 = self.build_next_block(nVersion=(VB_TOP_BITS | (1<<15))) |
|
block3.solve() |
|
self.test_node.announce_block_and_wait_for_getdata(block3, use_header=True) |
|
assert(self.test_node.last_getdata.inv[0].type == blocktype) |
|
self.test_node.test_witness_block(block3, True) |
|
|
|
# Check that we can getdata for witness blocks or regular blocks, |
|
# and the right thing happens. |
|
if segwit_activated == False: |
|
# Before activation, we should be able to request old blocks with |
|
# or without witness, and they should be the same. |
|
chain_height = self.nodes[0].getblockcount() |
|
# Pick 10 random blocks on main chain, and verify that getdata's |
|
# for MSG_BLOCK, MSG_WITNESS_BLOCK, and rpc getblock() are equal. |
|
all_heights = list(range(chain_height+1)) |
|
random.shuffle(all_heights) |
|
all_heights = all_heights[0:10] |
|
for height in all_heights: |
|
block_hash = self.nodes[0].getblockhash(height) |
|
rpc_block = self.nodes[0].getblock(block_hash, False) |
|
block_hash = int(block_hash, 16) |
|
block = self.test_node.request_block(block_hash, 2) |
|
wit_block = self.test_node.request_block(block_hash, 2|MSG_WITNESS_FLAG) |
|
assert_equal(block.serialize(True), wit_block.serialize(True)) |
|
assert_equal(block.serialize(), hex_str_to_bytes(rpc_block)) |
|
else: |
|
# After activation, witness blocks and non-witness blocks should |
|
# be different. Verify rpc getblock() returns witness blocks, while |
|
# getdata respects the requested type. |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, []) |
|
# This gives us a witness commitment. |
|
assert(len(block.vtx[0].wit.vtxinwit) == 1) |
|
assert(len(block.vtx[0].wit.vtxinwit[0].scriptWitness.stack) == 1) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
# Now try to retrieve it... |
|
rpc_block = self.nodes[0].getblock(block.hash, False) |
|
non_wit_block = self.test_node.request_block(block.sha256, 2) |
|
wit_block = self.test_node.request_block(block.sha256, 2|MSG_WITNESS_FLAG) |
|
assert_equal(wit_block.serialize(True), hex_str_to_bytes(rpc_block)) |
|
assert_equal(wit_block.serialize(False), non_wit_block.serialize()) |
|
assert_equal(wit_block.serialize(True), block.serialize(True)) |
|
|
|
# Test size, vsize, weight |
|
rpc_details = self.nodes[0].getblock(block.hash, True) |
|
assert_equal(rpc_details["size"], len(block.serialize(True))) |
|
assert_equal(rpc_details["strippedsize"], len(block.serialize(False))) |
|
weight = 3*len(block.serialize(False)) + len(block.serialize(True)) |
|
assert_equal(rpc_details["weight"], weight) |
|
|
|
# Upgraded node should not ask for blocks from unupgraded |
|
block4 = self.build_next_block(nVersion=4) |
|
block4.solve() |
|
self.old_node.getdataset = set() |
|
# Blocks can be requested via direct-fetch (immediately upon processing the announcement) |
|
# or via parallel download (with an indeterminate delay from processing the announcement) |
|
# so to test that a block is NOT requested, we could guess a time period to sleep for, |
|
# and then check. We can avoid the sleep() by taking advantage of transaction getdata's |
|
# being processed after block getdata's, and announce a transaction as well, |
|
# and then check to see if that particular getdata has been received. |
|
self.old_node.announce_block(block4, use_header=False) |
|
self.old_node.announce_tx_and_wait_for_getdata(block4.vtx[0]) |
|
assert(block4.sha256 not in self.old_node.getdataset) |
|
|
|
# V0 segwit outputs should be standard after activation, but not before. |
|
def test_standardness_v0(self, segwit_activated): |
|
print("\tTesting standardness of v0 outputs (%s activation)" % ("after" if segwit_activated else "before")) |
|
assert(len(self.utxo)) |
|
|
|
witness_program = CScript([OP_TRUE]) |
|
witness_hash = sha256(witness_program) |
|
scriptPubKey = CScript([OP_0, witness_hash]) |
|
|
|
p2sh_pubkey = hash160(witness_program) |
|
p2sh_scriptPubKey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]) |
|
|
|
# First prepare a p2sh output (so that spending it will pass standardness) |
|
p2sh_tx = CTransaction() |
|
p2sh_tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")] |
|
p2sh_tx.vout = [CTxOut(self.utxo[0].nValue-1000, p2sh_scriptPubKey)] |
|
p2sh_tx.rehash() |
|
|
|
# Mine it on test_node to create the confirmed output. |
|
self.test_node.test_transaction_acceptance(p2sh_tx, with_witness=True, accepted=True) |
|
self.nodes[0].generate(1) |
|
sync_blocks(self.nodes) |
|
|
|
# Now test standardness of v0 P2WSH outputs. |
|
# Start by creating a transaction with two outputs. |
|
tx = CTransaction() |
|
tx.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))] |
|
tx.vout = [CTxOut(p2sh_tx.vout[0].nValue-10000, scriptPubKey)] |
|
tx.vout.append(CTxOut(8000, scriptPubKey)) # Might burn this later |
|
tx.rehash() |
|
|
|
self.std_node.test_transaction_acceptance(tx, with_witness=True, accepted=segwit_activated) |
|
|
|
# Now create something that looks like a P2PKH output. This won't be spendable. |
|
scriptPubKey = CScript([OP_0, hash160(witness_hash)]) |
|
tx2 = CTransaction() |
|
if segwit_activated: |
|
# if tx was accepted, then we spend the second output. |
|
tx2.vin = [CTxIn(COutPoint(tx.sha256, 1), b"")] |
|
tx2.vout = [CTxOut(7000, scriptPubKey)] |
|
tx2.wit.vtxinwit.append(CTxInWitness()) |
|
tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] |
|
else: |
|
# if tx wasn't accepted, we just re-spend the p2sh output we started with. |
|
tx2.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))] |
|
tx2.vout = [CTxOut(p2sh_tx.vout[0].nValue-1000, scriptPubKey)] |
|
tx2.rehash() |
|
|
|
self.std_node.test_transaction_acceptance(tx2, with_witness=True, accepted=segwit_activated) |
|
|
|
# Now update self.utxo for later tests. |
|
tx3 = CTransaction() |
|
if segwit_activated: |
|
# tx and tx2 were both accepted. Don't bother trying to reclaim the |
|
# P2PKH output; just send tx's first output back to an anyone-can-spend. |
|
sync_mempools(self.nodes) |
|
tx3.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")] |
|
tx3.vout = [CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))] |
|
tx3.wit.vtxinwit.append(CTxInWitness()) |
|
tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program] |
|
tx3.rehash() |
|
self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=True) |
|
else: |
|
# tx and tx2 didn't go anywhere; just clean up the p2sh_tx output. |
|
tx3.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))] |
|
tx3.vout = [CTxOut(p2sh_tx.vout[0].nValue-1000, witness_program)] |
|
tx3.rehash() |
|
self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=True) |
|
|
|
self.nodes[0].generate(1) |
|
sync_blocks(self.nodes) |
|
self.utxo.pop(0) |
|
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) |
|
assert_equal(len(self.nodes[1].getrawmempool()), 0) |
|
|
|
|
|
# Verify that future segwit upgraded transactions are non-standard, |
|
# but valid in blocks. Can run this before and after segwit activation. |
|
def test_segwit_versions(self): |
|
print("\tTesting standardness/consensus for segwit versions (0-16)") |
|
assert(len(self.utxo)) |
|
NUM_TESTS = 17 # will test OP_0, OP1, ..., OP_16 |
|
if (len(self.utxo) < NUM_TESTS): |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
split_value = (self.utxo[0].nValue - 4000) // NUM_TESTS |
|
for i in range(NUM_TESTS): |
|
tx.vout.append(CTxOut(split_value, CScript([OP_TRUE]))) |
|
tx.rehash() |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
self.utxo.pop(0) |
|
for i in range(NUM_TESTS): |
|
self.utxo.append(UTXO(tx.sha256, i, split_value)) |
|
|
|
sync_blocks(self.nodes) |
|
temp_utxo = [] |
|
tx = CTransaction() |
|
count = 0 |
|
witness_program = CScript([OP_TRUE]) |
|
witness_hash = sha256(witness_program) |
|
assert_equal(len(self.nodes[1].getrawmempool()), 0) |
|
for version in list(range(OP_1, OP_16+1)) + [OP_0]: |
|
count += 1 |
|
# First try to spend to a future version segwit scriptPubKey. |
|
scriptPubKey = CScript([CScriptOp(version), witness_hash]) |
|
tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")] |
|
tx.vout = [CTxOut(self.utxo[0].nValue-1000, scriptPubKey)] |
|
tx.rehash() |
|
self.std_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) |
|
self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=True) |
|
self.utxo.pop(0) |
|
temp_utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue)) |
|
|
|
self.nodes[0].generate(1) # Mine all the transactions |
|
sync_blocks(self.nodes) |
|
assert(len(self.nodes[0].getrawmempool()) == 0) |
|
|
|
# Finally, verify that version 0 -> version 1 transactions |
|
# are non-standard |
|
scriptPubKey = CScript([CScriptOp(OP_1), witness_hash]) |
|
tx2 = CTransaction() |
|
tx2.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")] |
|
tx2.vout = [CTxOut(tx.vout[0].nValue-1000, scriptPubKey)] |
|
tx2.wit.vtxinwit.append(CTxInWitness()) |
|
tx2.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ] |
|
tx2.rehash() |
|
# Gets accepted to test_node, because standardness of outputs isn't |
|
# checked with fRequireStandard |
|
self.test_node.test_transaction_acceptance(tx2, with_witness=True, accepted=True) |
|
self.std_node.test_transaction_acceptance(tx2, with_witness=True, accepted=False) |
|
temp_utxo.pop() # last entry in temp_utxo was the output we just spent |
|
temp_utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) |
|
|
|
# Spend everything in temp_utxo back to an OP_TRUE output. |
|
tx3 = CTransaction() |
|
total_value = 0 |
|
for i in temp_utxo: |
|
tx3.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) |
|
tx3.wit.vtxinwit.append(CTxInWitness()) |
|
total_value += i.nValue |
|
tx3.wit.vtxinwit[-1].scriptWitness.stack = [witness_program] |
|
tx3.vout.append(CTxOut(total_value - 1000, CScript([OP_TRUE]))) |
|
tx3.rehash() |
|
# Spending a higher version witness output is not allowed by policy, |
|
# even with fRequireStandard=false. |
|
self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=False) |
|
self.test_node.sync_with_ping() |
|
with mininode_lock: |
|
assert(b"reserved for soft-fork upgrades" in self.test_node.last_reject.reason) |
|
|
|
# Building a block with the transaction must be valid, however. |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx2, tx3]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
sync_blocks(self.nodes) |
|
|
|
# Add utxo to our list |
|
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) |
|
|
|
|
|
def test_premature_coinbase_witness_spend(self): |
|
print("\tTesting premature coinbase witness spend") |
|
block = self.build_next_block() |
|
# Change the output of the block to be a witness output. |
|
witness_program = CScript([OP_TRUE]) |
|
witness_hash = sha256(witness_program) |
|
scriptPubKey = CScript([OP_0, witness_hash]) |
|
block.vtx[0].vout[0].scriptPubKey = scriptPubKey |
|
# This next line will rehash the coinbase and update the merkle |
|
# root, and solve. |
|
self.update_witness_block_with_transactions(block, []) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
spend_tx = CTransaction() |
|
spend_tx.vin = [CTxIn(COutPoint(block.vtx[0].sha256, 0), b"")] |
|
spend_tx.vout = [CTxOut(block.vtx[0].vout[0].nValue, witness_program)] |
|
spend_tx.wit.vtxinwit.append(CTxInWitness()) |
|
spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ] |
|
spend_tx.rehash() |
|
|
|
# Now test a premature spend. |
|
self.nodes[0].generate(98) |
|
sync_blocks(self.nodes) |
|
block2 = self.build_next_block() |
|
self.update_witness_block_with_transactions(block2, [spend_tx]) |
|
self.test_node.test_witness_block(block2, accepted=False) |
|
|
|
# Advancing one more block should allow the spend. |
|
self.nodes[0].generate(1) |
|
block2 = self.build_next_block() |
|
self.update_witness_block_with_transactions(block2, [spend_tx]) |
|
self.test_node.test_witness_block(block2, accepted=True) |
|
sync_blocks(self.nodes) |
|
|
|
|
|
def test_signature_version_1(self): |
|
print("\tTesting segwit signature hash version 1") |
|
key = CECKey() |
|
key.set_secretbytes(b"9") |
|
pubkey = CPubKey(key.get_pubkey()) |
|
|
|
witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)]) |
|
witness_hash = sha256(witness_program) |
|
scriptPubKey = CScript([OP_0, witness_hash]) |
|
|
|
# First create a witness output for use in the tests. |
|
assert(len(self.utxo)) |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) |
|
tx.rehash() |
|
|
|
self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=True) |
|
# Mine this transaction in preparation for following tests. |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
sync_blocks(self.nodes) |
|
self.utxo.pop(0) |
|
|
|
# Test each hashtype |
|
prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) |
|
for sigflag in [ 0, SIGHASH_ANYONECANPAY ]: |
|
for hashtype in [SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE]: |
|
hashtype |= sigflag |
|
block = self.build_next_block() |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) |
|
tx.vout.append(CTxOut(prev_utxo.nValue - 1000, scriptPubKey)) |
|
tx.wit.vtxinwit.append(CTxInWitness()) |
|
# Too-large input value |
|
sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue+1, key) |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Too-small input value |
|
sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue-1, key) |
|
block.vtx.pop() # remove last tx |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Now try correct value |
|
sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue, key) |
|
block.vtx.pop() |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) |
|
|
|
# Test combinations of signature hashes. |
|
# Split the utxo into a lot of outputs. |
|
# Randomly choose up to 10 to spend, sign with different hashtypes, and |
|
# output to a random number of outputs. Repeat NUM_TESTS times. |
|
# Ensure that we've tested a situation where we use SIGHASH_SINGLE with |
|
# an input index > number of outputs. |
|
NUM_TESTS = 500 |
|
temp_utxos = [] |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) |
|
split_value = prev_utxo.nValue // NUM_TESTS |
|
for i in range(NUM_TESTS): |
|
tx.vout.append(CTxOut(split_value, scriptPubKey)) |
|
tx.wit.vtxinwit.append(CTxInWitness()) |
|
sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, prev_utxo.nValue, key) |
|
for i in range(NUM_TESTS): |
|
temp_utxos.append(UTXO(tx.sha256, i, split_value)) |
|
|
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
block = self.build_next_block() |
|
used_sighash_single_out_of_bounds = False |
|
for i in range(NUM_TESTS): |
|
# Ping regularly to keep the connection alive |
|
if (not i % 100): |
|
self.test_node.sync_with_ping() |
|
# Choose random number of inputs to use. |
|
num_inputs = random.randint(1, 10) |
|
# Create a slight bias for producing more utxos |
|
num_outputs = random.randint(1, 11) |
|
random.shuffle(temp_utxos) |
|
assert(len(temp_utxos) > num_inputs) |
|
tx = CTransaction() |
|
total_value = 0 |
|
for i in range(num_inputs): |
|
tx.vin.append(CTxIn(COutPoint(temp_utxos[i].sha256, temp_utxos[i].n), b"")) |
|
tx.wit.vtxinwit.append(CTxInWitness()) |
|
total_value += temp_utxos[i].nValue |
|
split_value = total_value // num_outputs |
|
for i in range(num_outputs): |
|
tx.vout.append(CTxOut(split_value, scriptPubKey)) |
|
for i in range(num_inputs): |
|
# Now try to sign each input, using a random hashtype. |
|
anyonecanpay = 0 |
|
if random.randint(0, 1): |
|
anyonecanpay = SIGHASH_ANYONECANPAY |
|
hashtype = random.randint(1, 3) | anyonecanpay |
|
sign_P2PK_witness_input(witness_program, tx, i, hashtype, temp_utxos[i].nValue, key) |
|
if (hashtype == SIGHASH_SINGLE and i >= num_outputs): |
|
used_sighash_single_out_of_bounds = True |
|
tx.rehash() |
|
for i in range(num_outputs): |
|
temp_utxos.append(UTXO(tx.sha256, i, split_value)) |
|
temp_utxos = temp_utxos[num_inputs:] |
|
|
|
block.vtx.append(tx) |
|
|
|
# Test the block periodically, if we're close to maxblocksize |
|
if (get_virtual_size(block) > MAX_BLOCK_SIZE - 1000): |
|
self.update_witness_block_with_transactions(block, []) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
block = self.build_next_block() |
|
|
|
if (not used_sighash_single_out_of_bounds): |
|
print("WARNING: this test run didn't attempt SIGHASH_SINGLE with out-of-bounds index value") |
|
# Test the transactions we've added to the block |
|
if (len(block.vtx) > 1): |
|
self.update_witness_block_with_transactions(block, []) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
# Now test witness version 0 P2PKH transactions |
|
pubkeyhash = hash160(pubkey) |
|
scriptPKH = CScript([OP_0, pubkeyhash]) |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(temp_utxos[0].sha256, temp_utxos[0].n), b"")) |
|
tx.vout.append(CTxOut(temp_utxos[0].nValue, scriptPKH)) |
|
tx.wit.vtxinwit.append(CTxInWitness()) |
|
sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, temp_utxos[0].nValue, key) |
|
tx2 = CTransaction() |
|
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) |
|
tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) |
|
|
|
script = GetP2PKHScript(pubkeyhash) |
|
sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue) |
|
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL |
|
|
|
# Check that we can't have a scriptSig |
|
tx2.vin[0].scriptSig = CScript([signature, pubkey]) |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx, tx2]) |
|
self.test_node.test_witness_block(block, accepted=False) |
|
|
|
# Move the signature to the witness. |
|
block.vtx.pop() |
|
tx2.wit.vtxinwit.append(CTxInWitness()) |
|
tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey] |
|
tx2.vin[0].scriptSig = b"" |
|
tx2.rehash() |
|
|
|
self.update_witness_block_with_transactions(block, [tx2]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
temp_utxos.pop(0) |
|
|
|
# Update self.utxos for later tests. Just spend everything in |
|
# temp_utxos to a corresponding entry in self.utxos |
|
tx = CTransaction() |
|
index = 0 |
|
for i in temp_utxos: |
|
# Just spend to our usual anyone-can-spend output |
|
# Use SIGHASH_SINGLE|SIGHASH_ANYONECANPAY so we can build up |
|
# the signatures as we go. |
|
tx.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) |
|
tx.vout.append(CTxOut(i.nValue, CScript([OP_TRUE]))) |
|
tx.wit.vtxinwit.append(CTxInWitness()) |
|
sign_P2PK_witness_input(witness_program, tx, index, SIGHASH_SINGLE|SIGHASH_ANYONECANPAY, i.nValue, key) |
|
index += 1 |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
for i in range(len(tx.vout)): |
|
self.utxo.append(UTXO(tx.sha256, i, tx.vout[i].nValue)) |
|
|
|
|
|
# Test P2SH wrapped witness programs. |
|
def test_p2sh_witness(self, segwit_activated): |
|
print("\tTesting P2SH witness transactions") |
|
|
|
assert(len(self.utxo)) |
|
|
|
# Prepare the p2sh-wrapped witness output |
|
witness_program = CScript([OP_DROP, OP_TRUE]) |
|
witness_hash = sha256(witness_program) |
|
p2wsh_pubkey = CScript([OP_0, witness_hash]) |
|
p2sh_witness_hash = hash160(p2wsh_pubkey) |
|
scriptPubKey = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL]) |
|
scriptSig = CScript([p2wsh_pubkey]) # a push of the redeem script |
|
|
|
# Fund the P2SH output |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) |
|
tx.rehash() |
|
|
|
# Verify mempool acceptance and block validity |
|
self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
self.test_node.test_witness_block(block, accepted=True, with_witness=segwit_activated) |
|
sync_blocks(self.nodes) |
|
|
|
# Now test attempts to spend the output. |
|
spend_tx = CTransaction() |
|
spend_tx.vin.append(CTxIn(COutPoint(tx.sha256, 0), scriptSig)) |
|
spend_tx.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))) |
|
spend_tx.rehash() |
|
|
|
# This transaction should not be accepted into the mempool pre- or |
|
# post-segwit. Mempool acceptance will use SCRIPT_VERIFY_WITNESS which |
|
# will require a witness to spend a witness program regardless of |
|
# segwit activation. Note that older bitcoind's that are not |
|
# segwit-aware would also reject this for failing CLEANSTACK. |
|
self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False) |
|
|
|
# Try to put the witness script in the scriptSig, should also fail. |
|
spend_tx.vin[0].scriptSig = CScript([p2wsh_pubkey, b'a']) |
|
spend_tx.rehash() |
|
self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False) |
|
|
|
# Now put the witness script in the witness, should succeed after |
|
# segwit activates. |
|
spend_tx.vin[0].scriptSig = scriptSig |
|
spend_tx.rehash() |
|
spend_tx.wit.vtxinwit.append(CTxInWitness()) |
|
spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a', witness_program ] |
|
|
|
# Verify mempool acceptance |
|
self.test_node.test_transaction_acceptance(spend_tx, with_witness=True, accepted=segwit_activated) |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [spend_tx]) |
|
|
|
# If we're before activation, then sending this without witnesses |
|
# should be valid. If we're after activation, then sending this with |
|
# witnesses should be valid. |
|
if segwit_activated: |
|
self.test_node.test_witness_block(block, accepted=True) |
|
else: |
|
self.test_node.test_witness_block(block, accepted=True, with_witness=False) |
|
|
|
# Update self.utxo |
|
self.utxo.pop(0) |
|
self.utxo.append(UTXO(spend_tx.sha256, 0, spend_tx.vout[0].nValue)) |
|
|
|
# Test the behavior of starting up a segwit-aware node after the softfork |
|
# has activated. As segwit requires different block data than pre-segwit |
|
# nodes would have stored, this requires special handling. |
|
# To enable this test, pass --oldbinary=<path-to-pre-segwit-bitcoind> to |
|
# the test. |
|
def test_upgrade_after_activation(self, node, node_id): |
|
print("\tTesting software upgrade after softfork activation") |
|
|
|
assert(node_id != 0) # node0 is assumed to be a segwit-active bitcoind |
|
|
|
# Make sure the nodes are all up |
|
sync_blocks(self.nodes) |
|
|
|
# Restart with the new binary |
|
stop_node(node, node_id) |
|
self.nodes[node_id] = start_node(node_id, self.options.tmpdir, ["-debug"]) |
|
connect_nodes(self.nodes[0], node_id) |
|
|
|
sync_blocks(self.nodes) |
|
|
|
# Make sure that this peer thinks segwit has activated. |
|
assert(get_bip9_status(node, 'segwit')['status'] == "active") |
|
|
|
# Make sure this peers blocks match those of node0. |
|
height = node.getblockcount() |
|
while height >= 0: |
|
block_hash = node.getblockhash(height) |
|
assert_equal(block_hash, self.nodes[0].getblockhash(height)) |
|
assert_equal(self.nodes[0].getblock(block_hash), node.getblock(block_hash)) |
|
height -= 1 |
|
|
|
|
|
def test_witness_sigops(self): |
|
'''Ensure sigop counting is correct inside witnesses.''' |
|
print("\tTesting sigops limit") |
|
|
|
assert(len(self.utxo)) |
|
|
|
# Keep this under MAX_OPS_PER_SCRIPT (201) |
|
witness_program = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKMULTISIG]*5 + [OP_CHECKSIG]*193 + [OP_ENDIF]) |
|
witness_hash = sha256(witness_program) |
|
scriptPubKey = CScript([OP_0, witness_hash]) |
|
|
|
sigops_per_script = 20*5 + 193*1 |
|
# We'll produce 2 extra outputs, one with a program that would take us |
|
# over max sig ops, and one with a program that would exactly reach max |
|
# sig ops |
|
outputs = (MAX_SIGOP_COST // sigops_per_script) + 2 |
|
extra_sigops_available = MAX_SIGOP_COST % sigops_per_script |
|
|
|
# We chose the number of checkmultisigs/checksigs to make this work: |
|
assert(extra_sigops_available < 100) # steer clear of MAX_OPS_PER_SCRIPT |
|
|
|
# This script, when spent with the first |
|
# N(=MAX_SIGOP_COST//sigops_per_script) outputs of our transaction, |
|
# would push us just over the block sigop limit. |
|
witness_program_toomany = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available + 1) + [OP_ENDIF]) |
|
witness_hash_toomany = sha256(witness_program_toomany) |
|
scriptPubKey_toomany = CScript([OP_0, witness_hash_toomany]) |
|
|
|
# If we spend this script instead, we would exactly reach our sigop |
|
# limit (for witness sigops). |
|
witness_program_justright = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available) + [OP_ENDIF]) |
|
witness_hash_justright = sha256(witness_program_justright) |
|
scriptPubKey_justright = CScript([OP_0, witness_hash_justright]) |
|
|
|
# First split our available utxo into a bunch of outputs |
|
split_value = self.utxo[0].nValue // outputs |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
for i in range(outputs): |
|
tx.vout.append(CTxOut(split_value, scriptPubKey)) |
|
tx.vout[-2].scriptPubKey = scriptPubKey_toomany |
|
tx.vout[-1].scriptPubKey = scriptPubKey_justright |
|
tx.rehash() |
|
|
|
block_1 = self.build_next_block() |
|
self.update_witness_block_with_transactions(block_1, [tx]) |
|
self.test_node.test_witness_block(block_1, accepted=True) |
|
|
|
tx2 = CTransaction() |
|
# If we try to spend the first n-1 outputs from tx, that should be |
|
# too many sigops. |
|
total_value = 0 |
|
for i in range(outputs-1): |
|
tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b"")) |
|
tx2.wit.vtxinwit.append(CTxInWitness()) |
|
tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program ] |
|
total_value += tx.vout[i].nValue |
|
tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_toomany ] |
|
tx2.vout.append(CTxOut(total_value, CScript([OP_TRUE]))) |
|
tx2.rehash() |
|
|
|
block_2 = self.build_next_block() |
|
self.update_witness_block_with_transactions(block_2, [tx2]) |
|
self.test_node.test_witness_block(block_2, accepted=False) |
|
|
|
# Try dropping the last input in tx2, and add an output that has |
|
# too many sigops (contributing to legacy sigop count). |
|
checksig_count = (extra_sigops_available // 4) + 1 |
|
scriptPubKey_checksigs = CScript([OP_CHECKSIG]*checksig_count) |
|
tx2.vout.append(CTxOut(0, scriptPubKey_checksigs)); |
|
tx2.vin.pop() |
|
tx2.wit.vtxinwit.pop() |
|
tx2.vout[0].nValue -= tx.vout[-2].nValue |
|
tx2.rehash() |
|
block_3 = self.build_next_block() |
|
self.update_witness_block_with_transactions(block_3, [tx2]) |
|
self.test_node.test_witness_block(block_3, accepted=False) |
|
|
|
# If we drop the last checksig in this output, the tx should succeed. |
|
block_4 = self.build_next_block() |
|
tx2.vout[-1].scriptPubKey = CScript([OP_CHECKSIG]*(checksig_count-1)) |
|
tx2.rehash() |
|
self.update_witness_block_with_transactions(block_4, [tx2]) |
|
self.test_node.test_witness_block(block_4, accepted=True) |
|
|
|
# Reset the tip back down for the next test |
|
sync_blocks(self.nodes) |
|
for x in self.nodes: |
|
x.invalidateblock(block_4.hash) |
|
|
|
# Try replacing the last input of tx2 to be spending the last |
|
# output of tx |
|
block_5 = self.build_next_block() |
|
tx2.vout.pop() |
|
tx2.vin.append(CTxIn(COutPoint(tx.sha256, outputs-1), b"")) |
|
tx2.wit.vtxinwit.append(CTxInWitness()) |
|
tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_justright ] |
|
tx2.rehash() |
|
self.update_witness_block_with_transactions(block_5, [tx2]) |
|
self.test_node.test_witness_block(block_5, accepted=True) |
|
|
|
# TODO: test p2sh sigop counting |
|
|
|
def test_getblocktemplate_before_lockin(self): |
|
print("\tTesting getblocktemplate setting of segwit versionbit (before lockin)") |
|
block_version = (self.nodes[0].getblocktemplate())['version'] |
|
assert_equal(block_version & (1 << VB_WITNESS_BIT), 0) |
|
|
|
# Workaround: |
|
# Can either change the tip, or change the mempool and wait 5 seconds |
|
# to trigger a recomputation of getblocktemplate. |
|
self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) |
|
# Using mocktime lets us avoid sleep() |
|
self.nodes[0].setmocktime(int(time.time())+10) |
|
|
|
block_version = self.nodes[0].getblocktemplate({"rules" : ["segwit"]})['version'] |
|
assert(block_version & (1 << VB_WITNESS_BIT) != 0) |
|
self.nodes[0].setmocktime(0) # undo mocktime |
|
|
|
# Uncompressed pubkeys are no longer supported in default relay policy, |
|
# but (for now) are still valid in blocks. |
|
def test_uncompressed_pubkey(self): |
|
print("\tTesting uncompressed pubkeys") |
|
# Segwit transactions using uncompressed pubkeys are not accepted |
|
# under default policy, but should still pass consensus. |
|
key = CECKey() |
|
key.set_secretbytes(b"9") |
|
key.set_compressed(False) |
|
pubkey = CPubKey(key.get_pubkey()) |
|
assert_equal(len(pubkey), 65) # This should be an uncompressed pubkey |
|
|
|
assert(len(self.utxo) > 0) |
|
utxo = self.utxo.pop(0) |
|
|
|
# Test 1: P2WPKH |
|
# First create a P2WPKH output that uses an uncompressed pubkey |
|
pubkeyhash = hash160(pubkey) |
|
scriptPKH = CScript([OP_0, pubkeyhash]) |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(utxo.sha256, utxo.n), b"")) |
|
tx.vout.append(CTxOut(utxo.nValue-1000, scriptPKH)) |
|
tx.rehash() |
|
|
|
# Confirm it in a block. |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
# Now try to spend it. Send it to a P2WSH output, which we'll |
|
# use in the next test. |
|
witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)]) |
|
witness_hash = sha256(witness_program) |
|
scriptWSH = CScript([OP_0, witness_hash]) |
|
|
|
tx2 = CTransaction() |
|
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) |
|
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptWSH)) |
|
script = GetP2PKHScript(pubkeyhash) |
|
sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue) |
|
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL |
|
tx2.wit.vtxinwit.append(CTxInWitness()) |
|
tx2.wit.vtxinwit[0].scriptWitness.stack = [ signature, pubkey ] |
|
tx2.rehash() |
|
|
|
# Should fail policy test. |
|
self.test_node.test_transaction_acceptance(tx2, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') |
|
# But passes consensus. |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx2]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
# Test 2: P2WSH |
|
# Try to spend the P2WSH output created in last test. |
|
# Send it to a P2SH(P2WSH) output, which we'll use in the next test. |
|
p2sh_witness_hash = hash160(scriptWSH) |
|
scriptP2SH = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL]) |
|
scriptSig = CScript([scriptWSH]) |
|
|
|
tx3 = CTransaction() |
|
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) |
|
tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, scriptP2SH)) |
|
tx3.wit.vtxinwit.append(CTxInWitness()) |
|
sign_P2PK_witness_input(witness_program, tx3, 0, SIGHASH_ALL, tx2.vout[0].nValue, key) |
|
|
|
# Should fail policy test. |
|
self.test_node.test_transaction_acceptance(tx3, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') |
|
# But passes consensus. |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx3]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
# Test 3: P2SH(P2WSH) |
|
# Try to spend the P2SH output created in the last test. |
|
# Send it to a P2PKH output, which we'll use in the next test. |
|
scriptPubKey = GetP2PKHScript(pubkeyhash) |
|
tx4 = CTransaction() |
|
tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), scriptSig)) |
|
tx4.vout.append(CTxOut(tx3.vout[0].nValue-1000, scriptPubKey)) |
|
tx4.wit.vtxinwit.append(CTxInWitness()) |
|
sign_P2PK_witness_input(witness_program, tx4, 0, SIGHASH_ALL, tx3.vout[0].nValue, key) |
|
|
|
# Should fail policy test. |
|
self.test_node.test_transaction_acceptance(tx4, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx4]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
|
|
# Test 4: Uncompressed pubkeys should still be valid in non-segwit |
|
# transactions. |
|
tx5 = CTransaction() |
|
tx5.vin.append(CTxIn(COutPoint(tx4.sha256, 0), b"")) |
|
tx5.vout.append(CTxOut(tx4.vout[0].nValue-1000, CScript([OP_TRUE]))) |
|
(sig_hash, err) = SignatureHash(scriptPubKey, tx5, 0, SIGHASH_ALL) |
|
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL |
|
tx5.vin[0].scriptSig = CScript([signature, pubkey]) |
|
tx5.rehash() |
|
# Should pass policy and consensus. |
|
self.test_node.test_transaction_acceptance(tx5, True, True) |
|
block = self.build_next_block() |
|
self.update_witness_block_with_transactions(block, [tx5]) |
|
self.test_node.test_witness_block(block, accepted=True) |
|
self.utxo.append(UTXO(tx5.sha256, 0, tx5.vout[0].nValue)) |
|
|
|
def test_non_standard_witness(self): |
|
print("\tTesting detection of non-standard P2WSH witness") |
|
pad = chr(1).encode('latin-1') |
|
|
|
# Create scripts for tests |
|
scripts = [] |
|
scripts.append(CScript([OP_DROP] * 100)) |
|
scripts.append(CScript([OP_DROP] * 99)) |
|
scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 60)) |
|
scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 61)) |
|
|
|
p2wsh_scripts = [] |
|
|
|
assert(len(self.utxo)) |
|
tx = CTransaction() |
|
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) |
|
|
|
# For each script, generate a pair of P2WSH and P2SH-P2WSH output. |
|
outputvalue = (self.utxo[0].nValue - 1000) // (len(scripts) * 2) |
|
for i in scripts: |
|
p2wsh = CScript([OP_0, sha256(i)]) |
|
p2sh = hash160(p2wsh) |
|
p2wsh_scripts.append(p2wsh) |
|
tx.vout.append(CTxOut(outputvalue, p2wsh)) |
|
tx.vout.append(CTxOut(outputvalue, CScript([OP_HASH160, p2sh, OP_EQUAL]))) |
|
tx.rehash() |
|
txid = tx.sha256 |
|
self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) |
|
|
|
self.nodes[0].generate(1) |
|
sync_blocks(self.nodes) |
|
|
|
# Creating transactions for tests |
|
p2wsh_txs = [] |
|
p2sh_txs = [] |
|
for i in range(len(scripts)): |
|
p2wsh_tx = CTransaction() |
|
p2wsh_tx.vin.append(CTxIn(COutPoint(txid,i*2))) |
|
p2wsh_tx.vout.append(CTxOut(outputvalue - 5000, CScript([OP_0, hash160(hex_str_to_bytes(""))]))) |
|
p2wsh_tx.wit.vtxinwit.append(CTxInWitness()) |
|
p2wsh_tx.rehash() |
|
p2wsh_txs.append(p2wsh_tx) |
|
p2sh_tx = CTransaction() |
|
p2sh_tx.vin.append(CTxIn(COutPoint(txid,i*2+1), CScript([p2wsh_scripts[i]]))) |
|
p2sh_tx.vout.append(CTxOut(outputvalue - 5000, CScript([OP_0, hash160(hex_str_to_bytes(""))]))) |
|
p2sh_tx.wit.vtxinwit.append(CTxInWitness()) |
|
p2sh_tx.rehash() |
|
p2sh_txs.append(p2sh_tx) |
|
|
|
# Testing native P2WSH |
|
# Witness stack size, excluding witnessScript, over 100 is non-standard |
|
p2wsh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]] |
|
self.std_node.test_transaction_acceptance(p2wsh_txs[0], True, False, b'bad-witness-nonstandard') |
|
# Non-standard nodes should accept |
|
self.test_node.test_transaction_acceptance(p2wsh_txs[0], True, True) |
|
|
|
# Stack element size over 80 bytes is non-standard |
|
p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]] |
|
# It can't be used to blind a node to the transaction |
|
self.std_node.announce_tx_and_wait_for_getdata(p2wsh_txs[1]) |
|
self.std_node.test_transaction_acceptance(p2wsh_txs[1], True, False, b'bad-witness-nonstandard') |
|
self.std_node.announce_tx_and_wait_for_getdata(p2wsh_txs[1]) |
|
self.std_node.test_transaction_acceptance(p2wsh_txs[1], True, False, b'bad-witness-nonstandard') |
|
# Non-standard nodes should accept |
|
self.test_node.test_transaction_acceptance(p2wsh_txs[1], True, True) |
|
# Standard nodes should accept if element size is not over 80 bytes |
|
p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]] |
|
self.std_node.announce_tx_and_wait_for_getdata(p2wsh_txs[1]) |
|
self.std_node.test_transaction_acceptance(p2wsh_txs[1], True, True) |
|
|
|
# witnessScript size at 3600 bytes is standard |
|
p2wsh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]] |
|
self.test_node.test_transaction_acceptance(p2wsh_txs[2], True, True) |
|
self.std_node.test_transaction_acceptance(p2wsh_txs[2], True, True) |
|
|
|
# witnessScript size at 3601 bytes is non-standard |
|
p2wsh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]] |
|
self.std_node.test_transaction_acceptance(p2wsh_txs[3], True, False, b'bad-witness-nonstandard') |
|
# Non-standard nodes should accept |
|
self.test_node.test_transaction_acceptance(p2wsh_txs[3], True, True) |
|
|
|
# Repeating the same tests with P2SH-P2WSH |
|
p2sh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]] |
|
self.std_node.test_transaction_acceptance(p2sh_txs[0], True, False, b'bad-witness-nonstandard') |
|
self.test_node.test_transaction_acceptance(p2sh_txs[0], True, True) |
|
p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]] |
|
self.std_node.announce_tx_and_wait_for_getdata(p2sh_txs[1]) |
|
self.std_node.test_transaction_acceptance(p2sh_txs[1], True, False, b'bad-witness-nonstandard') |
|
self.std_node.announce_tx_and_wait_for_getdata(p2sh_txs[1]) |
|
self.std_node.test_transaction_acceptance(p2sh_txs[1], True, False, b'bad-witness-nonstandard') |
|
self.test_node.test_transaction_acceptance(p2sh_txs[1], True, True) |
|
p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]] |
|
self.std_node.announce_tx_and_wait_for_getdata(p2sh_txs[1]) |
|
self.std_node.test_transaction_acceptance(p2sh_txs[1], True, True) |
|
p2sh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]] |
|
self.test_node.test_transaction_acceptance(p2sh_txs[2], True, True) |
|
self.std_node.test_transaction_acceptance(p2sh_txs[2], True, True) |
|
p2sh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]] |
|
self.std_node.test_transaction_acceptance(p2sh_txs[3], True, False, b'bad-witness-nonstandard') |
|
self.test_node.test_transaction_acceptance(p2sh_txs[3], True, True) |
|
|
|
self.nodes[0].generate(1) # Mine and clean up the mempool of non-standard node |
|
# Valid but non-standard transactions in a block should be accepted by standard node |
|
sync_blocks(self.nodes) |
|
assert_equal(len(self.nodes[0].getrawmempool()), 0) |
|
assert_equal(len(self.nodes[1].getrawmempool()), 0) |
|
|
|
self.utxo.pop(0) |
|
|
|
|
|
def run_test(self): |
|
# Setup the p2p connections and start up the network thread. |
|
self.test_node = TestNode() # sets NODE_WITNESS|NODE_NETWORK |
|
self.old_node = TestNode() # only NODE_NETWORK |
|
self.std_node = TestNode() # for testing node1 (fRequireStandard=true) |
|
|
|
self.p2p_connections = [self.test_node, self.old_node] |
|
|
|
self.connections = [] |
|
self.connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.test_node, services=NODE_NETWORK|NODE_WITNESS)) |
|
self.connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.old_node, services=NODE_NETWORK)) |
|
self.connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], self.std_node, services=NODE_NETWORK|NODE_WITNESS)) |
|
self.test_node.add_connection(self.connections[0]) |
|
self.old_node.add_connection(self.connections[1]) |
|
self.std_node.add_connection(self.connections[2]) |
|
|
|
NetworkThread().start() # Start up network handling in another thread |
|
|
|
# Keep a place to store utxo's that can be used in later tests |
|
self.utxo = [] |
|
|
|
# Test logic begins here |
|
self.test_node.wait_for_verack() |
|
|
|
print("\nStarting tests before segwit lock in:") |
|
|
|
self.test_witness_services() # Verifies NODE_WITNESS |
|
self.test_non_witness_transaction() # non-witness tx's are accepted |
|
self.test_unnecessary_witness_before_segwit_activation() |
|
self.test_block_relay(segwit_activated=False) |
|
|
|
# Advance to segwit being 'started' |
|
self.advance_to_segwit_started() |
|
self.test_getblocktemplate_before_lockin() |
|
|
|
sync_blocks(self.nodes) |
|
|
|
# At lockin, nothing should change. |
|
print("\nTesting behavior post lockin, pre-activation") |
|
self.advance_to_segwit_lockin() |
|
|
|
# Retest unnecessary witnesses |
|
self.test_unnecessary_witness_before_segwit_activation() |
|
self.test_witness_tx_relay_before_segwit_activation() |
|
self.test_block_relay(segwit_activated=False) |
|
self.test_p2sh_witness(segwit_activated=False) |
|
self.test_standardness_v0(segwit_activated=False) |
|
|
|
sync_blocks(self.nodes) |
|
|
|
# Now activate segwit |
|
print("\nTesting behavior after segwit activation") |
|
self.advance_to_segwit_active() |
|
|
|
sync_blocks(self.nodes) |
|
|
|
# Test P2SH witness handling again |
|
self.test_p2sh_witness(segwit_activated=True) |
|
self.test_witness_commitments() |
|
self.test_block_malleability() |
|
self.test_witness_block_size() |
|
self.test_submit_block() |
|
self.test_extra_witness_data() |
|
self.test_max_witness_push_length() |
|
self.test_max_witness_program_length() |
|
self.test_witness_input_length() |
|
self.test_block_relay(segwit_activated=True) |
|
self.test_tx_relay_after_segwit_activation() |
|
self.test_standardness_v0(segwit_activated=True) |
|
self.test_segwit_versions() |
|
self.test_premature_coinbase_witness_spend() |
|
self.test_uncompressed_pubkey() |
|
self.test_signature_version_1() |
|
self.test_non_standard_witness() |
|
sync_blocks(self.nodes) |
|
if self.test_upgrade: |
|
self.test_upgrade_after_activation(self.nodes[2], 2) |
|
else: |
|
print("\tSkipping upgrade-after-activation test (use --oldbinary to enable)") |
|
self.test_witness_sigops() |
|
|
|
|
|
if __name__ == '__main__': |
|
SegWitTest().main()
|
|
|