Kevacoin source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

517 lines
16 KiB

// Copyright (c) 2012 Pieter Wuille
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_ADDRMAN_H
#define BITCOIN_ADDRMAN_H
#include "netbase.h"
#include "protocol.h"
#include "random.h"
#include "sync.h"
#include "timedata.h"
#include "util.h"
#include <map>
#include <set>
#include <stdint.h>
#include <vector>
/**
* Extended statistics about a CAddress
*/
class CAddrInfo : public CAddress
{
private:
//! where knowledge about this address first came from
CNetAddr source;
//! last successful connection by us
int64_t nLastSuccess;
//! last try whatsoever by us:
// int64_t CAddress::nLastTry
//! connection attempts since last successful attempt
int nAttempts;
//! reference count in new sets (memory only)
int nRefCount;
//! in tried set? (memory only)
bool fInTried;
//! position in vRandom
int nRandomPos;
friend class CAddrMan;
public:
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
READWRITE(*(CAddress*)this);
READWRITE(source);
READWRITE(nLastSuccess);
READWRITE(nAttempts);
}
void Init()
{
nLastSuccess = 0;
nLastTry = 0;
nAttempts = 0;
nRefCount = 0;
fInTried = false;
nRandomPos = -1;
}
CAddrInfo(const CAddress &addrIn, const CNetAddr &addrSource) : CAddress(addrIn), source(addrSource)
{
Init();
}
CAddrInfo() : CAddress(), source()
{
Init();
}
//! Calculate in which "tried" bucket this entry belongs
int GetTriedBucket(const std::vector<unsigned char> &nKey) const;
//! Calculate in which "new" bucket this entry belongs, given a certain source
int GetNewBucket(const std::vector<unsigned char> &nKey, const CNetAddr& src) const;
//! Calculate in which "new" bucket this entry belongs, using its default source
int GetNewBucket(const std::vector<unsigned char> &nKey) const
{
return GetNewBucket(nKey, source);
}
//! Determine whether the statistics about this entry are bad enough so that it can just be deleted
bool IsTerrible(int64_t nNow = GetAdjustedTime()) const;
//! Calculate the relative chance this entry should be given when selecting nodes to connect to
double GetChance(int64_t nNow = GetAdjustedTime()) const;
};
/** Stochastic address manager
*
* Design goals:
* * Keep the address tables in-memory, and asynchronously dump the entire to able in peers.dat.
* * Make sure no (localized) attacker can fill the entire table with his nodes/addresses.
*
* To that end:
* * Addresses are organized into buckets.
* * Address that have not yet been tried go into 256 "new" buckets.
* * Based on the address range (/16 for IPv4) of source of the information, 32 buckets are selected at random
* * The actual bucket is chosen from one of these, based on the range the address itself is located.
* * One single address can occur in up to 4 different buckets, to increase selection chances for addresses that
* are seen frequently. The chance for increasing this multiplicity decreases exponentially.
* * When adding a new address to a full bucket, a randomly chosen entry (with a bias favoring less recently seen
* ones) is removed from it first.
* * Addresses of nodes that are known to be accessible go into 64 "tried" buckets.
* * Each address range selects at random 4 of these buckets.
* * The actual bucket is chosen from one of these, based on the full address.
* * When adding a new good address to a full bucket, a randomly chosen entry (with a bias favoring less recently
* tried ones) is evicted from it, back to the "new" buckets.
* * Bucket selection is based on cryptographic hashing, using a randomly-generated 256-bit key, which should not
* be observable by adversaries.
* * Several indexes are kept for high performance. Defining DEBUG_ADDRMAN will introduce frequent (and expensive)
* consistency checks for the entire data structure.
*/
//! total number of buckets for tried addresses
#define ADDRMAN_TRIED_BUCKET_COUNT 64
//! maximum allowed number of entries in buckets for tried addresses
#define ADDRMAN_TRIED_BUCKET_SIZE 64
//! total number of buckets for new addresses
#define ADDRMAN_NEW_BUCKET_COUNT 256
//! maximum allowed number of entries in buckets for new addresses
#define ADDRMAN_NEW_BUCKET_SIZE 64
//! over how many buckets entries with tried addresses from a single group (/16 for IPv4) are spread
#define ADDRMAN_TRIED_BUCKETS_PER_GROUP 4
//! over how many buckets entries with new addresses originating from a single group are spread
#define ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP 32
//! in how many buckets for entries with new addresses a single address may occur
#define ADDRMAN_NEW_BUCKETS_PER_ADDRESS 4
//! how many entries in a bucket with tried addresses are inspected, when selecting one to replace
#define ADDRMAN_TRIED_ENTRIES_INSPECT_ON_EVICT 4
//! how old addresses can maximally be
#define ADDRMAN_HORIZON_DAYS 30
//! after how many failed attempts we give up on a new node
#define ADDRMAN_RETRIES 3
//! how many successive failures are allowed ...
#define ADDRMAN_MAX_FAILURES 10
//! ... in at least this many days
#define ADDRMAN_MIN_FAIL_DAYS 7
//! the maximum percentage of nodes to return in a getaddr call
#define ADDRMAN_GETADDR_MAX_PCT 23
//! the maximum number of nodes to return in a getaddr call
#define ADDRMAN_GETADDR_MAX 2500
/**
* Stochastical (IP) address manager
*/
class CAddrMan
{
private:
//! critical section to protect the inner data structures
mutable CCriticalSection cs;
//! secret key to randomize bucket select with
std::vector<unsigned char> nKey;
//! last used nId
int nIdCount;
//! table with information about all nIds
std::map<int, CAddrInfo> mapInfo;
//! find an nId based on its network address
std::map<CNetAddr, int> mapAddr;
//! randomly-ordered vector of all nIds
std::vector<int> vRandom;
// number of "tried" entries
int nTried;
//! list of "tried" buckets
std::vector<std::vector<int> > vvTried;
//! number of (unique) "new" entries
int nNew;
//! list of "new" buckets
std::vector<std::set<int> > vvNew;
protected:
//! Find an entry.
CAddrInfo* Find(const CNetAddr& addr, int *pnId = NULL);
//! find an entry, creating it if necessary.
//! nTime and nServices of the found node are updated, if necessary.
CAddrInfo* Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId = NULL);
//! Swap two elements in vRandom.
void SwapRandom(unsigned int nRandomPos1, unsigned int nRandomPos2);
//! Return position in given bucket to replace.
int SelectTried(int nKBucket);
//! Remove an element from a "new" bucket.
//! This is the only place where actual deletions occur.
//! Elements are never deleted while in the "tried" table, only possibly evicted back to the "new" table.
int ShrinkNew(int nUBucket);
//! Move an entry from the "new" table(s) to the "tried" table
//! @pre vvUnkown[nOrigin].count(nId) != 0
void MakeTried(CAddrInfo& info, int nId, int nOrigin);
//! Mark an entry "good", possibly moving it from "new" to "tried".
void Good_(const CService &addr, int64_t nTime);
//! Add an entry to the "new" table.
bool Add_(const CAddress &addr, const CNetAddr& source, int64_t nTimePenalty);
//! Mark an entry as attempted to connect.
void Attempt_(const CService &addr, int64_t nTime);
//! Select an address to connect to.
//! nUnkBias determines how much to favor new addresses over tried ones (min=0, max=100)
CAddress Select_(int nUnkBias);
#ifdef DEBUG_ADDRMAN
//! Perform consistency check. Returns an error code or zero.
int Check_();
#endif
//! Select several addresses at once.
void GetAddr_(std::vector<CAddress> &vAddr);
//! Mark an entry as currently-connected-to.
void Connected_(const CService &addr, int64_t nTime);
public:
/**
* serialized format:
* * version byte (currently 0)
* * nKey
* * nNew
* * nTried
* * number of "new" buckets
* * all nNew addrinfos in vvNew
* * all nTried addrinfos in vvTried
* * for each bucket:
* * number of elements
* * for each element: index
*
* Notice that vvTried, mapAddr and vVector are never encoded explicitly;
* they are instead reconstructed from the other information.
*
* vvNew is serialized, but only used if ADDRMAN_UNKOWN_BUCKET_COUNT didn't change,
* otherwise it is reconstructed as well.
*
* This format is more complex, but significantly smaller (at most 1.5 MiB), and supports
* changes to the ADDRMAN_ parameters without breaking the on-disk structure.
*
* We don't use ADD_SERIALIZE_METHODS since the serialization and deserialization code has
* very little in common.
*
*/
template<typename Stream>
void Serialize(Stream &s, int nType, int nVersionDummy) const
{
LOCK(cs);
unsigned char nVersion = 0;
s << nVersion;
s << nKey;
s << nNew;
s << nTried;
int nUBuckets = ADDRMAN_NEW_BUCKET_COUNT;
s << nUBuckets;
std::map<int, int> mapUnkIds;
int nIds = 0;
for (std::map<int, CAddrInfo>::const_iterator it = mapInfo.begin(); it != mapInfo.end(); it++) {
if (nIds == nNew) break; // this means nNew was wrong, oh ow
mapUnkIds[(*it).first] = nIds;
const CAddrInfo &info = (*it).second;
if (info.nRefCount) {
s << info;
nIds++;
}
}
nIds = 0;
for (std::map<int, CAddrInfo>::const_iterator it = mapInfo.begin(); it != mapInfo.end(); it++) {
if (nIds == nTried) break; // this means nTried was wrong, oh ow
const CAddrInfo &info = (*it).second;
if (info.fInTried) {
s << info;
nIds++;
}
}
for (std::vector<std::set<int> >::const_iterator it = vvNew.begin(); it != vvNew.end(); it++) {
const std::set<int> &vNew = (*it);
int nSize = vNew.size();
s << nSize;
for (std::set<int>::const_iterator it2 = vNew.begin(); it2 != vNew.end(); it2++) {
int nIndex = mapUnkIds[*it2];
s << nIndex;
}
}
}
template<typename Stream>
void Unserialize(Stream& s, int nType, int nVersionDummy)
{
LOCK(cs);
unsigned char nVersion;
s >> nVersion;
s >> nKey;
s >> nNew;
s >> nTried;
int nUBuckets = 0;
s >> nUBuckets;
nIdCount = 0;
mapInfo.clear();
mapAddr.clear();
vRandom.clear();
vvTried = std::vector<std::vector<int> >(ADDRMAN_TRIED_BUCKET_COUNT, std::vector<int>(0));
vvNew = std::vector<std::set<int> >(ADDRMAN_NEW_BUCKET_COUNT, std::set<int>());
for (int n = 0; n < nNew; n++) {
CAddrInfo &info = mapInfo[n];
s >> info;
mapAddr[info] = n;
info.nRandomPos = vRandom.size();
vRandom.push_back(n);
if (nUBuckets != ADDRMAN_NEW_BUCKET_COUNT) {
vvNew[info.GetNewBucket(nKey)].insert(n);
info.nRefCount++;
}
}
nIdCount = nNew;
int nLost = 0;
for (int n = 0; n < nTried; n++) {
CAddrInfo info;
s >> info;
std::vector<int> &vTried = vvTried[info.GetTriedBucket(nKey)];
if (vTried.size() < ADDRMAN_TRIED_BUCKET_SIZE) {
info.nRandomPos = vRandom.size();
info.fInTried = true;
vRandom.push_back(nIdCount);
mapInfo[nIdCount] = info;
mapAddr[info] = nIdCount;
vTried.push_back(nIdCount);
nIdCount++;
} else {
nLost++;
}
}
nTried -= nLost;
for (int b = 0; b < nUBuckets; b++) {
std::set<int> &vNew = vvNew[b];
int nSize = 0;
s >> nSize;
for (int n = 0; n < nSize; n++) {
int nIndex = 0;
s >> nIndex;
CAddrInfo &info = mapInfo[nIndex];
if (nUBuckets == ADDRMAN_NEW_BUCKET_COUNT && info.nRefCount < ADDRMAN_NEW_BUCKETS_PER_ADDRESS) {
info.nRefCount++;
vNew.insert(nIndex);
}
}
}
}
unsigned int GetSerializeSize(int nType, int nVersion) const
{
return (CSizeComputer(nType, nVersion) << *this).size();
}
CAddrMan() : vRandom(0), vvTried(ADDRMAN_TRIED_BUCKET_COUNT, std::vector<int>(0)), vvNew(ADDRMAN_NEW_BUCKET_COUNT, std::set<int>())
{
nKey.resize(32);
GetRandBytes(&nKey[0], 32);
nIdCount = 0;
nTried = 0;
nNew = 0;
}
//! Return the number of (unique) addresses in all tables.
int size()
{
return vRandom.size();
}
//! Consistency check
void Check()
{
#ifdef DEBUG_ADDRMAN
{
LOCK(cs);
int err;
if ((err=Check_()))
LogPrintf("ADDRMAN CONSISTENCY CHECK FAILED!!! err=%i\n", err);
}
#endif
}
//! Add a single address.
bool Add(const CAddress &addr, const CNetAddr& source, int64_t nTimePenalty = 0)
{
bool fRet = false;
{
LOCK(cs);
Check();
fRet |= Add_(addr, source, nTimePenalty);
Check();
}
if (fRet)
LogPrint("addrman", "Added %s from %s: %i tried, %i new\n", addr.ToStringIPPort(), source.ToString(), nTried, nNew);
return fRet;
}
//! Add multiple addresses.
bool Add(const std::vector<CAddress> &vAddr, const CNetAddr& source, int64_t nTimePenalty = 0)
{
int nAdd = 0;
{
LOCK(cs);
Check();
for (std::vector<CAddress>::const_iterator it = vAddr.begin(); it != vAddr.end(); it++)
nAdd += Add_(*it, source, nTimePenalty) ? 1 : 0;
Check();
}
if (nAdd)
LogPrint("addrman", "Added %i addresses from %s: %i tried, %i new\n", nAdd, source.ToString(), nTried, nNew);
return nAdd > 0;
}
//! Mark an entry as accessible.
void Good(const CService &addr, int64_t nTime = GetAdjustedTime())
{
{
LOCK(cs);
Check();
Good_(addr, nTime);
Check();
}
}
//! Mark an entry as connection attempted to.
void Attempt(const CService &addr, int64_t nTime = GetAdjustedTime())
{
{
LOCK(cs);
Check();
Attempt_(addr, nTime);
Check();
}
}
/**
* Choose an address to connect to.
* nUnkBias determines how much "new" entries are favored over "tried" ones (0-100).
*/
CAddress Select(int nUnkBias = 50)
{
CAddress addrRet;
{
LOCK(cs);
Check();
addrRet = Select_(nUnkBias);
Check();
}
return addrRet;
}
//! Return a bunch of addresses, selected at random.
std::vector<CAddress> GetAddr()
{
Check();
std::vector<CAddress> vAddr;
{
LOCK(cs);
GetAddr_(vAddr);
}
Check();
return vAddr;
}
//! Mark an entry as currently-connected-to.
void Connected(const CService &addr, int64_t nTime = GetAdjustedTime())
{
{
LOCK(cs);
Check();
Connected_(addr, nTime);
Check();
}
}
};
#endif // BITCOIN_ADDRMAN_H