mirror of
https://github.com/kvazar-network/kevacoin.git
synced 2025-01-24 22:04:30 +00:00
1291 lines
52 KiB
Python
Executable File
1291 lines
52 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright (c) 2015-2016 The Bitcoin Core developers
|
|
# Distributed under the MIT software license, see the accompanying
|
|
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
"""Test block processing.
|
|
|
|
This reimplements tests from the bitcoinj/FullBlockTestGenerator used
|
|
by the pull-tester.
|
|
|
|
We use the testing framework in which we expect a particular answer from
|
|
each test.
|
|
"""
|
|
|
|
from test_framework.test_framework import ComparisonTestFramework
|
|
from test_framework.util import *
|
|
from test_framework.comptool import TestManager, TestInstance, RejectResult
|
|
from test_framework.blocktools import *
|
|
import time
|
|
from test_framework.key import CECKey
|
|
from test_framework.script import *
|
|
import struct
|
|
|
|
class PreviousSpendableOutput(object):
|
|
def __init__(self, tx = CTransaction(), n = -1):
|
|
self.tx = tx
|
|
self.n = n # the output we're spending
|
|
|
|
# Use this class for tests that require behavior other than normal "mininode" behavior.
|
|
# For now, it is used to serialize a bloated varint (b64).
|
|
class CBrokenBlock(CBlock):
|
|
def __init__(self, header=None):
|
|
super(CBrokenBlock, self).__init__(header)
|
|
|
|
def initialize(self, base_block):
|
|
self.vtx = copy.deepcopy(base_block.vtx)
|
|
self.hashMerkleRoot = self.calc_merkle_root()
|
|
|
|
def serialize(self):
|
|
r = b""
|
|
r += super(CBlock, self).serialize()
|
|
r += struct.pack("<BQ", 255, len(self.vtx))
|
|
for tx in self.vtx:
|
|
r += tx.serialize()
|
|
return r
|
|
|
|
def normal_serialize(self):
|
|
r = b""
|
|
r += super(CBrokenBlock, self).serialize()
|
|
return r
|
|
|
|
class FullBlockTest(ComparisonTestFramework):
|
|
|
|
# Can either run this test as 1 node with expected answers, or two and compare them.
|
|
# Change the "outcome" variable from each TestInstance object to only do the comparison.
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.num_nodes = 1
|
|
self.block_heights = {}
|
|
self.coinbase_key = CECKey()
|
|
self.coinbase_key.set_secretbytes(b"horsebattery")
|
|
self.coinbase_pubkey = self.coinbase_key.get_pubkey()
|
|
self.tip = None
|
|
self.blocks = {}
|
|
|
|
def add_options(self, parser):
|
|
super().add_options(parser)
|
|
parser.add_option("--runbarelyexpensive", dest="runbarelyexpensive", default=True)
|
|
|
|
def run_test(self):
|
|
self.test = TestManager(self, self.options.tmpdir)
|
|
self.test.add_all_connections(self.nodes)
|
|
NetworkThread().start() # Start up network handling in another thread
|
|
self.test.run()
|
|
|
|
def add_transactions_to_block(self, block, tx_list):
|
|
[ tx.rehash() for tx in tx_list ]
|
|
block.vtx.extend(tx_list)
|
|
|
|
# this is a little handier to use than the version in blocktools.py
|
|
def create_tx(self, spend_tx, n, value, script=CScript([OP_TRUE])):
|
|
tx = create_transaction(spend_tx, n, b"", value, script)
|
|
return tx
|
|
|
|
# sign a transaction, using the key we know about
|
|
# this signs input 0 in tx, which is assumed to be spending output n in spend_tx
|
|
def sign_tx(self, tx, spend_tx, n):
|
|
scriptPubKey = bytearray(spend_tx.vout[n].scriptPubKey)
|
|
if (scriptPubKey[0] == OP_TRUE): # an anyone-can-spend
|
|
tx.vin[0].scriptSig = CScript()
|
|
return
|
|
(sighash, err) = SignatureHash(spend_tx.vout[n].scriptPubKey, tx, 0, SIGHASH_ALL)
|
|
tx.vin[0].scriptSig = CScript([self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))])
|
|
|
|
def create_and_sign_transaction(self, spend_tx, n, value, script=CScript([OP_TRUE])):
|
|
tx = self.create_tx(spend_tx, n, value, script)
|
|
self.sign_tx(tx, spend_tx, n)
|
|
tx.rehash()
|
|
return tx
|
|
|
|
def next_block(self, number, spend=None, additional_coinbase_value=0, script=CScript([OP_TRUE]), solve=True):
|
|
if self.tip == None:
|
|
base_block_hash = self.genesis_hash
|
|
block_time = int(time.time())+1
|
|
else:
|
|
base_block_hash = self.tip.sha256
|
|
block_time = self.tip.nTime + 1
|
|
# First create the coinbase
|
|
height = self.block_heights[base_block_hash] + 1
|
|
coinbase = create_coinbase(height, self.coinbase_pubkey)
|
|
coinbase.vout[0].nValue += additional_coinbase_value
|
|
coinbase.rehash()
|
|
if spend == None:
|
|
block = create_block(base_block_hash, coinbase, block_time)
|
|
else:
|
|
coinbase.vout[0].nValue += spend.tx.vout[spend.n].nValue - 1 # all but one satoshi to fees
|
|
coinbase.rehash()
|
|
block = create_block(base_block_hash, coinbase, block_time)
|
|
tx = create_transaction(spend.tx, spend.n, b"", 1, script) # spend 1 satoshi
|
|
self.sign_tx(tx, spend.tx, spend.n)
|
|
self.add_transactions_to_block(block, [tx])
|
|
block.hashMerkleRoot = block.calc_merkle_root()
|
|
if solve:
|
|
block.solve()
|
|
self.tip = block
|
|
self.block_heights[block.sha256] = height
|
|
assert number not in self.blocks
|
|
self.blocks[number] = block
|
|
return block
|
|
|
|
def get_tests(self):
|
|
self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16)
|
|
self.block_heights[self.genesis_hash] = 0
|
|
spendable_outputs = []
|
|
|
|
# save the current tip so it can be spent by a later block
|
|
def save_spendable_output():
|
|
spendable_outputs.append(self.tip)
|
|
|
|
# get an output that we previously marked as spendable
|
|
def get_spendable_output():
|
|
return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0)
|
|
|
|
# returns a test case that asserts that the current tip was accepted
|
|
def accepted():
|
|
return TestInstance([[self.tip, True]])
|
|
|
|
# returns a test case that asserts that the current tip was rejected
|
|
def rejected(reject = None):
|
|
if reject is None:
|
|
return TestInstance([[self.tip, False]])
|
|
else:
|
|
return TestInstance([[self.tip, reject]])
|
|
|
|
# move the tip back to a previous block
|
|
def tip(number):
|
|
self.tip = self.blocks[number]
|
|
|
|
# adds transactions to the block and updates state
|
|
def update_block(block_number, new_transactions):
|
|
block = self.blocks[block_number]
|
|
self.add_transactions_to_block(block, new_transactions)
|
|
old_sha256 = block.sha256
|
|
block.hashMerkleRoot = block.calc_merkle_root()
|
|
block.solve()
|
|
# Update the internal state just like in next_block
|
|
self.tip = block
|
|
if block.sha256 != old_sha256:
|
|
self.block_heights[block.sha256] = self.block_heights[old_sha256]
|
|
del self.block_heights[old_sha256]
|
|
self.blocks[block_number] = block
|
|
return block
|
|
|
|
# shorthand for functions
|
|
block = self.next_block
|
|
create_tx = self.create_tx
|
|
create_and_sign_tx = self.create_and_sign_transaction
|
|
|
|
# these must be updated if consensus changes
|
|
MAX_BLOCK_SIGOPS = 20000
|
|
|
|
|
|
# Create a new block
|
|
block(0)
|
|
save_spendable_output()
|
|
yield accepted()
|
|
|
|
|
|
# Now we need that block to mature so we can spend the coinbase.
|
|
test = TestInstance(sync_every_block=False)
|
|
for i in range(99):
|
|
block(5000 + i)
|
|
test.blocks_and_transactions.append([self.tip, True])
|
|
save_spendable_output()
|
|
yield test
|
|
|
|
# collect spendable outputs now to avoid cluttering the code later on
|
|
out = []
|
|
for i in range(33):
|
|
out.append(get_spendable_output())
|
|
|
|
# Start by building a couple of blocks on top (which output is spent is
|
|
# in parentheses):
|
|
# genesis -> b1 (0) -> b2 (1)
|
|
block(1, spend=out[0])
|
|
save_spendable_output()
|
|
yield accepted()
|
|
|
|
block(2, spend=out[1])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
# so fork like this:
|
|
#
|
|
# genesis -> b1 (0) -> b2 (1)
|
|
# \-> b3 (1)
|
|
#
|
|
# Nothing should happen at this point. We saw b2 first so it takes priority.
|
|
tip(1)
|
|
b3 = block(3, spend=out[1])
|
|
txout_b3 = PreviousSpendableOutput(b3.vtx[1], 0)
|
|
yield rejected()
|
|
|
|
|
|
# Now we add another block to make the alternative chain longer.
|
|
#
|
|
# genesis -> b1 (0) -> b2 (1)
|
|
# \-> b3 (1) -> b4 (2)
|
|
block(4, spend=out[2])
|
|
yield accepted()
|
|
|
|
|
|
# ... and back to the first chain.
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b3 (1) -> b4 (2)
|
|
tip(2)
|
|
block(5, spend=out[2])
|
|
save_spendable_output()
|
|
yield rejected()
|
|
|
|
block(6, spend=out[3])
|
|
yield accepted()
|
|
|
|
# Try to create a fork that double-spends
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b7 (2) -> b8 (4)
|
|
# \-> b3 (1) -> b4 (2)
|
|
tip(5)
|
|
block(7, spend=out[2])
|
|
yield rejected()
|
|
|
|
block(8, spend=out[4])
|
|
yield rejected()
|
|
|
|
# Try to create a block that has too much fee
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b9 (4)
|
|
# \-> b3 (1) -> b4 (2)
|
|
tip(6)
|
|
block(9, spend=out[4], additional_coinbase_value=1)
|
|
yield rejected(RejectResult(16, b'bad-cb-amount'))
|
|
|
|
# Create a fork that ends in a block with too much fee (the one that causes the reorg)
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b10 (3) -> b11 (4)
|
|
# \-> b3 (1) -> b4 (2)
|
|
tip(5)
|
|
block(10, spend=out[3])
|
|
yield rejected()
|
|
|
|
block(11, spend=out[4], additional_coinbase_value=1)
|
|
yield rejected(RejectResult(16, b'bad-cb-amount'))
|
|
|
|
|
|
# Try again, but with a valid fork first
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b12 (3) -> b13 (4) -> b14 (5)
|
|
# (b12 added last)
|
|
# \-> b3 (1) -> b4 (2)
|
|
tip(5)
|
|
b12 = block(12, spend=out[3])
|
|
save_spendable_output()
|
|
b13 = block(13, spend=out[4])
|
|
# Deliver the block header for b12, and the block b13.
|
|
# b13 should be accepted but the tip won't advance until b12 is delivered.
|
|
yield TestInstance([[CBlockHeader(b12), None], [b13, False]])
|
|
|
|
save_spendable_output()
|
|
# b14 is invalid, but the node won't know that until it tries to connect
|
|
# Tip still can't advance because b12 is missing
|
|
block(14, spend=out[5], additional_coinbase_value=1)
|
|
yield rejected()
|
|
|
|
yield TestInstance([[b12, True, b13.sha256]]) # New tip should be b13.
|
|
|
|
# Add a block with MAX_BLOCK_SIGOPS and one with one more sigop
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b16 (6)
|
|
# \-> b3 (1) -> b4 (2)
|
|
|
|
# Test that a block with a lot of checksigs is okay
|
|
lots_of_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS - 1))
|
|
tip(13)
|
|
block(15, spend=out[5], script=lots_of_checksigs)
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
|
|
# Test that a block with too many checksigs is rejected
|
|
too_many_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS))
|
|
block(16, spend=out[6], script=too_many_checksigs)
|
|
yield rejected(RejectResult(16, b'bad-blk-sigops'))
|
|
|
|
|
|
# Attempt to spend a transaction created on a different fork
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b17 (b3.vtx[1])
|
|
# \-> b3 (1) -> b4 (2)
|
|
tip(15)
|
|
block(17, spend=txout_b3)
|
|
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
|
|
|
|
# Attempt to spend a transaction created on a different fork (on a fork this time)
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b12 (3) -> b13 (4) -> b15 (5)
|
|
# \-> b18 (b3.vtx[1]) -> b19 (6)
|
|
# \-> b3 (1) -> b4 (2)
|
|
tip(13)
|
|
block(18, spend=txout_b3)
|
|
yield rejected()
|
|
|
|
block(19, spend=out[6])
|
|
yield rejected()
|
|
|
|
# Attempt to spend a coinbase at depth too low
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b20 (7)
|
|
# \-> b3 (1) -> b4 (2)
|
|
tip(15)
|
|
block(20, spend=out[7])
|
|
yield rejected(RejectResult(16, b'bad-txns-premature-spend-of-coinbase'))
|
|
|
|
# Attempt to spend a coinbase at depth too low (on a fork this time)
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b12 (3) -> b13 (4) -> b15 (5)
|
|
# \-> b21 (6) -> b22 (5)
|
|
# \-> b3 (1) -> b4 (2)
|
|
tip(13)
|
|
block(21, spend=out[6])
|
|
yield rejected()
|
|
|
|
block(22, spend=out[5])
|
|
yield rejected()
|
|
|
|
# Create a block on either side of MAX_BLOCK_BASE_SIZE and make sure its accepted/rejected
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6)
|
|
# \-> b24 (6) -> b25 (7)
|
|
# \-> b3 (1) -> b4 (2)
|
|
tip(15)
|
|
b23 = block(23, spend=out[6])
|
|
tx = CTransaction()
|
|
script_length = MAX_BLOCK_BASE_SIZE - len(b23.serialize()) - 69
|
|
script_output = CScript([b'\x00' * script_length])
|
|
tx.vout.append(CTxOut(0, script_output))
|
|
tx.vin.append(CTxIn(COutPoint(b23.vtx[1].sha256, 0)))
|
|
b23 = update_block(23, [tx])
|
|
# Make sure the math above worked out to produce a max-sized block
|
|
assert_equal(len(b23.serialize()), MAX_BLOCK_BASE_SIZE)
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
# Make the next block one byte bigger and check that it fails
|
|
tip(15)
|
|
b24 = block(24, spend=out[6])
|
|
script_length = MAX_BLOCK_BASE_SIZE - len(b24.serialize()) - 69
|
|
script_output = CScript([b'\x00' * (script_length+1)])
|
|
tx.vout = [CTxOut(0, script_output)]
|
|
b24 = update_block(24, [tx])
|
|
assert_equal(len(b24.serialize()), MAX_BLOCK_BASE_SIZE+1)
|
|
yield rejected(RejectResult(16, b'bad-blk-length'))
|
|
|
|
block(25, spend=out[7])
|
|
yield rejected()
|
|
|
|
# Create blocks with a coinbase input script size out of range
|
|
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
|
|
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7)
|
|
# \-> ... (6) -> ... (7)
|
|
# \-> b3 (1) -> b4 (2)
|
|
tip(15)
|
|
b26 = block(26, spend=out[6])
|
|
b26.vtx[0].vin[0].scriptSig = b'\x00'
|
|
b26.vtx[0].rehash()
|
|
# update_block causes the merkle root to get updated, even with no new
|
|
# transactions, and updates the required state.
|
|
b26 = update_block(26, [])
|
|
yield rejected(RejectResult(16, b'bad-cb-length'))
|
|
|
|
# Extend the b26 chain to make sure bitcoind isn't accepting b26
|
|
b27 = block(27, spend=out[7])
|
|
yield rejected(False)
|
|
|
|
# Now try a too-large-coinbase script
|
|
tip(15)
|
|
b28 = block(28, spend=out[6])
|
|
b28.vtx[0].vin[0].scriptSig = b'\x00' * 101
|
|
b28.vtx[0].rehash()
|
|
b28 = update_block(28, [])
|
|
yield rejected(RejectResult(16, b'bad-cb-length'))
|
|
|
|
# Extend the b28 chain to make sure bitcoind isn't accepting b28
|
|
b29 = block(29, spend=out[7])
|
|
yield rejected(False)
|
|
|
|
# b30 has a max-sized coinbase scriptSig.
|
|
tip(23)
|
|
b30 = block(30)
|
|
b30.vtx[0].vin[0].scriptSig = b'\x00' * 100
|
|
b30.vtx[0].rehash()
|
|
b30 = update_block(30, [])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
# b31 - b35 - check sigops of OP_CHECKMULTISIG / OP_CHECKMULTISIGVERIFY / OP_CHECKSIGVERIFY
|
|
#
|
|
# genesis -> ... -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10)
|
|
# \-> b36 (11)
|
|
# \-> b34 (10)
|
|
# \-> b32 (9)
|
|
#
|
|
|
|
# MULTISIG: each op code counts as 20 sigops. To create the edge case, pack another 19 sigops at the end.
|
|
lots_of_multisigs = CScript([OP_CHECKMULTISIG] * ((MAX_BLOCK_SIGOPS-1) // 20) + [OP_CHECKSIG] * 19)
|
|
b31 = block(31, spend=out[8], script=lots_of_multisigs)
|
|
assert_equal(get_legacy_sigopcount_block(b31), MAX_BLOCK_SIGOPS)
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
# this goes over the limit because the coinbase has one sigop
|
|
too_many_multisigs = CScript([OP_CHECKMULTISIG] * (MAX_BLOCK_SIGOPS // 20))
|
|
b32 = block(32, spend=out[9], script=too_many_multisigs)
|
|
assert_equal(get_legacy_sigopcount_block(b32), MAX_BLOCK_SIGOPS + 1)
|
|
yield rejected(RejectResult(16, b'bad-blk-sigops'))
|
|
|
|
|
|
# CHECKMULTISIGVERIFY
|
|
tip(31)
|
|
lots_of_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * ((MAX_BLOCK_SIGOPS-1) // 20) + [OP_CHECKSIG] * 19)
|
|
block(33, spend=out[9], script=lots_of_multisigs)
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
too_many_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * (MAX_BLOCK_SIGOPS // 20))
|
|
block(34, spend=out[10], script=too_many_multisigs)
|
|
yield rejected(RejectResult(16, b'bad-blk-sigops'))
|
|
|
|
|
|
# CHECKSIGVERIFY
|
|
tip(33)
|
|
lots_of_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS - 1))
|
|
b35 = block(35, spend=out[10], script=lots_of_checksigs)
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
too_many_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS))
|
|
block(36, spend=out[11], script=too_many_checksigs)
|
|
yield rejected(RejectResult(16, b'bad-blk-sigops'))
|
|
|
|
|
|
# Check spending of a transaction in a block which failed to connect
|
|
#
|
|
# b6 (3)
|
|
# b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10)
|
|
# \-> b37 (11)
|
|
# \-> b38 (11/37)
|
|
#
|
|
|
|
# save 37's spendable output, but then double-spend out11 to invalidate the block
|
|
tip(35)
|
|
b37 = block(37, spend=out[11])
|
|
txout_b37 = PreviousSpendableOutput(b37.vtx[1], 0)
|
|
tx = create_and_sign_tx(out[11].tx, out[11].n, 0)
|
|
b37 = update_block(37, [tx])
|
|
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
|
|
|
|
# attempt to spend b37's first non-coinbase tx, at which point b37 was still considered valid
|
|
tip(35)
|
|
block(38, spend=txout_b37)
|
|
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
|
|
|
|
# Check P2SH SigOp counting
|
|
#
|
|
#
|
|
# 13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b41 (12)
|
|
# \-> b40 (12)
|
|
#
|
|
# b39 - create some P2SH outputs that will require 6 sigops to spend:
|
|
#
|
|
# redeem_script = COINBASE_PUBKEY, (OP_2DUP+OP_CHECKSIGVERIFY) * 5, OP_CHECKSIG
|
|
# p2sh_script = OP_HASH160, ripemd160(sha256(script)), OP_EQUAL
|
|
#
|
|
tip(35)
|
|
b39 = block(39)
|
|
b39_outputs = 0
|
|
b39_sigops_per_output = 6
|
|
|
|
# Build the redeem script, hash it, use hash to create the p2sh script
|
|
redeem_script = CScript([self.coinbase_pubkey] + [OP_2DUP, OP_CHECKSIGVERIFY]*5 + [OP_CHECKSIG])
|
|
redeem_script_hash = hash160(redeem_script)
|
|
p2sh_script = CScript([OP_HASH160, redeem_script_hash, OP_EQUAL])
|
|
|
|
# Create a transaction that spends one satoshi to the p2sh_script, the rest to OP_TRUE
|
|
# This must be signed because it is spending a coinbase
|
|
spend = out[11]
|
|
tx = create_tx(spend.tx, spend.n, 1, p2sh_script)
|
|
tx.vout.append(CTxOut(spend.tx.vout[spend.n].nValue - 1, CScript([OP_TRUE])))
|
|
self.sign_tx(tx, spend.tx, spend.n)
|
|
tx.rehash()
|
|
b39 = update_block(39, [tx])
|
|
b39_outputs += 1
|
|
|
|
# Until block is full, add tx's with 1 satoshi to p2sh_script, the rest to OP_TRUE
|
|
tx_new = None
|
|
tx_last = tx
|
|
total_size=len(b39.serialize())
|
|
while(total_size < MAX_BLOCK_BASE_SIZE):
|
|
tx_new = create_tx(tx_last, 1, 1, p2sh_script)
|
|
tx_new.vout.append(CTxOut(tx_last.vout[1].nValue - 1, CScript([OP_TRUE])))
|
|
tx_new.rehash()
|
|
total_size += len(tx_new.serialize())
|
|
if total_size >= MAX_BLOCK_BASE_SIZE:
|
|
break
|
|
b39.vtx.append(tx_new) # add tx to block
|
|
tx_last = tx_new
|
|
b39_outputs += 1
|
|
|
|
b39 = update_block(39, [])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
|
|
# Test sigops in P2SH redeem scripts
|
|
#
|
|
# b40 creates 3333 tx's spending the 6-sigop P2SH outputs from b39 for a total of 19998 sigops.
|
|
# The first tx has one sigop and then at the end we add 2 more to put us just over the max.
|
|
#
|
|
# b41 does the same, less one, so it has the maximum sigops permitted.
|
|
#
|
|
tip(39)
|
|
b40 = block(40, spend=out[12])
|
|
sigops = get_legacy_sigopcount_block(b40)
|
|
numTxes = (MAX_BLOCK_SIGOPS - sigops) // b39_sigops_per_output
|
|
assert_equal(numTxes <= b39_outputs, True)
|
|
|
|
lastOutpoint = COutPoint(b40.vtx[1].sha256, 0)
|
|
new_txs = []
|
|
for i in range(1, numTxes+1):
|
|
tx = CTransaction()
|
|
tx.vout.append(CTxOut(1, CScript([OP_TRUE])))
|
|
tx.vin.append(CTxIn(lastOutpoint, b''))
|
|
# second input is corresponding P2SH output from b39
|
|
tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b''))
|
|
# Note: must pass the redeem_script (not p2sh_script) to the signature hash function
|
|
(sighash, err) = SignatureHash(redeem_script, tx, 1, SIGHASH_ALL)
|
|
sig = self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))
|
|
scriptSig = CScript([sig, redeem_script])
|
|
|
|
tx.vin[1].scriptSig = scriptSig
|
|
tx.rehash()
|
|
new_txs.append(tx)
|
|
lastOutpoint = COutPoint(tx.sha256, 0)
|
|
|
|
b40_sigops_to_fill = MAX_BLOCK_SIGOPS - (numTxes * b39_sigops_per_output + sigops) + 1
|
|
tx = CTransaction()
|
|
tx.vin.append(CTxIn(lastOutpoint, b''))
|
|
tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b40_sigops_to_fill)))
|
|
tx.rehash()
|
|
new_txs.append(tx)
|
|
update_block(40, new_txs)
|
|
yield rejected(RejectResult(16, b'bad-blk-sigops'))
|
|
|
|
# same as b40, but one less sigop
|
|
tip(39)
|
|
b41 = block(41, spend=None)
|
|
update_block(41, b40.vtx[1:-1])
|
|
b41_sigops_to_fill = b40_sigops_to_fill - 1
|
|
tx = CTransaction()
|
|
tx.vin.append(CTxIn(lastOutpoint, b''))
|
|
tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b41_sigops_to_fill)))
|
|
tx.rehash()
|
|
update_block(41, [tx])
|
|
yield accepted()
|
|
|
|
# Fork off of b39 to create a constant base again
|
|
#
|
|
# b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13)
|
|
# \-> b41 (12)
|
|
#
|
|
tip(39)
|
|
block(42, spend=out[12])
|
|
yield rejected()
|
|
save_spendable_output()
|
|
|
|
block(43, spend=out[13])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
|
|
# Test a number of really invalid scenarios
|
|
#
|
|
# -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b44 (14)
|
|
# \-> ??? (15)
|
|
|
|
# The next few blocks are going to be created "by hand" since they'll do funky things, such as having
|
|
# the first transaction be non-coinbase, etc. The purpose of b44 is to make sure this works.
|
|
height = self.block_heights[self.tip.sha256] + 1
|
|
coinbase = create_coinbase(height, self.coinbase_pubkey)
|
|
b44 = CBlock()
|
|
b44.nTime = self.tip.nTime + 1
|
|
b44.hashPrevBlock = self.tip.sha256
|
|
b44.nBits = 0x207fffff
|
|
b44.vtx.append(coinbase)
|
|
b44.hashMerkleRoot = b44.calc_merkle_root()
|
|
b44.solve()
|
|
self.tip = b44
|
|
self.block_heights[b44.sha256] = height
|
|
self.blocks[44] = b44
|
|
yield accepted()
|
|
|
|
# A block with a non-coinbase as the first tx
|
|
non_coinbase = create_tx(out[15].tx, out[15].n, 1)
|
|
b45 = CBlock()
|
|
b45.nTime = self.tip.nTime + 1
|
|
b45.hashPrevBlock = self.tip.sha256
|
|
b45.nBits = 0x207fffff
|
|
b45.vtx.append(non_coinbase)
|
|
b45.hashMerkleRoot = b45.calc_merkle_root()
|
|
b45.calc_sha256()
|
|
b45.solve()
|
|
self.block_heights[b45.sha256] = self.block_heights[self.tip.sha256]+1
|
|
self.tip = b45
|
|
self.blocks[45] = b45
|
|
yield rejected(RejectResult(16, b'bad-cb-missing'))
|
|
|
|
# A block with no txns
|
|
tip(44)
|
|
b46 = CBlock()
|
|
b46.nTime = b44.nTime+1
|
|
b46.hashPrevBlock = b44.sha256
|
|
b46.nBits = 0x207fffff
|
|
b46.vtx = []
|
|
b46.hashMerkleRoot = 0
|
|
b46.solve()
|
|
self.block_heights[b46.sha256] = self.block_heights[b44.sha256]+1
|
|
self.tip = b46
|
|
assert 46 not in self.blocks
|
|
self.blocks[46] = b46
|
|
s = ser_uint256(b46.hashMerkleRoot)
|
|
yield rejected(RejectResult(16, b'bad-blk-length'))
|
|
|
|
# A block with invalid work
|
|
tip(44)
|
|
b47 = block(47, solve=False)
|
|
target = uint256_from_compact(b47.nBits)
|
|
while b47.sha256 < target: #changed > to <
|
|
b47.nNonce += 1
|
|
b47.rehash()
|
|
yield rejected(RejectResult(16, b'high-hash'))
|
|
|
|
# A block with timestamp > 2 hrs in the future
|
|
tip(44)
|
|
b48 = block(48, solve=False)
|
|
b48.nTime = int(time.time()) + 60 * 60 * 3
|
|
b48.solve()
|
|
yield rejected(RejectResult(16, b'time-too-new'))
|
|
|
|
# A block with an invalid merkle hash
|
|
tip(44)
|
|
b49 = block(49)
|
|
b49.hashMerkleRoot += 1
|
|
b49.solve()
|
|
yield rejected(RejectResult(16, b'bad-txnmrklroot'))
|
|
|
|
# A block with an incorrect POW limit
|
|
tip(44)
|
|
b50 = block(50)
|
|
b50.nBits = b50.nBits - 1
|
|
b50.solve()
|
|
yield rejected(RejectResult(16, b'bad-diffbits'))
|
|
|
|
# A block with two coinbase txns
|
|
tip(44)
|
|
b51 = block(51)
|
|
cb2 = create_coinbase(51, self.coinbase_pubkey)
|
|
b51 = update_block(51, [cb2])
|
|
yield rejected(RejectResult(16, b'bad-cb-multiple'))
|
|
|
|
# A block w/ duplicate txns
|
|
# Note: txns have to be in the right position in the merkle tree to trigger this error
|
|
tip(44)
|
|
b52 = block(52, spend=out[15])
|
|
tx = create_tx(b52.vtx[1], 0, 1)
|
|
b52 = update_block(52, [tx, tx])
|
|
yield rejected(RejectResult(16, b'bad-txns-duplicate'))
|
|
|
|
# Test block timestamps
|
|
# -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15)
|
|
# \-> b54 (15)
|
|
#
|
|
tip(43)
|
|
block(53, spend=out[14])
|
|
yield rejected() # rejected since b44 is at same height
|
|
save_spendable_output()
|
|
|
|
# invalid timestamp (b35 is 5 blocks back, so its time is MedianTimePast)
|
|
b54 = block(54, spend=out[15])
|
|
b54.nTime = b35.nTime - 1
|
|
b54.solve()
|
|
yield rejected(RejectResult(16, b'time-too-old'))
|
|
|
|
# valid timestamp
|
|
tip(53)
|
|
b55 = block(55, spend=out[15])
|
|
b55.nTime = b35.nTime
|
|
update_block(55, [])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
|
|
# Test CVE-2012-2459
|
|
#
|
|
# -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57p2 (16)
|
|
# \-> b57 (16)
|
|
# \-> b56p2 (16)
|
|
# \-> b56 (16)
|
|
#
|
|
# Merkle tree malleability (CVE-2012-2459): repeating sequences of transactions in a block without
|
|
# affecting the merkle root of a block, while still invalidating it.
|
|
# See: src/consensus/merkle.h
|
|
#
|
|
# b57 has three txns: coinbase, tx, tx1. The merkle root computation will duplicate tx.
|
|
# Result: OK
|
|
#
|
|
# b56 copies b57 but duplicates tx1 and does not recalculate the block hash. So it has a valid merkle
|
|
# root but duplicate transactions.
|
|
# Result: Fails
|
|
#
|
|
# b57p2 has six transactions in its merkle tree:
|
|
# - coinbase, tx, tx1, tx2, tx3, tx4
|
|
# Merkle root calculation will duplicate as necessary.
|
|
# Result: OK.
|
|
#
|
|
# b56p2 copies b57p2 but adds both tx3 and tx4. The purpose of the test is to make sure the code catches
|
|
# duplicate txns that are not next to one another with the "bad-txns-duplicate" error (which indicates
|
|
# that the error was caught early, avoiding a DOS vulnerability.)
|
|
|
|
# b57 - a good block with 2 txs, don't submit until end
|
|
tip(55)
|
|
b57 = block(57)
|
|
tx = create_and_sign_tx(out[16].tx, out[16].n, 1)
|
|
tx1 = create_tx(tx, 0, 1)
|
|
b57 = update_block(57, [tx, tx1])
|
|
|
|
# b56 - copy b57, add a duplicate tx
|
|
tip(55)
|
|
b56 = copy.deepcopy(b57)
|
|
self.blocks[56] = b56
|
|
assert_equal(len(b56.vtx),3)
|
|
b56 = update_block(56, [tx1])
|
|
assert_equal(b56.hash, b57.hash)
|
|
yield rejected(RejectResult(16, b'bad-txns-duplicate'))
|
|
|
|
# b57p2 - a good block with 6 tx'es, don't submit until end
|
|
tip(55)
|
|
b57p2 = block("57p2")
|
|
tx = create_and_sign_tx(out[16].tx, out[16].n, 1)
|
|
tx1 = create_tx(tx, 0, 1)
|
|
tx2 = create_tx(tx1, 0, 1)
|
|
tx3 = create_tx(tx2, 0, 1)
|
|
tx4 = create_tx(tx3, 0, 1)
|
|
b57p2 = update_block("57p2", [tx, tx1, tx2, tx3, tx4])
|
|
|
|
# b56p2 - copy b57p2, duplicate two non-consecutive tx's
|
|
tip(55)
|
|
b56p2 = copy.deepcopy(b57p2)
|
|
self.blocks["b56p2"] = b56p2
|
|
assert_equal(b56p2.hash, b57p2.hash)
|
|
assert_equal(len(b56p2.vtx),6)
|
|
b56p2 = update_block("b56p2", [tx3, tx4])
|
|
yield rejected(RejectResult(16, b'bad-txns-duplicate'))
|
|
|
|
tip("57p2")
|
|
yield accepted()
|
|
|
|
tip(57)
|
|
yield rejected() #rejected because 57p2 seen first
|
|
save_spendable_output()
|
|
|
|
# Test a few invalid tx types
|
|
#
|
|
# -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
|
|
# \-> ??? (17)
|
|
#
|
|
|
|
# tx with prevout.n out of range
|
|
tip(57)
|
|
b58 = block(58, spend=out[17])
|
|
tx = CTransaction()
|
|
assert(len(out[17].tx.vout) < 42)
|
|
tx.vin.append(CTxIn(COutPoint(out[17].tx.sha256, 42), CScript([OP_TRUE]), 0xffffffff))
|
|
tx.vout.append(CTxOut(0, b""))
|
|
tx.calc_sha256()
|
|
b58 = update_block(58, [tx])
|
|
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
|
|
|
|
# tx with output value > input value out of range
|
|
tip(57)
|
|
b59 = block(59)
|
|
tx = create_and_sign_tx(out[17].tx, out[17].n, 51*COIN)
|
|
b59 = update_block(59, [tx])
|
|
yield rejected(RejectResult(16, b'bad-txns-in-belowout'))
|
|
|
|
# reset to good chain
|
|
tip(57)
|
|
b60 = block(60, spend=out[17])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
# Test BIP30
|
|
#
|
|
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
|
|
# \-> b61 (18)
|
|
#
|
|
# Blocks are not allowed to contain a transaction whose id matches that of an earlier,
|
|
# not-fully-spent transaction in the same chain. To test, make identical coinbases;
|
|
# the second one should be rejected.
|
|
#
|
|
tip(60)
|
|
b61 = block(61, spend=out[18])
|
|
b61.vtx[0].vin[0].scriptSig = b60.vtx[0].vin[0].scriptSig #equalize the coinbases
|
|
b61.vtx[0].rehash()
|
|
b61 = update_block(61, [])
|
|
assert_equal(b60.vtx[0].serialize(), b61.vtx[0].serialize())
|
|
yield rejected(RejectResult(16, b'bad-txns-BIP30'))
|
|
|
|
|
|
# Test tx.isFinal is properly rejected (not an exhaustive tx.isFinal test, that should be in data-driven transaction tests)
|
|
#
|
|
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
|
|
# \-> b62 (18)
|
|
#
|
|
tip(60)
|
|
b62 = block(62)
|
|
tx = CTransaction()
|
|
tx.nLockTime = 0xffffffff #this locktime is non-final
|
|
assert(out[18].n < len(out[18].tx.vout))
|
|
tx.vin.append(CTxIn(COutPoint(out[18].tx.sha256, out[18].n))) # don't set nSequence
|
|
tx.vout.append(CTxOut(0, CScript([OP_TRUE])))
|
|
assert(tx.vin[0].nSequence < 0xffffffff)
|
|
tx.calc_sha256()
|
|
b62 = update_block(62, [tx])
|
|
yield rejected(RejectResult(16, b'bad-txns-nonfinal'))
|
|
|
|
|
|
# Test a non-final coinbase is also rejected
|
|
#
|
|
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
|
|
# \-> b63 (-)
|
|
#
|
|
tip(60)
|
|
b63 = block(63)
|
|
b63.vtx[0].nLockTime = 0xffffffff
|
|
b63.vtx[0].vin[0].nSequence = 0xDEADBEEF
|
|
b63.vtx[0].rehash()
|
|
b63 = update_block(63, [])
|
|
yield rejected(RejectResult(16, b'bad-txns-nonfinal'))
|
|
|
|
|
|
# This checks that a block with a bloated VARINT between the block_header and the array of tx such that
|
|
# the block is > MAX_BLOCK_BASE_SIZE with the bloated varint, but <= MAX_BLOCK_BASE_SIZE without the bloated varint,
|
|
# does not cause a subsequent, identical block with canonical encoding to be rejected. The test does not
|
|
# care whether the bloated block is accepted or rejected; it only cares that the second block is accepted.
|
|
#
|
|
# What matters is that the receiving node should not reject the bloated block, and then reject the canonical
|
|
# block on the basis that it's the same as an already-rejected block (which would be a consensus failure.)
|
|
#
|
|
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18)
|
|
# \
|
|
# b64a (18)
|
|
# b64a is a bloated block (non-canonical varint)
|
|
# b64 is a good block (same as b64 but w/ canonical varint)
|
|
#
|
|
tip(60)
|
|
regular_block = block("64a", spend=out[18])
|
|
|
|
# make it a "broken_block," with non-canonical serialization
|
|
b64a = CBrokenBlock(regular_block)
|
|
b64a.initialize(regular_block)
|
|
self.blocks["64a"] = b64a
|
|
self.tip = b64a
|
|
tx = CTransaction()
|
|
|
|
# use canonical serialization to calculate size
|
|
script_length = MAX_BLOCK_BASE_SIZE - len(b64a.normal_serialize()) - 69
|
|
script_output = CScript([b'\x00' * script_length])
|
|
tx.vout.append(CTxOut(0, script_output))
|
|
tx.vin.append(CTxIn(COutPoint(b64a.vtx[1].sha256, 0)))
|
|
b64a = update_block("64a", [tx])
|
|
assert_equal(len(b64a.serialize()), MAX_BLOCK_BASE_SIZE + 8)
|
|
yield TestInstance([[self.tip, None]])
|
|
|
|
# comptool workaround: to make sure b64 is delivered, manually erase b64a from blockstore
|
|
self.test.block_store.erase(b64a.sha256)
|
|
|
|
tip(60)
|
|
b64 = CBlock(b64a)
|
|
b64.vtx = copy.deepcopy(b64a.vtx)
|
|
assert_equal(b64.hash, b64a.hash)
|
|
assert_equal(len(b64.serialize()), MAX_BLOCK_BASE_SIZE)
|
|
self.blocks[64] = b64
|
|
update_block(64, [])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
# Spend an output created in the block itself
|
|
#
|
|
# -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19)
|
|
#
|
|
tip(64)
|
|
b65 = block(65)
|
|
tx1 = create_and_sign_tx(out[19].tx, out[19].n, out[19].tx.vout[0].nValue)
|
|
tx2 = create_and_sign_tx(tx1, 0, 0)
|
|
update_block(65, [tx1, tx2])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
# Attempt to spend an output created later in the same block
|
|
#
|
|
# -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19)
|
|
# \-> b66 (20)
|
|
tip(65)
|
|
b66 = block(66)
|
|
tx1 = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue)
|
|
tx2 = create_and_sign_tx(tx1, 0, 1)
|
|
update_block(66, [tx2, tx1])
|
|
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
|
|
|
|
# Attempt to double-spend a transaction created in a block
|
|
#
|
|
# -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19)
|
|
# \-> b67 (20)
|
|
#
|
|
#
|
|
tip(65)
|
|
b67 = block(67)
|
|
tx1 = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue)
|
|
tx2 = create_and_sign_tx(tx1, 0, 1)
|
|
tx3 = create_and_sign_tx(tx1, 0, 2)
|
|
update_block(67, [tx1, tx2, tx3])
|
|
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
|
|
|
|
# More tests of block subsidy
|
|
#
|
|
# -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20)
|
|
# \-> b68 (20)
|
|
#
|
|
# b68 - coinbase with an extra 10 satoshis,
|
|
# creates a tx that has 9 satoshis from out[20] go to fees
|
|
# this fails because the coinbase is trying to claim 1 satoshi too much in fees
|
|
#
|
|
# b69 - coinbase with extra 10 satoshis, and a tx that gives a 10 satoshi fee
|
|
# this succeeds
|
|
#
|
|
tip(65)
|
|
b68 = block(68, additional_coinbase_value=10)
|
|
tx = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue-9)
|
|
update_block(68, [tx])
|
|
yield rejected(RejectResult(16, b'bad-cb-amount'))
|
|
|
|
tip(65)
|
|
b69 = block(69, additional_coinbase_value=10)
|
|
tx = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue-10)
|
|
update_block(69, [tx])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
# Test spending the outpoint of a non-existent transaction
|
|
#
|
|
# -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20)
|
|
# \-> b70 (21)
|
|
#
|
|
tip(69)
|
|
block(70, spend=out[21])
|
|
bogus_tx = CTransaction()
|
|
bogus_tx.sha256 = uint256_from_str(b"23c70ed7c0506e9178fc1a987f40a33946d4ad4c962b5ae3a52546da53af0c5c")
|
|
tx = CTransaction()
|
|
tx.vin.append(CTxIn(COutPoint(bogus_tx.sha256, 0), b"", 0xffffffff))
|
|
tx.vout.append(CTxOut(1, b""))
|
|
update_block(70, [tx])
|
|
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
|
|
|
|
|
|
# Test accepting an invalid block which has the same hash as a valid one (via merkle tree tricks)
|
|
#
|
|
# -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21)
|
|
# \-> b71 (21)
|
|
#
|
|
# b72 is a good block.
|
|
# b71 is a copy of 72, but re-adds one of its transactions. However, it has the same hash as b71.
|
|
#
|
|
tip(69)
|
|
b72 = block(72)
|
|
tx1 = create_and_sign_tx(out[21].tx, out[21].n, 2)
|
|
tx2 = create_and_sign_tx(tx1, 0, 1)
|
|
b72 = update_block(72, [tx1, tx2]) # now tip is 72
|
|
b71 = copy.deepcopy(b72)
|
|
b71.vtx.append(tx2) # add duplicate tx2
|
|
self.block_heights[b71.sha256] = self.block_heights[b69.sha256] + 1 # b71 builds off b69
|
|
self.blocks[71] = b71
|
|
|
|
assert_equal(len(b71.vtx), 4)
|
|
assert_equal(len(b72.vtx), 3)
|
|
assert_equal(b72.sha256, b71.sha256)
|
|
|
|
tip(71)
|
|
yield rejected(RejectResult(16, b'bad-txns-duplicate'))
|
|
tip(72)
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
|
|
# Test some invalid scripts and MAX_BLOCK_SIGOPS
|
|
#
|
|
# -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21)
|
|
# \-> b** (22)
|
|
#
|
|
|
|
# b73 - tx with excessive sigops that are placed after an excessively large script element.
|
|
# The purpose of the test is to make sure those sigops are counted.
|
|
#
|
|
# script is a bytearray of size 20,526
|
|
#
|
|
# bytearray[0-19,998] : OP_CHECKSIG
|
|
# bytearray[19,999] : OP_PUSHDATA4
|
|
# bytearray[20,000-20,003]: 521 (max_script_element_size+1, in little-endian format)
|
|
# bytearray[20,004-20,525]: unread data (script_element)
|
|
# bytearray[20,526] : OP_CHECKSIG (this puts us over the limit)
|
|
#
|
|
tip(72)
|
|
b73 = block(73)
|
|
size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 + 1
|
|
a = bytearray([OP_CHECKSIG] * size)
|
|
a[MAX_BLOCK_SIGOPS - 1] = int("4e",16) # OP_PUSHDATA4
|
|
|
|
element_size = MAX_SCRIPT_ELEMENT_SIZE + 1
|
|
a[MAX_BLOCK_SIGOPS] = element_size % 256
|
|
a[MAX_BLOCK_SIGOPS+1] = element_size // 256
|
|
a[MAX_BLOCK_SIGOPS+2] = 0
|
|
a[MAX_BLOCK_SIGOPS+3] = 0
|
|
|
|
tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a))
|
|
b73 = update_block(73, [tx])
|
|
assert_equal(get_legacy_sigopcount_block(b73), MAX_BLOCK_SIGOPS+1)
|
|
yield rejected(RejectResult(16, b'bad-blk-sigops'))
|
|
|
|
# b74/75 - if we push an invalid script element, all prevous sigops are counted,
|
|
# but sigops after the element are not counted.
|
|
#
|
|
# The invalid script element is that the push_data indicates that
|
|
# there will be a large amount of data (0xffffff bytes), but we only
|
|
# provide a much smaller number. These bytes are CHECKSIGS so they would
|
|
# cause b75 to fail for excessive sigops, if those bytes were counted.
|
|
#
|
|
# b74 fails because we put MAX_BLOCK_SIGOPS+1 before the element
|
|
# b75 succeeds because we put MAX_BLOCK_SIGOPS before the element
|
|
#
|
|
#
|
|
tip(72)
|
|
b74 = block(74)
|
|
size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42 # total = 20,561
|
|
a = bytearray([OP_CHECKSIG] * size)
|
|
a[MAX_BLOCK_SIGOPS] = 0x4e
|
|
a[MAX_BLOCK_SIGOPS+1] = 0xfe
|
|
a[MAX_BLOCK_SIGOPS+2] = 0xff
|
|
a[MAX_BLOCK_SIGOPS+3] = 0xff
|
|
a[MAX_BLOCK_SIGOPS+4] = 0xff
|
|
tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a))
|
|
b74 = update_block(74, [tx])
|
|
yield rejected(RejectResult(16, b'bad-blk-sigops'))
|
|
|
|
tip(72)
|
|
b75 = block(75)
|
|
size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42
|
|
a = bytearray([OP_CHECKSIG] * size)
|
|
a[MAX_BLOCK_SIGOPS-1] = 0x4e
|
|
a[MAX_BLOCK_SIGOPS] = 0xff
|
|
a[MAX_BLOCK_SIGOPS+1] = 0xff
|
|
a[MAX_BLOCK_SIGOPS+2] = 0xff
|
|
a[MAX_BLOCK_SIGOPS+3] = 0xff
|
|
tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a))
|
|
b75 = update_block(75, [tx])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
# Check that if we push an element filled with CHECKSIGs, they are not counted
|
|
tip(75)
|
|
b76 = block(76)
|
|
size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5
|
|
a = bytearray([OP_CHECKSIG] * size)
|
|
a[MAX_BLOCK_SIGOPS-1] = 0x4e # PUSHDATA4, but leave the following bytes as just checksigs
|
|
tx = create_and_sign_tx(out[23].tx, 0, 1, CScript(a))
|
|
b76 = update_block(76, [tx])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
# Test transaction resurrection
|
|
#
|
|
# -> b77 (24) -> b78 (25) -> b79 (26)
|
|
# \-> b80 (25) -> b81 (26) -> b82 (27)
|
|
#
|
|
# b78 creates a tx, which is spent in b79. After b82, both should be in mempool
|
|
#
|
|
# The tx'es must be unsigned and pass the node's mempool policy. It is unsigned for the
|
|
# rather obscure reason that the Python signature code does not distinguish between
|
|
# Low-S and High-S values (whereas the bitcoin code has custom code which does so);
|
|
# as a result of which, the odds are 50% that the python code will use the right
|
|
# value and the transaction will be accepted into the mempool. Until we modify the
|
|
# test framework to support low-S signing, we are out of luck.
|
|
#
|
|
# To get around this issue, we construct transactions which are not signed and which
|
|
# spend to OP_TRUE. If the standard-ness rules change, this test would need to be
|
|
# updated. (Perhaps to spend to a P2SH OP_TRUE script)
|
|
#
|
|
tip(76)
|
|
block(77)
|
|
tx77 = create_and_sign_tx(out[24].tx, out[24].n, 10*COIN)
|
|
update_block(77, [tx77])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
block(78)
|
|
tx78 = create_tx(tx77, 0, 9*COIN)
|
|
update_block(78, [tx78])
|
|
yield accepted()
|
|
|
|
block(79)
|
|
tx79 = create_tx(tx78, 0, 8*COIN)
|
|
update_block(79, [tx79])
|
|
yield accepted()
|
|
|
|
# mempool should be empty
|
|
assert_equal(len(self.nodes[0].getrawmempool()), 0)
|
|
|
|
tip(77)
|
|
block(80, spend=out[25])
|
|
yield rejected()
|
|
save_spendable_output()
|
|
|
|
block(81, spend=out[26])
|
|
yield rejected() # other chain is same length
|
|
save_spendable_output()
|
|
|
|
block(82, spend=out[27])
|
|
yield accepted() # now this chain is longer, triggers re-org
|
|
save_spendable_output()
|
|
|
|
# now check that tx78 and tx79 have been put back into the peer's mempool
|
|
mempool = self.nodes[0].getrawmempool()
|
|
assert_equal(len(mempool), 2)
|
|
assert(tx78.hash in mempool)
|
|
assert(tx79.hash in mempool)
|
|
|
|
|
|
# Test invalid opcodes in dead execution paths.
|
|
#
|
|
# -> b81 (26) -> b82 (27) -> b83 (28)
|
|
#
|
|
b83 = block(83)
|
|
op_codes = [OP_IF, OP_INVALIDOPCODE, OP_ELSE, OP_TRUE, OP_ENDIF]
|
|
script = CScript(op_codes)
|
|
tx1 = create_and_sign_tx(out[28].tx, out[28].n, out[28].tx.vout[0].nValue, script)
|
|
|
|
tx2 = create_and_sign_tx(tx1, 0, 0, CScript([OP_TRUE]))
|
|
tx2.vin[0].scriptSig = CScript([OP_FALSE])
|
|
tx2.rehash()
|
|
|
|
update_block(83, [tx1, tx2])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
|
|
# Reorg on/off blocks that have OP_RETURN in them (and try to spend them)
|
|
#
|
|
# -> b81 (26) -> b82 (27) -> b83 (28) -> b84 (29) -> b87 (30) -> b88 (31)
|
|
# \-> b85 (29) -> b86 (30) \-> b89a (32)
|
|
#
|
|
#
|
|
b84 = block(84)
|
|
tx1 = create_tx(out[29].tx, out[29].n, 0, CScript([OP_RETURN]))
|
|
tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
|
|
tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
|
|
tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
|
|
tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
|
|
tx1.calc_sha256()
|
|
self.sign_tx(tx1, out[29].tx, out[29].n)
|
|
tx1.rehash()
|
|
tx2 = create_tx(tx1, 1, 0, CScript([OP_RETURN]))
|
|
tx2.vout.append(CTxOut(0, CScript([OP_RETURN])))
|
|
tx3 = create_tx(tx1, 2, 0, CScript([OP_RETURN]))
|
|
tx3.vout.append(CTxOut(0, CScript([OP_TRUE])))
|
|
tx4 = create_tx(tx1, 3, 0, CScript([OP_TRUE]))
|
|
tx4.vout.append(CTxOut(0, CScript([OP_RETURN])))
|
|
tx5 = create_tx(tx1, 4, 0, CScript([OP_RETURN]))
|
|
|
|
update_block(84, [tx1,tx2,tx3,tx4,tx5])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
tip(83)
|
|
block(85, spend=out[29])
|
|
yield rejected()
|
|
|
|
block(86, spend=out[30])
|
|
yield accepted()
|
|
|
|
tip(84)
|
|
block(87, spend=out[30])
|
|
yield rejected()
|
|
save_spendable_output()
|
|
|
|
block(88, spend=out[31])
|
|
yield accepted()
|
|
save_spendable_output()
|
|
|
|
# trying to spend the OP_RETURN output is rejected
|
|
block("89a", spend=out[32])
|
|
tx = create_tx(tx1, 0, 0, CScript([OP_TRUE]))
|
|
update_block("89a", [tx])
|
|
yield rejected()
|
|
|
|
|
|
# Test re-org of a week's worth of blocks (1088 blocks)
|
|
# This test takes a minute or two and can be accomplished in memory
|
|
#
|
|
if self.options.runbarelyexpensive:
|
|
tip(88)
|
|
LARGE_REORG_SIZE = 1088
|
|
test1 = TestInstance(sync_every_block=False)
|
|
spend=out[32]
|
|
for i in range(89, LARGE_REORG_SIZE + 89):
|
|
b = block(i, spend)
|
|
tx = CTransaction()
|
|
script_length = MAX_BLOCK_BASE_SIZE - len(b.serialize()) - 69
|
|
script_output = CScript([b'\x00' * script_length])
|
|
tx.vout.append(CTxOut(0, script_output))
|
|
tx.vin.append(CTxIn(COutPoint(b.vtx[1].sha256, 0)))
|
|
b = update_block(i, [tx])
|
|
assert_equal(len(b.serialize()), MAX_BLOCK_BASE_SIZE)
|
|
test1.blocks_and_transactions.append([self.tip, True])
|
|
save_spendable_output()
|
|
spend = get_spendable_output()
|
|
|
|
yield test1
|
|
chain1_tip = i
|
|
|
|
# now create alt chain of same length
|
|
tip(88)
|
|
test2 = TestInstance(sync_every_block=False)
|
|
for i in range(89, LARGE_REORG_SIZE + 89):
|
|
block("alt"+str(i))
|
|
test2.blocks_and_transactions.append([self.tip, False])
|
|
yield test2
|
|
|
|
# extend alt chain to trigger re-org
|
|
block("alt" + str(chain1_tip + 1))
|
|
yield accepted()
|
|
|
|
# ... and re-org back to the first chain
|
|
tip(chain1_tip)
|
|
block(chain1_tip + 1)
|
|
yield rejected()
|
|
block(chain1_tip + 2)
|
|
yield accepted()
|
|
|
|
chain1_tip += 2
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
FullBlockTest().main()
|