mirror of
https://github.com/kvazar-network/kevacoin.git
synced 2025-01-11 23:58:18 +00:00
cc0589639c
Empty body introduced by commit #9319 should not be empty.
2735 lines
86 KiB
C++
2735 lines
86 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2016 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
#include "config/bitcoin-config.h"
|
|
#endif
|
|
|
|
#include "net.h"
|
|
|
|
#include "addrman.h"
|
|
#include "chainparams.h"
|
|
#include "clientversion.h"
|
|
#include "consensus/consensus.h"
|
|
#include "crypto/common.h"
|
|
#include "crypto/sha256.h"
|
|
#include "hash.h"
|
|
#include "primitives/transaction.h"
|
|
#include "netbase.h"
|
|
#include "scheduler.h"
|
|
#include "ui_interface.h"
|
|
#include "utilstrencodings.h"
|
|
|
|
#ifdef WIN32
|
|
#include <string.h>
|
|
#else
|
|
#include <fcntl.h>
|
|
#endif
|
|
|
|
#ifdef USE_UPNP
|
|
#include <miniupnpc/miniupnpc.h>
|
|
#include <miniupnpc/miniwget.h>
|
|
#include <miniupnpc/upnpcommands.h>
|
|
#include <miniupnpc/upnperrors.h>
|
|
#endif
|
|
|
|
|
|
#include <math.h>
|
|
|
|
// Dump addresses to peers.dat and banlist.dat every 15 minutes (900s)
|
|
#define DUMP_ADDRESSES_INTERVAL 900
|
|
|
|
// We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization.
|
|
#define FEELER_SLEEP_WINDOW 1
|
|
|
|
#if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL)
|
|
#define MSG_NOSIGNAL 0
|
|
#endif
|
|
|
|
// Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h.
|
|
// Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version.
|
|
#ifdef WIN32
|
|
#ifndef PROTECTION_LEVEL_UNRESTRICTED
|
|
#define PROTECTION_LEVEL_UNRESTRICTED 10
|
|
#endif
|
|
#ifndef IPV6_PROTECTION_LEVEL
|
|
#define IPV6_PROTECTION_LEVEL 23
|
|
#endif
|
|
#endif
|
|
|
|
const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
|
|
|
|
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
|
|
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
|
|
//
|
|
// Global state variables
|
|
//
|
|
bool fDiscover = true;
|
|
bool fListen = true;
|
|
bool fRelayTxes = true;
|
|
CCriticalSection cs_mapLocalHost;
|
|
std::map<CNetAddr, LocalServiceInfo> mapLocalHost;
|
|
static bool vfLimited[NET_MAX] = {};
|
|
std::string strSubVersion;
|
|
|
|
limitedmap<uint256, int64_t> mapAlreadyAskedFor(MAX_INV_SZ);
|
|
|
|
// Signals for message handling
|
|
static CNodeSignals g_signals;
|
|
CNodeSignals& GetNodeSignals() { return g_signals; }
|
|
|
|
void CConnman::AddOneShot(const std::string& strDest)
|
|
{
|
|
LOCK(cs_vOneShots);
|
|
vOneShots.push_back(strDest);
|
|
}
|
|
|
|
unsigned short GetListenPort()
|
|
{
|
|
return (unsigned short)(GetArg("-port", Params().GetDefaultPort()));
|
|
}
|
|
|
|
// find 'best' local address for a particular peer
|
|
bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
|
|
{
|
|
if (!fListen)
|
|
return false;
|
|
|
|
int nBestScore = -1;
|
|
int nBestReachability = -1;
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
for (std::map<CNetAddr, LocalServiceInfo>::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++)
|
|
{
|
|
int nScore = (*it).second.nScore;
|
|
int nReachability = (*it).first.GetReachabilityFrom(paddrPeer);
|
|
if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
|
|
{
|
|
addr = CService((*it).first, (*it).second.nPort);
|
|
nBestReachability = nReachability;
|
|
nBestScore = nScore;
|
|
}
|
|
}
|
|
}
|
|
return nBestScore >= 0;
|
|
}
|
|
|
|
//! Convert the pnSeeds6 array into usable address objects.
|
|
static std::vector<CAddress> convertSeed6(const std::vector<SeedSpec6> &vSeedsIn)
|
|
{
|
|
// It'll only connect to one or two seed nodes because once it connects,
|
|
// it'll get a pile of addresses with newer timestamps.
|
|
// Seed nodes are given a random 'last seen time' of between one and two
|
|
// weeks ago.
|
|
const int64_t nOneWeek = 7*24*60*60;
|
|
std::vector<CAddress> vSeedsOut;
|
|
vSeedsOut.reserve(vSeedsIn.size());
|
|
for (std::vector<SeedSpec6>::const_iterator i(vSeedsIn.begin()); i != vSeedsIn.end(); ++i)
|
|
{
|
|
struct in6_addr ip;
|
|
memcpy(&ip, i->addr, sizeof(ip));
|
|
CAddress addr(CService(ip, i->port), NODE_NETWORK);
|
|
addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek;
|
|
vSeedsOut.push_back(addr);
|
|
}
|
|
return vSeedsOut;
|
|
}
|
|
|
|
// get best local address for a particular peer as a CAddress
|
|
// Otherwise, return the unroutable 0.0.0.0 but filled in with
|
|
// the normal parameters, since the IP may be changed to a useful
|
|
// one by discovery.
|
|
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices)
|
|
{
|
|
CAddress ret(CService(CNetAddr(),GetListenPort()), NODE_NONE);
|
|
CService addr;
|
|
if (GetLocal(addr, paddrPeer))
|
|
{
|
|
ret = CAddress(addr, nLocalServices);
|
|
}
|
|
ret.nTime = GetAdjustedTime();
|
|
return ret;
|
|
}
|
|
|
|
int GetnScore(const CService& addr)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
if (mapLocalHost.count(addr) == LOCAL_NONE)
|
|
return 0;
|
|
return mapLocalHost[addr].nScore;
|
|
}
|
|
|
|
// Is our peer's addrLocal potentially useful as an external IP source?
|
|
bool IsPeerAddrLocalGood(CNode *pnode)
|
|
{
|
|
return fDiscover && pnode->addr.IsRoutable() && pnode->addrLocal.IsRoutable() &&
|
|
!IsLimited(pnode->addrLocal.GetNetwork());
|
|
}
|
|
|
|
// pushes our own address to a peer
|
|
void AdvertiseLocal(CNode *pnode)
|
|
{
|
|
if (fListen && pnode->fSuccessfullyConnected)
|
|
{
|
|
CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
|
|
// If discovery is enabled, sometimes give our peer the address it
|
|
// tells us that it sees us as in case it has a better idea of our
|
|
// address than we do.
|
|
if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() ||
|
|
GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0))
|
|
{
|
|
addrLocal.SetIP(pnode->addrLocal);
|
|
}
|
|
if (addrLocal.IsRoutable())
|
|
{
|
|
LogPrint("net", "AdvertiseLocal: advertising address %s\n", addrLocal.ToString());
|
|
FastRandomContext insecure_rand;
|
|
pnode->PushAddress(addrLocal, insecure_rand);
|
|
}
|
|
}
|
|
}
|
|
|
|
// learn a new local address
|
|
bool AddLocal(const CService& addr, int nScore)
|
|
{
|
|
if (!addr.IsRoutable())
|
|
return false;
|
|
|
|
if (!fDiscover && nScore < LOCAL_MANUAL)
|
|
return false;
|
|
|
|
if (IsLimited(addr))
|
|
return false;
|
|
|
|
LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
|
|
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
bool fAlready = mapLocalHost.count(addr) > 0;
|
|
LocalServiceInfo &info = mapLocalHost[addr];
|
|
if (!fAlready || nScore >= info.nScore) {
|
|
info.nScore = nScore + (fAlready ? 1 : 0);
|
|
info.nPort = addr.GetPort();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AddLocal(const CNetAddr &addr, int nScore)
|
|
{
|
|
return AddLocal(CService(addr, GetListenPort()), nScore);
|
|
}
|
|
|
|
bool RemoveLocal(const CService& addr)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
LogPrintf("RemoveLocal(%s)\n", addr.ToString());
|
|
mapLocalHost.erase(addr);
|
|
return true;
|
|
}
|
|
|
|
/** Make a particular network entirely off-limits (no automatic connects to it) */
|
|
void SetLimited(enum Network net, bool fLimited)
|
|
{
|
|
if (net == NET_UNROUTABLE)
|
|
return;
|
|
LOCK(cs_mapLocalHost);
|
|
vfLimited[net] = fLimited;
|
|
}
|
|
|
|
bool IsLimited(enum Network net)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
return vfLimited[net];
|
|
}
|
|
|
|
bool IsLimited(const CNetAddr &addr)
|
|
{
|
|
return IsLimited(addr.GetNetwork());
|
|
}
|
|
|
|
/** vote for a local address */
|
|
bool SeenLocal(const CService& addr)
|
|
{
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
if (mapLocalHost.count(addr) == 0)
|
|
return false;
|
|
mapLocalHost[addr].nScore++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/** check whether a given address is potentially local */
|
|
bool IsLocal(const CService& addr)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
return mapLocalHost.count(addr) > 0;
|
|
}
|
|
|
|
/** check whether a given network is one we can probably connect to */
|
|
bool IsReachable(enum Network net)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
return !vfLimited[net];
|
|
}
|
|
|
|
/** check whether a given address is in a network we can probably connect to */
|
|
bool IsReachable(const CNetAddr& addr)
|
|
{
|
|
enum Network net = addr.GetNetwork();
|
|
return IsReachable(net);
|
|
}
|
|
|
|
|
|
CNode* CConnman::FindNode(const CNetAddr& ip)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodes)
|
|
if ((CNetAddr)pnode->addr == ip)
|
|
return (pnode);
|
|
return NULL;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const CSubNet& subNet)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodes)
|
|
if (subNet.Match((CNetAddr)pnode->addr))
|
|
return (pnode);
|
|
return NULL;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const std::string& addrName)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodes)
|
|
if (pnode->addrName == addrName)
|
|
return (pnode);
|
|
return NULL;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const CService& addr)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodes)
|
|
if ((CService)pnode->addr == addr)
|
|
return (pnode);
|
|
return NULL;
|
|
}
|
|
|
|
bool CConnman::CheckIncomingNonce(uint64_t nonce)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodes) {
|
|
if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure)
|
|
{
|
|
if (pszDest == NULL) {
|
|
if (IsLocal(addrConnect))
|
|
return NULL;
|
|
|
|
// Look for an existing connection
|
|
CNode* pnode = FindNode((CService)addrConnect);
|
|
if (pnode)
|
|
{
|
|
pnode->AddRef();
|
|
return pnode;
|
|
}
|
|
}
|
|
|
|
/// debug print
|
|
LogPrint("net", "trying connection %s lastseen=%.1fhrs\n",
|
|
pszDest ? pszDest : addrConnect.ToString(),
|
|
pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
|
|
|
|
// Connect
|
|
SOCKET hSocket;
|
|
bool proxyConnectionFailed = false;
|
|
if (pszDest ? ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort(), nConnectTimeout, &proxyConnectionFailed) :
|
|
ConnectSocket(addrConnect, hSocket, nConnectTimeout, &proxyConnectionFailed))
|
|
{
|
|
if (!IsSelectableSocket(hSocket)) {
|
|
LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n");
|
|
CloseSocket(hSocket);
|
|
return NULL;
|
|
}
|
|
|
|
if (pszDest && addrConnect.IsValid()) {
|
|
// It is possible that we already have a connection to the IP/port pszDest resolved to.
|
|
// In that case, drop the connection that was just created, and return the existing CNode instead.
|
|
// Also store the name we used to connect in that CNode, so that future FindNode() calls to that
|
|
// name catch this early.
|
|
CNode* pnode = FindNode((CService)addrConnect);
|
|
if (pnode)
|
|
{
|
|
pnode->AddRef();
|
|
{
|
|
LOCK(cs_vNodes);
|
|
if (pnode->addrName.empty()) {
|
|
pnode->addrName = std::string(pszDest);
|
|
}
|
|
}
|
|
CloseSocket(hSocket);
|
|
return pnode;
|
|
}
|
|
}
|
|
|
|
addrman.Attempt(addrConnect, fCountFailure);
|
|
|
|
// Add node
|
|
NodeId id = GetNewNodeId();
|
|
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
|
|
CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, pszDest ? pszDest : "", false);
|
|
pnode->nServicesExpected = ServiceFlags(addrConnect.nServices & nRelevantServices);
|
|
pnode->nTimeConnected = GetTime();
|
|
pnode->AddRef();
|
|
GetNodeSignals().InitializeNode(pnode, *this);
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodes.push_back(pnode);
|
|
}
|
|
|
|
return pnode;
|
|
} else if (!proxyConnectionFailed) {
|
|
// If connecting to the node failed, and failure is not caused by a problem connecting to
|
|
// the proxy, mark this as an attempt.
|
|
addrman.Attempt(addrConnect, fCountFailure);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void CConnman::DumpBanlist()
|
|
{
|
|
SweepBanned(); // clean unused entries (if bantime has expired)
|
|
|
|
if (!BannedSetIsDirty())
|
|
return;
|
|
|
|
int64_t nStart = GetTimeMillis();
|
|
|
|
CBanDB bandb;
|
|
banmap_t banmap;
|
|
SetBannedSetDirty(false);
|
|
GetBanned(banmap);
|
|
if (!bandb.Write(banmap))
|
|
SetBannedSetDirty(true);
|
|
|
|
LogPrint("net", "Flushed %d banned node ips/subnets to banlist.dat %dms\n",
|
|
banmap.size(), GetTimeMillis() - nStart);
|
|
}
|
|
|
|
void CNode::CloseSocketDisconnect()
|
|
{
|
|
fDisconnect = true;
|
|
if (hSocket != INVALID_SOCKET)
|
|
{
|
|
LogPrint("net", "disconnecting peer=%d\n", id);
|
|
CloseSocket(hSocket);
|
|
}
|
|
|
|
// in case this fails, we'll empty the recv buffer when the CNode is deleted
|
|
TRY_LOCK(cs_vRecvMsg, lockRecv);
|
|
if (lockRecv)
|
|
vRecvMsg.clear();
|
|
}
|
|
|
|
void CConnman::ClearBanned()
|
|
{
|
|
{
|
|
LOCK(cs_setBanned);
|
|
setBanned.clear();
|
|
setBannedIsDirty = true;
|
|
}
|
|
DumpBanlist(); //store banlist to disk
|
|
if(clientInterface)
|
|
clientInterface->BannedListChanged();
|
|
}
|
|
|
|
bool CConnman::IsBanned(CNetAddr ip)
|
|
{
|
|
bool fResult = false;
|
|
{
|
|
LOCK(cs_setBanned);
|
|
for (banmap_t::iterator it = setBanned.begin(); it != setBanned.end(); it++)
|
|
{
|
|
CSubNet subNet = (*it).first;
|
|
CBanEntry banEntry = (*it).second;
|
|
|
|
if(subNet.Match(ip) && GetTime() < banEntry.nBanUntil)
|
|
fResult = true;
|
|
}
|
|
}
|
|
return fResult;
|
|
}
|
|
|
|
bool CConnman::IsBanned(CSubNet subnet)
|
|
{
|
|
bool fResult = false;
|
|
{
|
|
LOCK(cs_setBanned);
|
|
banmap_t::iterator i = setBanned.find(subnet);
|
|
if (i != setBanned.end())
|
|
{
|
|
CBanEntry banEntry = (*i).second;
|
|
if (GetTime() < banEntry.nBanUntil)
|
|
fResult = true;
|
|
}
|
|
}
|
|
return fResult;
|
|
}
|
|
|
|
void CConnman::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
|
|
CSubNet subNet(addr);
|
|
Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch);
|
|
}
|
|
|
|
void CConnman::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
|
|
CBanEntry banEntry(GetTime());
|
|
banEntry.banReason = banReason;
|
|
if (bantimeoffset <= 0)
|
|
{
|
|
bantimeoffset = GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME);
|
|
sinceUnixEpoch = false;
|
|
}
|
|
banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset;
|
|
|
|
{
|
|
LOCK(cs_setBanned);
|
|
if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) {
|
|
setBanned[subNet] = banEntry;
|
|
setBannedIsDirty = true;
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
if(clientInterface)
|
|
clientInterface->BannedListChanged();
|
|
{
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodes) {
|
|
if (subNet.Match((CNetAddr)pnode->addr))
|
|
pnode->fDisconnect = true;
|
|
}
|
|
}
|
|
if(banReason == BanReasonManuallyAdded)
|
|
DumpBanlist(); //store banlist to disk immediately if user requested ban
|
|
}
|
|
|
|
bool CConnman::Unban(const CNetAddr &addr) {
|
|
CSubNet subNet(addr);
|
|
return Unban(subNet);
|
|
}
|
|
|
|
bool CConnman::Unban(const CSubNet &subNet) {
|
|
{
|
|
LOCK(cs_setBanned);
|
|
if (!setBanned.erase(subNet))
|
|
return false;
|
|
setBannedIsDirty = true;
|
|
}
|
|
if(clientInterface)
|
|
clientInterface->BannedListChanged();
|
|
DumpBanlist(); //store banlist to disk immediately
|
|
return true;
|
|
}
|
|
|
|
void CConnman::GetBanned(banmap_t &banMap)
|
|
{
|
|
LOCK(cs_setBanned);
|
|
banMap = setBanned; //create a thread safe copy
|
|
}
|
|
|
|
void CConnman::SetBanned(const banmap_t &banMap)
|
|
{
|
|
LOCK(cs_setBanned);
|
|
setBanned = banMap;
|
|
setBannedIsDirty = true;
|
|
}
|
|
|
|
void CConnman::SweepBanned()
|
|
{
|
|
int64_t now = GetTime();
|
|
|
|
LOCK(cs_setBanned);
|
|
banmap_t::iterator it = setBanned.begin();
|
|
while(it != setBanned.end())
|
|
{
|
|
CSubNet subNet = (*it).first;
|
|
CBanEntry banEntry = (*it).second;
|
|
if(now > banEntry.nBanUntil)
|
|
{
|
|
setBanned.erase(it++);
|
|
setBannedIsDirty = true;
|
|
LogPrint("net", "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString());
|
|
}
|
|
else
|
|
++it;
|
|
}
|
|
}
|
|
|
|
bool CConnman::BannedSetIsDirty()
|
|
{
|
|
LOCK(cs_setBanned);
|
|
return setBannedIsDirty;
|
|
}
|
|
|
|
void CConnman::SetBannedSetDirty(bool dirty)
|
|
{
|
|
LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag
|
|
setBannedIsDirty = dirty;
|
|
}
|
|
|
|
|
|
bool CConnman::IsWhitelistedRange(const CNetAddr &addr) {
|
|
LOCK(cs_vWhitelistedRange);
|
|
BOOST_FOREACH(const CSubNet& subnet, vWhitelistedRange) {
|
|
if (subnet.Match(addr))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::AddWhitelistedRange(const CSubNet &subnet) {
|
|
LOCK(cs_vWhitelistedRange);
|
|
vWhitelistedRange.push_back(subnet);
|
|
}
|
|
|
|
#undef X
|
|
#define X(name) stats.name = name
|
|
void CNode::copyStats(CNodeStats &stats)
|
|
{
|
|
stats.nodeid = this->GetId();
|
|
X(nServices);
|
|
X(addr);
|
|
X(fRelayTxes);
|
|
X(nLastSend);
|
|
X(nLastRecv);
|
|
X(nTimeConnected);
|
|
X(nTimeOffset);
|
|
X(addrName);
|
|
X(nVersion);
|
|
X(cleanSubVer);
|
|
X(fInbound);
|
|
X(fAddnode);
|
|
X(nStartingHeight);
|
|
X(nSendBytes);
|
|
X(mapSendBytesPerMsgCmd);
|
|
X(nRecvBytes);
|
|
X(mapRecvBytesPerMsgCmd);
|
|
X(fWhitelisted);
|
|
|
|
// It is common for nodes with good ping times to suddenly become lagged,
|
|
// due to a new block arriving or other large transfer.
|
|
// Merely reporting pingtime might fool the caller into thinking the node was still responsive,
|
|
// since pingtime does not update until the ping is complete, which might take a while.
|
|
// So, if a ping is taking an unusually long time in flight,
|
|
// the caller can immediately detect that this is happening.
|
|
int64_t nPingUsecWait = 0;
|
|
if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) {
|
|
nPingUsecWait = GetTimeMicros() - nPingUsecStart;
|
|
}
|
|
|
|
// Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :)
|
|
stats.dPingTime = (((double)nPingUsecTime) / 1e6);
|
|
stats.dMinPing = (((double)nMinPingUsecTime) / 1e6);
|
|
stats.dPingWait = (((double)nPingUsecWait) / 1e6);
|
|
|
|
// Leave string empty if addrLocal invalid (not filled in yet)
|
|
stats.addrLocal = addrLocal.IsValid() ? addrLocal.ToString() : "";
|
|
}
|
|
#undef X
|
|
|
|
// requires LOCK(cs_vRecvMsg)
|
|
bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete)
|
|
{
|
|
complete = false;
|
|
while (nBytes > 0) {
|
|
|
|
// get current incomplete message, or create a new one
|
|
if (vRecvMsg.empty() ||
|
|
vRecvMsg.back().complete())
|
|
vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, nRecvVersion));
|
|
|
|
CNetMessage& msg = vRecvMsg.back();
|
|
|
|
// absorb network data
|
|
int handled;
|
|
if (!msg.in_data)
|
|
handled = msg.readHeader(pch, nBytes);
|
|
else
|
|
handled = msg.readData(pch, nBytes);
|
|
|
|
if (handled < 0)
|
|
return false;
|
|
|
|
if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
|
|
LogPrint("net", "Oversized message from peer=%i, disconnecting\n", GetId());
|
|
return false;
|
|
}
|
|
|
|
pch += handled;
|
|
nBytes -= handled;
|
|
|
|
if (msg.complete()) {
|
|
|
|
//store received bytes per message command
|
|
//to prevent a memory DOS, only allow valid commands
|
|
mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand);
|
|
if (i == mapRecvBytesPerMsgCmd.end())
|
|
i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
|
|
assert(i != mapRecvBytesPerMsgCmd.end());
|
|
i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
|
|
|
|
msg.nTime = GetTimeMicros();
|
|
complete = true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int CNetMessage::readHeader(const char *pch, unsigned int nBytes)
|
|
{
|
|
// copy data to temporary parsing buffer
|
|
unsigned int nRemaining = 24 - nHdrPos;
|
|
unsigned int nCopy = std::min(nRemaining, nBytes);
|
|
|
|
memcpy(&hdrbuf[nHdrPos], pch, nCopy);
|
|
nHdrPos += nCopy;
|
|
|
|
// if header incomplete, exit
|
|
if (nHdrPos < 24)
|
|
return nCopy;
|
|
|
|
// deserialize to CMessageHeader
|
|
try {
|
|
hdrbuf >> hdr;
|
|
}
|
|
catch (const std::exception&) {
|
|
return -1;
|
|
}
|
|
|
|
// reject messages larger than MAX_SIZE
|
|
if (hdr.nMessageSize > MAX_SIZE)
|
|
return -1;
|
|
|
|
// switch state to reading message data
|
|
in_data = true;
|
|
|
|
return nCopy;
|
|
}
|
|
|
|
int CNetMessage::readData(const char *pch, unsigned int nBytes)
|
|
{
|
|
unsigned int nRemaining = hdr.nMessageSize - nDataPos;
|
|
unsigned int nCopy = std::min(nRemaining, nBytes);
|
|
|
|
if (vRecv.size() < nDataPos + nCopy) {
|
|
// Allocate up to 256 KiB ahead, but never more than the total message size.
|
|
vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
|
|
}
|
|
|
|
hasher.Write((const unsigned char*)pch, nCopy);
|
|
memcpy(&vRecv[nDataPos], pch, nCopy);
|
|
nDataPos += nCopy;
|
|
|
|
return nCopy;
|
|
}
|
|
|
|
const uint256& CNetMessage::GetMessageHash() const
|
|
{
|
|
assert(complete());
|
|
if (data_hash.IsNull())
|
|
hasher.Finalize(data_hash.begin());
|
|
return data_hash;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// requires LOCK(cs_vSend)
|
|
size_t SocketSendData(CNode *pnode)
|
|
{
|
|
auto it = pnode->vSendMsg.begin();
|
|
size_t nSentSize = 0;
|
|
|
|
while (it != pnode->vSendMsg.end()) {
|
|
const auto &data = *it;
|
|
assert(data.size() > pnode->nSendOffset);
|
|
int nBytes = send(pnode->hSocket, reinterpret_cast<const char*>(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
|
|
if (nBytes > 0) {
|
|
pnode->nLastSend = GetTime();
|
|
pnode->nSendBytes += nBytes;
|
|
pnode->nSendOffset += nBytes;
|
|
nSentSize += nBytes;
|
|
if (pnode->nSendOffset == data.size()) {
|
|
pnode->nSendOffset = 0;
|
|
pnode->nSendSize -= data.size();
|
|
it++;
|
|
} else {
|
|
// could not send full message; stop sending more
|
|
break;
|
|
}
|
|
} else {
|
|
if (nBytes < 0) {
|
|
// error
|
|
int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
|
|
{
|
|
LogPrintf("socket send error %s\n", NetworkErrorString(nErr));
|
|
pnode->CloseSocketDisconnect();
|
|
}
|
|
}
|
|
// couldn't send anything at all
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (it == pnode->vSendMsg.end()) {
|
|
assert(pnode->nSendOffset == 0);
|
|
assert(pnode->nSendSize == 0);
|
|
}
|
|
pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it);
|
|
return nSentSize;
|
|
}
|
|
|
|
struct NodeEvictionCandidate
|
|
{
|
|
NodeId id;
|
|
int64_t nTimeConnected;
|
|
int64_t nMinPingUsecTime;
|
|
int64_t nLastBlockTime;
|
|
int64_t nLastTXTime;
|
|
bool fRelevantServices;
|
|
bool fRelayTxes;
|
|
bool fBloomFilter;
|
|
CAddress addr;
|
|
uint64_t nKeyedNetGroup;
|
|
};
|
|
|
|
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
return a.nMinPingUsecTime > b.nMinPingUsecTime;
|
|
}
|
|
|
|
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
return a.nTimeConnected > b.nTimeConnected;
|
|
}
|
|
|
|
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
|
|
return a.nKeyedNetGroup < b.nKeyedNetGroup;
|
|
}
|
|
|
|
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
// There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
|
|
if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime;
|
|
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
|
|
return a.nTimeConnected > b.nTimeConnected;
|
|
}
|
|
|
|
static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
// There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
|
|
if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime;
|
|
if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes;
|
|
if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
|
|
return a.nTimeConnected > b.nTimeConnected;
|
|
}
|
|
|
|
/** Try to find a connection to evict when the node is full.
|
|
* Extreme care must be taken to avoid opening the node to attacker
|
|
* triggered network partitioning.
|
|
* The strategy used here is to protect a small number of peers
|
|
* for each of several distinct characteristics which are difficult
|
|
* to forge. In order to partition a node the attacker must be
|
|
* simultaneously better at all of them than honest peers.
|
|
*/
|
|
bool CConnman::AttemptToEvictConnection()
|
|
{
|
|
std::vector<NodeEvictionCandidate> vEvictionCandidates;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
|
|
BOOST_FOREACH(CNode *node, vNodes) {
|
|
if (node->fWhitelisted)
|
|
continue;
|
|
if (!node->fInbound)
|
|
continue;
|
|
if (node->fDisconnect)
|
|
continue;
|
|
NodeEvictionCandidate candidate = {node->id, node->nTimeConnected, node->nMinPingUsecTime,
|
|
node->nLastBlockTime, node->nLastTXTime,
|
|
(node->nServices & nRelevantServices) == nRelevantServices,
|
|
node->fRelayTxes, node->pfilter != NULL, node->addr, node->nKeyedNetGroup};
|
|
vEvictionCandidates.push_back(candidate);
|
|
}
|
|
}
|
|
|
|
if (vEvictionCandidates.empty()) return false;
|
|
|
|
// Protect connections with certain characteristics
|
|
|
|
// Deterministically select 4 peers to protect by netgroup.
|
|
// An attacker cannot predict which netgroups will be protected
|
|
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNetGroupKeyed);
|
|
vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
|
|
|
|
if (vEvictionCandidates.empty()) return false;
|
|
|
|
// Protect the 8 nodes with the lowest minimum ping time.
|
|
// An attacker cannot manipulate this metric without physically moving nodes closer to the target.
|
|
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeMinPingTime);
|
|
vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(8, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
|
|
|
|
if (vEvictionCandidates.empty()) return false;
|
|
|
|
// Protect 4 nodes that most recently sent us transactions.
|
|
// An attacker cannot manipulate this metric without performing useful work.
|
|
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeTXTime);
|
|
vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
|
|
|
|
if (vEvictionCandidates.empty()) return false;
|
|
|
|
// Protect 4 nodes that most recently sent us blocks.
|
|
// An attacker cannot manipulate this metric without performing useful work.
|
|
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeBlockTime);
|
|
vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
|
|
|
|
if (vEvictionCandidates.empty()) return false;
|
|
|
|
// Protect the half of the remaining nodes which have been connected the longest.
|
|
// This replicates the non-eviction implicit behavior, and precludes attacks that start later.
|
|
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeTimeConnected);
|
|
vEvictionCandidates.erase(vEvictionCandidates.end() - static_cast<int>(vEvictionCandidates.size() / 2), vEvictionCandidates.end());
|
|
|
|
if (vEvictionCandidates.empty()) return false;
|
|
|
|
// Identify the network group with the most connections and youngest member.
|
|
// (vEvictionCandidates is already sorted by reverse connect time)
|
|
uint64_t naMostConnections;
|
|
unsigned int nMostConnections = 0;
|
|
int64_t nMostConnectionsTime = 0;
|
|
std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
|
|
BOOST_FOREACH(const NodeEvictionCandidate &node, vEvictionCandidates) {
|
|
mapNetGroupNodes[node.nKeyedNetGroup].push_back(node);
|
|
int64_t grouptime = mapNetGroupNodes[node.nKeyedNetGroup][0].nTimeConnected;
|
|
size_t groupsize = mapNetGroupNodes[node.nKeyedNetGroup].size();
|
|
|
|
if (groupsize > nMostConnections || (groupsize == nMostConnections && grouptime > nMostConnectionsTime)) {
|
|
nMostConnections = groupsize;
|
|
nMostConnectionsTime = grouptime;
|
|
naMostConnections = node.nKeyedNetGroup;
|
|
}
|
|
}
|
|
|
|
// Reduce to the network group with the most connections
|
|
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
|
|
|
|
// Disconnect from the network group with the most connections
|
|
NodeId evicted = vEvictionCandidates.front().id;
|
|
LOCK(cs_vNodes);
|
|
for(std::vector<CNode*>::const_iterator it(vNodes.begin()); it != vNodes.end(); ++it) {
|
|
if ((*it)->GetId() == evicted) {
|
|
(*it)->fDisconnect = true;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
|
|
struct sockaddr_storage sockaddr;
|
|
socklen_t len = sizeof(sockaddr);
|
|
SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len);
|
|
CAddress addr;
|
|
int nInbound = 0;
|
|
int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler);
|
|
|
|
if (hSocket != INVALID_SOCKET)
|
|
if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr))
|
|
LogPrintf("Warning: Unknown socket family\n");
|
|
|
|
bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr);
|
|
{
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodes)
|
|
if (pnode->fInbound)
|
|
nInbound++;
|
|
}
|
|
|
|
if (hSocket == INVALID_SOCKET)
|
|
{
|
|
int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK)
|
|
LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
|
|
return;
|
|
}
|
|
|
|
if (!fNetworkActive) {
|
|
LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString());
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
|
|
if (!IsSelectableSocket(hSocket))
|
|
{
|
|
LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString());
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
|
|
// According to the internet TCP_NODELAY is not carried into accepted sockets
|
|
// on all platforms. Set it again here just to be sure.
|
|
int set = 1;
|
|
#ifdef WIN32
|
|
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int));
|
|
#else
|
|
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int));
|
|
#endif
|
|
|
|
if (IsBanned(addr) && !whitelisted)
|
|
{
|
|
LogPrintf("connection from %s dropped (banned)\n", addr.ToString());
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
|
|
if (nInbound >= nMaxInbound)
|
|
{
|
|
if (!AttemptToEvictConnection()) {
|
|
// No connection to evict, disconnect the new connection
|
|
LogPrint("net", "failed to find an eviction candidate - connection dropped (full)\n");
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
}
|
|
|
|
NodeId id = GetNewNodeId();
|
|
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
|
|
|
|
CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, "", true);
|
|
pnode->AddRef();
|
|
pnode->fWhitelisted = whitelisted;
|
|
GetNodeSignals().InitializeNode(pnode, *this);
|
|
|
|
LogPrint("net", "connection from %s accepted\n", addr.ToString());
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodes.push_back(pnode);
|
|
}
|
|
}
|
|
|
|
void CConnman::ThreadSocketHandler()
|
|
{
|
|
unsigned int nPrevNodeCount = 0;
|
|
while (!interruptNet)
|
|
{
|
|
//
|
|
// Disconnect nodes
|
|
//
|
|
{
|
|
LOCK(cs_vNodes);
|
|
// Disconnect unused nodes
|
|
std::vector<CNode*> vNodesCopy = vNodes;
|
|
BOOST_FOREACH(CNode* pnode, vNodesCopy)
|
|
{
|
|
if (pnode->fDisconnect ||
|
|
(pnode->GetRefCount() <= 0 && pnode->vRecvMsg.empty() && pnode->nSendSize == 0))
|
|
{
|
|
// remove from vNodes
|
|
vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end());
|
|
|
|
// release outbound grant (if any)
|
|
pnode->grantOutbound.Release();
|
|
|
|
// close socket and cleanup
|
|
pnode->CloseSocketDisconnect();
|
|
|
|
// hold in disconnected pool until all refs are released
|
|
pnode->Release();
|
|
vNodesDisconnected.push_back(pnode);
|
|
}
|
|
}
|
|
}
|
|
{
|
|
// Delete disconnected nodes
|
|
std::list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected;
|
|
BOOST_FOREACH(CNode* pnode, vNodesDisconnectedCopy)
|
|
{
|
|
// wait until threads are done using it
|
|
if (pnode->GetRefCount() <= 0)
|
|
{
|
|
bool fDelete = false;
|
|
{
|
|
TRY_LOCK(pnode->cs_vSend, lockSend);
|
|
if (lockSend)
|
|
{
|
|
TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
|
|
if (lockRecv)
|
|
{
|
|
TRY_LOCK(pnode->cs_inventory, lockInv);
|
|
if (lockInv)
|
|
fDelete = true;
|
|
}
|
|
}
|
|
}
|
|
if (fDelete)
|
|
{
|
|
vNodesDisconnected.remove(pnode);
|
|
DeleteNode(pnode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
size_t vNodesSize;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodesSize = vNodes.size();
|
|
}
|
|
if(vNodesSize != nPrevNodeCount) {
|
|
nPrevNodeCount = vNodesSize;
|
|
if(clientInterface)
|
|
clientInterface->NotifyNumConnectionsChanged(nPrevNodeCount);
|
|
}
|
|
|
|
//
|
|
// Find which sockets have data to receive
|
|
//
|
|
struct timeval timeout;
|
|
timeout.tv_sec = 0;
|
|
timeout.tv_usec = 50000; // frequency to poll pnode->vSend
|
|
|
|
fd_set fdsetRecv;
|
|
fd_set fdsetSend;
|
|
fd_set fdsetError;
|
|
FD_ZERO(&fdsetRecv);
|
|
FD_ZERO(&fdsetSend);
|
|
FD_ZERO(&fdsetError);
|
|
SOCKET hSocketMax = 0;
|
|
bool have_fds = false;
|
|
|
|
BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) {
|
|
FD_SET(hListenSocket.socket, &fdsetRecv);
|
|
hSocketMax = std::max(hSocketMax, hListenSocket.socket);
|
|
have_fds = true;
|
|
}
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodes)
|
|
{
|
|
if (pnode->hSocket == INVALID_SOCKET)
|
|
continue;
|
|
FD_SET(pnode->hSocket, &fdsetError);
|
|
hSocketMax = std::max(hSocketMax, pnode->hSocket);
|
|
have_fds = true;
|
|
|
|
// Implement the following logic:
|
|
// * If there is data to send, select() for sending data. As this only
|
|
// happens when optimistic write failed, we choose to first drain the
|
|
// write buffer in this case before receiving more. This avoids
|
|
// needlessly queueing received data, if the remote peer is not themselves
|
|
// receiving data. This means properly utilizing TCP flow control signalling.
|
|
// * Otherwise, if there is no (complete) message in the receive buffer,
|
|
// or there is space left in the buffer, select() for receiving data.
|
|
// * (if neither of the above applies, there is certainly one message
|
|
// in the receiver buffer ready to be processed).
|
|
// Together, that means that at least one of the following is always possible,
|
|
// so we don't deadlock:
|
|
// * We send some data.
|
|
// * We wait for data to be received (and disconnect after timeout).
|
|
// * We process a message in the buffer (message handler thread).
|
|
{
|
|
TRY_LOCK(pnode->cs_vSend, lockSend);
|
|
if (lockSend) {
|
|
if (!pnode->vSendMsg.empty()) {
|
|
FD_SET(pnode->hSocket, &fdsetSend);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
{
|
|
TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
|
|
if (lockRecv && (
|
|
pnode->vRecvMsg.empty() || !pnode->vRecvMsg.front().complete() ||
|
|
pnode->GetTotalRecvSize() <= GetReceiveFloodSize()))
|
|
FD_SET(pnode->hSocket, &fdsetRecv);
|
|
}
|
|
}
|
|
}
|
|
|
|
int nSelect = select(have_fds ? hSocketMax + 1 : 0,
|
|
&fdsetRecv, &fdsetSend, &fdsetError, &timeout);
|
|
if (interruptNet)
|
|
return;
|
|
|
|
if (nSelect == SOCKET_ERROR)
|
|
{
|
|
if (have_fds)
|
|
{
|
|
int nErr = WSAGetLastError();
|
|
LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
|
|
for (unsigned int i = 0; i <= hSocketMax; i++)
|
|
FD_SET(i, &fdsetRecv);
|
|
}
|
|
FD_ZERO(&fdsetSend);
|
|
FD_ZERO(&fdsetError);
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(timeout.tv_usec/1000)))
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Accept new connections
|
|
//
|
|
BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket)
|
|
{
|
|
if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv))
|
|
{
|
|
AcceptConnection(hListenSocket);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Service each socket
|
|
//
|
|
std::vector<CNode*> vNodesCopy;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodesCopy = vNodes;
|
|
BOOST_FOREACH(CNode* pnode, vNodesCopy)
|
|
pnode->AddRef();
|
|
}
|
|
BOOST_FOREACH(CNode* pnode, vNodesCopy)
|
|
{
|
|
if (interruptNet)
|
|
return;
|
|
|
|
//
|
|
// Receive
|
|
//
|
|
if (pnode->hSocket == INVALID_SOCKET)
|
|
continue;
|
|
if (FD_ISSET(pnode->hSocket, &fdsetRecv) || FD_ISSET(pnode->hSocket, &fdsetError))
|
|
{
|
|
TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
|
|
if (lockRecv)
|
|
{
|
|
{
|
|
// typical socket buffer is 8K-64K
|
|
char pchBuf[0x10000];
|
|
int nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
|
|
if (nBytes > 0)
|
|
{
|
|
bool notify = false;
|
|
if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify))
|
|
pnode->CloseSocketDisconnect();
|
|
if(notify)
|
|
condMsgProc.notify_one();
|
|
pnode->nLastRecv = GetTime();
|
|
pnode->nRecvBytes += nBytes;
|
|
RecordBytesRecv(nBytes);
|
|
}
|
|
else if (nBytes == 0)
|
|
{
|
|
// socket closed gracefully
|
|
if (!pnode->fDisconnect)
|
|
LogPrint("net", "socket closed\n");
|
|
pnode->CloseSocketDisconnect();
|
|
}
|
|
else if (nBytes < 0)
|
|
{
|
|
// error
|
|
int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
|
|
{
|
|
if (!pnode->fDisconnect)
|
|
LogPrintf("socket recv error %s\n", NetworkErrorString(nErr));
|
|
pnode->CloseSocketDisconnect();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Send
|
|
//
|
|
if (pnode->hSocket == INVALID_SOCKET)
|
|
continue;
|
|
if (FD_ISSET(pnode->hSocket, &fdsetSend))
|
|
{
|
|
TRY_LOCK(pnode->cs_vSend, lockSend);
|
|
if (lockSend) {
|
|
size_t nBytes = SocketSendData(pnode);
|
|
if (nBytes)
|
|
RecordBytesSent(nBytes);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Inactivity checking
|
|
//
|
|
int64_t nTime = GetTime();
|
|
if (nTime - pnode->nTimeConnected > 60)
|
|
{
|
|
if (pnode->nLastRecv == 0 || pnode->nLastSend == 0)
|
|
{
|
|
LogPrint("net", "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->id);
|
|
pnode->fDisconnect = true;
|
|
}
|
|
else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL)
|
|
{
|
|
LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend);
|
|
pnode->fDisconnect = true;
|
|
}
|
|
else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60))
|
|
{
|
|
LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv);
|
|
pnode->fDisconnect = true;
|
|
}
|
|
else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros())
|
|
{
|
|
LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart));
|
|
pnode->fDisconnect = true;
|
|
}
|
|
}
|
|
}
|
|
{
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodesCopy)
|
|
pnode->Release();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef USE_UPNP
|
|
void ThreadMapPort()
|
|
{
|
|
std::string port = strprintf("%u", GetListenPort());
|
|
const char * multicastif = 0;
|
|
const char * minissdpdpath = 0;
|
|
struct UPNPDev * devlist = 0;
|
|
char lanaddr[64];
|
|
|
|
#ifndef UPNPDISCOVER_SUCCESS
|
|
/* miniupnpc 1.5 */
|
|
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0);
|
|
#elif MINIUPNPC_API_VERSION < 14
|
|
/* miniupnpc 1.6 */
|
|
int error = 0;
|
|
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error);
|
|
#else
|
|
/* miniupnpc 1.9.20150730 */
|
|
int error = 0;
|
|
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error);
|
|
#endif
|
|
|
|
struct UPNPUrls urls;
|
|
struct IGDdatas data;
|
|
int r;
|
|
|
|
r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr));
|
|
if (r == 1)
|
|
{
|
|
if (fDiscover) {
|
|
char externalIPAddress[40];
|
|
r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress);
|
|
if(r != UPNPCOMMAND_SUCCESS)
|
|
LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r);
|
|
else
|
|
{
|
|
if(externalIPAddress[0])
|
|
{
|
|
CNetAddr resolved;
|
|
if(LookupHost(externalIPAddress, resolved, false)) {
|
|
LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString().c_str());
|
|
AddLocal(resolved, LOCAL_UPNP);
|
|
}
|
|
}
|
|
else
|
|
LogPrintf("UPnP: GetExternalIPAddress failed.\n");
|
|
}
|
|
}
|
|
|
|
std::string strDesc = "Bitcoin " + FormatFullVersion();
|
|
|
|
try {
|
|
while (true) {
|
|
#ifndef UPNPDISCOVER_SUCCESS
|
|
/* miniupnpc 1.5 */
|
|
r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
|
|
port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0);
|
|
#else
|
|
/* miniupnpc 1.6 */
|
|
r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
|
|
port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0");
|
|
#endif
|
|
|
|
if(r!=UPNPCOMMAND_SUCCESS)
|
|
LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n",
|
|
port, port, lanaddr, r, strupnperror(r));
|
|
else
|
|
LogPrintf("UPnP Port Mapping successful.\n");
|
|
|
|
MilliSleep(20*60*1000); // Refresh every 20 minutes
|
|
}
|
|
}
|
|
catch (const boost::thread_interrupted&)
|
|
{
|
|
r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0);
|
|
LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r);
|
|
freeUPNPDevlist(devlist); devlist = 0;
|
|
FreeUPNPUrls(&urls);
|
|
throw;
|
|
}
|
|
} else {
|
|
LogPrintf("No valid UPnP IGDs found\n");
|
|
freeUPNPDevlist(devlist); devlist = 0;
|
|
if (r != 0)
|
|
FreeUPNPUrls(&urls);
|
|
}
|
|
}
|
|
|
|
void MapPort(bool fUseUPnP)
|
|
{
|
|
static boost::thread* upnp_thread = NULL;
|
|
|
|
if (fUseUPnP)
|
|
{
|
|
if (upnp_thread) {
|
|
upnp_thread->interrupt();
|
|
upnp_thread->join();
|
|
delete upnp_thread;
|
|
}
|
|
upnp_thread = new boost::thread(boost::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort));
|
|
}
|
|
else if (upnp_thread) {
|
|
upnp_thread->interrupt();
|
|
upnp_thread->join();
|
|
delete upnp_thread;
|
|
upnp_thread = NULL;
|
|
}
|
|
}
|
|
|
|
#else
|
|
void MapPort(bool)
|
|
{
|
|
// Intentionally left blank.
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static std::string GetDNSHost(const CDNSSeedData& data, ServiceFlags* requiredServiceBits)
|
|
{
|
|
//use default host for non-filter-capable seeds or if we use the default service bits (NODE_NETWORK)
|
|
if (!data.supportsServiceBitsFiltering || *requiredServiceBits == NODE_NETWORK) {
|
|
*requiredServiceBits = NODE_NETWORK;
|
|
return data.host;
|
|
}
|
|
|
|
// See chainparams.cpp, most dnsseeds only support one or two possible servicebits hostnames
|
|
return strprintf("x%x.%s", *requiredServiceBits, data.host);
|
|
}
|
|
|
|
|
|
void CConnman::ThreadDNSAddressSeed()
|
|
{
|
|
// goal: only query DNS seeds if address need is acute
|
|
// Avoiding DNS seeds when we don't need them improves user privacy by
|
|
// creating fewer identifying DNS requests, reduces trust by giving seeds
|
|
// less influence on the network topology, and reduces traffic to the seeds.
|
|
if ((addrman.size() > 0) &&
|
|
(!GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) {
|
|
if (!interruptNet.sleep_for(std::chrono::seconds(11)))
|
|
return;
|
|
|
|
LOCK(cs_vNodes);
|
|
int nRelevant = 0;
|
|
for (auto pnode : vNodes) {
|
|
nRelevant += pnode->fSuccessfullyConnected && ((pnode->nServices & nRelevantServices) == nRelevantServices);
|
|
}
|
|
if (nRelevant >= 2) {
|
|
LogPrintf("P2P peers available. Skipped DNS seeding.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
const std::vector<CDNSSeedData> &vSeeds = Params().DNSSeeds();
|
|
int found = 0;
|
|
|
|
LogPrintf("Loading addresses from DNS seeds (could take a while)\n");
|
|
|
|
BOOST_FOREACH(const CDNSSeedData &seed, vSeeds) {
|
|
if (HaveNameProxy()) {
|
|
AddOneShot(seed.host);
|
|
} else {
|
|
std::vector<CNetAddr> vIPs;
|
|
std::vector<CAddress> vAdd;
|
|
ServiceFlags requiredServiceBits = nRelevantServices;
|
|
if (LookupHost(GetDNSHost(seed, &requiredServiceBits).c_str(), vIPs, 0, true))
|
|
{
|
|
BOOST_FOREACH(const CNetAddr& ip, vIPs)
|
|
{
|
|
int nOneDay = 24*3600;
|
|
CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits);
|
|
addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old
|
|
vAdd.push_back(addr);
|
|
found++;
|
|
}
|
|
}
|
|
// TODO: The seed name resolve may fail, yielding an IP of [::], which results in
|
|
// addrman assigning the same source to results from different seeds.
|
|
// This should switch to a hard-coded stable dummy IP for each seed name, so that the
|
|
// resolve is not required at all.
|
|
if (!vIPs.empty()) {
|
|
CService seedSource;
|
|
Lookup(seed.name.c_str(), seedSource, 0, true);
|
|
addrman.Add(vAdd, seedSource);
|
|
}
|
|
}
|
|
}
|
|
|
|
LogPrintf("%d addresses found from DNS seeds\n", found);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void CConnman::DumpAddresses()
|
|
{
|
|
int64_t nStart = GetTimeMillis();
|
|
|
|
CAddrDB adb;
|
|
adb.Write(addrman);
|
|
|
|
LogPrint("net", "Flushed %d addresses to peers.dat %dms\n",
|
|
addrman.size(), GetTimeMillis() - nStart);
|
|
}
|
|
|
|
void CConnman::DumpData()
|
|
{
|
|
DumpAddresses();
|
|
DumpBanlist();
|
|
}
|
|
|
|
void CConnman::ProcessOneShot()
|
|
{
|
|
std::string strDest;
|
|
{
|
|
LOCK(cs_vOneShots);
|
|
if (vOneShots.empty())
|
|
return;
|
|
strDest = vOneShots.front();
|
|
vOneShots.pop_front();
|
|
}
|
|
CAddress addr;
|
|
CSemaphoreGrant grant(*semOutbound, true);
|
|
if (grant) {
|
|
if (!OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true))
|
|
AddOneShot(strDest);
|
|
}
|
|
}
|
|
|
|
void CConnman::ThreadOpenConnections()
|
|
{
|
|
// Connect to specific addresses
|
|
if (mapMultiArgs.count("-connect") && mapMultiArgs.at("-connect").size() > 0)
|
|
{
|
|
for (int64_t nLoop = 0;; nLoop++)
|
|
{
|
|
ProcessOneShot();
|
|
BOOST_FOREACH(const std::string& strAddr, mapMultiArgs.at("-connect"))
|
|
{
|
|
CAddress addr(CService(), NODE_NONE);
|
|
OpenNetworkConnection(addr, false, NULL, strAddr.c_str());
|
|
for (int i = 0; i < 10 && i < nLoop; i++)
|
|
{
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Initiate network connections
|
|
int64_t nStart = GetTime();
|
|
|
|
// Minimum time before next feeler connection (in microseconds).
|
|
int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL);
|
|
while (!interruptNet)
|
|
{
|
|
ProcessOneShot();
|
|
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
|
|
CSemaphoreGrant grant(*semOutbound);
|
|
if (interruptNet)
|
|
return;
|
|
|
|
// Add seed nodes if DNS seeds are all down (an infrastructure attack?).
|
|
if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
|
|
static bool done = false;
|
|
if (!done) {
|
|
LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n");
|
|
CNetAddr local;
|
|
LookupHost("127.0.0.1", local, false);
|
|
addrman.Add(convertSeed6(Params().FixedSeeds()), local);
|
|
done = true;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Choose an address to connect to based on most recently seen
|
|
//
|
|
CAddress addrConnect;
|
|
|
|
// Only connect out to one peer per network group (/16 for IPv4).
|
|
// Do this here so we don't have to critsect vNodes inside mapAddresses critsect.
|
|
int nOutbound = 0;
|
|
std::set<std::vector<unsigned char> > setConnected;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodes) {
|
|
if (!pnode->fInbound && !pnode->fAddnode) {
|
|
// Netgroups for inbound and addnode peers are not excluded because our goal here
|
|
// is to not use multiple of our limited outbound slots on a single netgroup
|
|
// but inbound and addnode peers do not use our outbound slots. Inbound peers
|
|
// also have the added issue that they're attacker controlled and could be used
|
|
// to prevent us from connecting to particular hosts if we used them here.
|
|
setConnected.insert(pnode->addr.GetGroup());
|
|
nOutbound++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Feeler Connections
|
|
//
|
|
// Design goals:
|
|
// * Increase the number of connectable addresses in the tried table.
|
|
//
|
|
// Method:
|
|
// * Choose a random address from new and attempt to connect to it if we can connect
|
|
// successfully it is added to tried.
|
|
// * Start attempting feeler connections only after node finishes making outbound
|
|
// connections.
|
|
// * Only make a feeler connection once every few minutes.
|
|
//
|
|
bool fFeeler = false;
|
|
if (nOutbound >= nMaxOutbound) {
|
|
int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds).
|
|
if (nTime > nNextFeeler) {
|
|
nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
|
|
fFeeler = true;
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
int64_t nANow = GetAdjustedTime();
|
|
int nTries = 0;
|
|
while (!interruptNet)
|
|
{
|
|
CAddrInfo addr = addrman.Select(fFeeler);
|
|
|
|
// if we selected an invalid address, restart
|
|
if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr))
|
|
break;
|
|
|
|
// If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
|
|
// stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
|
|
// already-connected network ranges, ...) before trying new addrman addresses.
|
|
nTries++;
|
|
if (nTries > 100)
|
|
break;
|
|
|
|
if (IsLimited(addr))
|
|
continue;
|
|
|
|
// only connect to full nodes
|
|
if ((addr.nServices & REQUIRED_SERVICES) != REQUIRED_SERVICES)
|
|
continue;
|
|
|
|
// only consider very recently tried nodes after 30 failed attempts
|
|
if (nANow - addr.nLastTry < 600 && nTries < 30)
|
|
continue;
|
|
|
|
// only consider nodes missing relevant services after 40 failed attempts and only if less than half the outbound are up.
|
|
if ((addr.nServices & nRelevantServices) != nRelevantServices && (nTries < 40 || nOutbound >= (nMaxOutbound >> 1)))
|
|
continue;
|
|
|
|
// do not allow non-default ports, unless after 50 invalid addresses selected already
|
|
if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50)
|
|
continue;
|
|
|
|
addrConnect = addr;
|
|
break;
|
|
}
|
|
|
|
if (addrConnect.IsValid()) {
|
|
|
|
if (fFeeler) {
|
|
// Add small amount of random noise before connection to avoid synchronization.
|
|
int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(randsleep)))
|
|
return;
|
|
LogPrint("net", "Making feeler connection to %s\n", addrConnect.ToString());
|
|
}
|
|
|
|
OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, NULL, false, fFeeler);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo()
|
|
{
|
|
std::vector<AddedNodeInfo> ret;
|
|
|
|
std::list<std::string> lAddresses(0);
|
|
{
|
|
LOCK(cs_vAddedNodes);
|
|
ret.reserve(vAddedNodes.size());
|
|
BOOST_FOREACH(const std::string& strAddNode, vAddedNodes)
|
|
lAddresses.push_back(strAddNode);
|
|
}
|
|
|
|
|
|
// Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
|
|
std::map<CService, bool> mapConnected;
|
|
std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (const CNode* pnode : vNodes) {
|
|
if (pnode->addr.IsValid()) {
|
|
mapConnected[pnode->addr] = pnode->fInbound;
|
|
}
|
|
if (!pnode->addrName.empty()) {
|
|
mapConnectedByName[pnode->addrName] = std::make_pair(pnode->fInbound, static_cast<const CService&>(pnode->addr));
|
|
}
|
|
}
|
|
}
|
|
|
|
BOOST_FOREACH(const std::string& strAddNode, lAddresses) {
|
|
CService service(LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort()));
|
|
if (service.IsValid()) {
|
|
// strAddNode is an IP:port
|
|
auto it = mapConnected.find(service);
|
|
if (it != mapConnected.end()) {
|
|
ret.push_back(AddedNodeInfo{strAddNode, service, true, it->second});
|
|
} else {
|
|
ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false});
|
|
}
|
|
} else {
|
|
// strAddNode is a name
|
|
auto it = mapConnectedByName.find(strAddNode);
|
|
if (it != mapConnectedByName.end()) {
|
|
ret.push_back(AddedNodeInfo{strAddNode, it->second.second, true, it->second.first});
|
|
} else {
|
|
ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false});
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void CConnman::ThreadOpenAddedConnections()
|
|
{
|
|
{
|
|
LOCK(cs_vAddedNodes);
|
|
if (mapMultiArgs.count("-addnode"))
|
|
vAddedNodes = mapMultiArgs.at("-addnode");
|
|
}
|
|
|
|
while (true)
|
|
{
|
|
CSemaphoreGrant grant(*semAddnode);
|
|
std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
|
|
bool tried = false;
|
|
for (const AddedNodeInfo& info : vInfo) {
|
|
if (!info.fConnected) {
|
|
if (!grant.TryAcquire()) {
|
|
// If we've used up our semaphore and need a new one, lets not wait here since while we are waiting
|
|
// the addednodeinfo state might change.
|
|
break;
|
|
}
|
|
// If strAddedNode is an IP/port, decode it immediately, so
|
|
// OpenNetworkConnection can detect existing connections to that IP/port.
|
|
tried = true;
|
|
CService service(LookupNumeric(info.strAddedNode.c_str(), Params().GetDefaultPort()));
|
|
OpenNetworkConnection(CAddress(service, NODE_NONE), false, &grant, info.strAddedNode.c_str(), false, false, true);
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
// Retry every 60 seconds if a connection was attempted, otherwise two seconds
|
|
if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
|
|
return;
|
|
}
|
|
}
|
|
|
|
// if successful, this moves the passed grant to the constructed node
|
|
bool CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler, bool fAddnode)
|
|
{
|
|
//
|
|
// Initiate outbound network connection
|
|
//
|
|
if (interruptNet) {
|
|
return false;
|
|
}
|
|
if (!fNetworkActive) {
|
|
return false;
|
|
}
|
|
if (!pszDest) {
|
|
if (IsLocal(addrConnect) ||
|
|
FindNode((CNetAddr)addrConnect) || IsBanned(addrConnect) ||
|
|
FindNode(addrConnect.ToStringIPPort()))
|
|
return false;
|
|
} else if (FindNode(std::string(pszDest)))
|
|
return false;
|
|
|
|
CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure);
|
|
|
|
if (!pnode)
|
|
return false;
|
|
if (grantOutbound)
|
|
grantOutbound->MoveTo(pnode->grantOutbound);
|
|
if (fOneShot)
|
|
pnode->fOneShot = true;
|
|
if (fFeeler)
|
|
pnode->fFeeler = true;
|
|
if (fAddnode)
|
|
pnode->fAddnode = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
void CConnman::ThreadMessageHandler()
|
|
{
|
|
while (!flagInterruptMsgProc)
|
|
{
|
|
std::vector<CNode*> vNodesCopy;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodesCopy = vNodes;
|
|
BOOST_FOREACH(CNode* pnode, vNodesCopy) {
|
|
pnode->AddRef();
|
|
}
|
|
}
|
|
|
|
bool fSleep = true;
|
|
|
|
BOOST_FOREACH(CNode* pnode, vNodesCopy)
|
|
{
|
|
if (pnode->fDisconnect)
|
|
continue;
|
|
|
|
// Receive messages
|
|
{
|
|
TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
|
|
if (lockRecv)
|
|
{
|
|
if (!GetNodeSignals().ProcessMessages(pnode, *this, flagInterruptMsgProc))
|
|
pnode->CloseSocketDisconnect();
|
|
|
|
if (pnode->nSendSize < GetSendBufferSize())
|
|
{
|
|
if (!pnode->vRecvGetData.empty() || (!pnode->vRecvMsg.empty() && pnode->vRecvMsg[0].complete()))
|
|
{
|
|
fSleep = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (flagInterruptMsgProc)
|
|
return;
|
|
|
|
// Send messages
|
|
{
|
|
TRY_LOCK(pnode->cs_vSend, lockSend);
|
|
if (lockSend)
|
|
GetNodeSignals().SendMessages(pnode, *this, flagInterruptMsgProc);
|
|
}
|
|
if (flagInterruptMsgProc)
|
|
return;
|
|
}
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodesCopy)
|
|
pnode->Release();
|
|
}
|
|
|
|
if (fSleep) {
|
|
std::unique_lock<std::mutex> lock(mutexMsgProc);
|
|
condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool CConnman::BindListenPort(const CService &addrBind, std::string& strError, bool fWhitelisted)
|
|
{
|
|
strError = "";
|
|
int nOne = 1;
|
|
|
|
// Create socket for listening for incoming connections
|
|
struct sockaddr_storage sockaddr;
|
|
socklen_t len = sizeof(sockaddr);
|
|
if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
|
|
{
|
|
strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString());
|
|
LogPrintf("%s\n", strError);
|
|
return false;
|
|
}
|
|
|
|
SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
|
|
if (hListenSocket == INVALID_SOCKET)
|
|
{
|
|
strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError);
|
|
return false;
|
|
}
|
|
if (!IsSelectableSocket(hListenSocket))
|
|
{
|
|
strError = "Error: Couldn't create a listenable socket for incoming connections";
|
|
LogPrintf("%s\n", strError);
|
|
return false;
|
|
}
|
|
|
|
|
|
#ifndef WIN32
|
|
#ifdef SO_NOSIGPIPE
|
|
// Different way of disabling SIGPIPE on BSD
|
|
setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int));
|
|
#endif
|
|
// Allow binding if the port is still in TIME_WAIT state after
|
|
// the program was closed and restarted.
|
|
setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int));
|
|
// Disable Nagle's algorithm
|
|
setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&nOne, sizeof(int));
|
|
#else
|
|
setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (const char*)&nOne, sizeof(int));
|
|
setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&nOne, sizeof(int));
|
|
#endif
|
|
|
|
// Set to non-blocking, incoming connections will also inherit this
|
|
if (!SetSocketNonBlocking(hListenSocket, true)) {
|
|
strError = strprintf("BindListenPort: Setting listening socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError);
|
|
return false;
|
|
}
|
|
|
|
// some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
|
|
// and enable it by default or not. Try to enable it, if possible.
|
|
if (addrBind.IsIPv6()) {
|
|
#ifdef IPV6_V6ONLY
|
|
#ifdef WIN32
|
|
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int));
|
|
#else
|
|
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int));
|
|
#endif
|
|
#endif
|
|
#ifdef WIN32
|
|
int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
|
|
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int));
|
|
#endif
|
|
}
|
|
|
|
if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
|
|
{
|
|
int nErr = WSAGetLastError();
|
|
if (nErr == WSAEADDRINUSE)
|
|
strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), _(PACKAGE_NAME));
|
|
else
|
|
strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr));
|
|
LogPrintf("%s\n", strError);
|
|
CloseSocket(hListenSocket);
|
|
return false;
|
|
}
|
|
LogPrintf("Bound to %s\n", addrBind.ToString());
|
|
|
|
// Listen for incoming connections
|
|
if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR)
|
|
{
|
|
strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError);
|
|
CloseSocket(hListenSocket);
|
|
return false;
|
|
}
|
|
|
|
vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted));
|
|
|
|
if (addrBind.IsRoutable() && fDiscover && !fWhitelisted)
|
|
AddLocal(addrBind, LOCAL_BIND);
|
|
|
|
return true;
|
|
}
|
|
|
|
void Discover(boost::thread_group& threadGroup)
|
|
{
|
|
if (!fDiscover)
|
|
return;
|
|
|
|
#ifdef WIN32
|
|
// Get local host IP
|
|
char pszHostName[256] = "";
|
|
if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
|
|
{
|
|
std::vector<CNetAddr> vaddr;
|
|
if (LookupHost(pszHostName, vaddr, 0, true))
|
|
{
|
|
BOOST_FOREACH (const CNetAddr &addr, vaddr)
|
|
{
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString());
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
// Get local host ip
|
|
struct ifaddrs* myaddrs;
|
|
if (getifaddrs(&myaddrs) == 0)
|
|
{
|
|
for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next)
|
|
{
|
|
if (ifa->ifa_addr == NULL) continue;
|
|
if ((ifa->ifa_flags & IFF_UP) == 0) continue;
|
|
if (strcmp(ifa->ifa_name, "lo") == 0) continue;
|
|
if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
{
|
|
struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
|
|
CNetAddr addr(s4->sin_addr);
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
|
|
}
|
|
else if (ifa->ifa_addr->sa_family == AF_INET6)
|
|
{
|
|
struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
|
|
CNetAddr addr(s6->sin6_addr);
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
|
|
}
|
|
}
|
|
freeifaddrs(myaddrs);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void CConnman::SetNetworkActive(bool active)
|
|
{
|
|
if (fDebug) {
|
|
LogPrint("net", "SetNetworkActive: %s\n", active);
|
|
}
|
|
|
|
if (!active) {
|
|
fNetworkActive = false;
|
|
|
|
LOCK(cs_vNodes);
|
|
// Close sockets to all nodes
|
|
BOOST_FOREACH(CNode* pnode, vNodes) {
|
|
pnode->CloseSocketDisconnect();
|
|
}
|
|
} else {
|
|
fNetworkActive = true;
|
|
}
|
|
|
|
uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
|
|
}
|
|
|
|
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In) : nSeed0(nSeed0In), nSeed1(nSeed1In)
|
|
{
|
|
fNetworkActive = true;
|
|
setBannedIsDirty = false;
|
|
fAddressesInitialized = false;
|
|
nLastNodeId = 0;
|
|
nSendBufferMaxSize = 0;
|
|
nReceiveFloodSize = 0;
|
|
semOutbound = NULL;
|
|
semAddnode = NULL;
|
|
nMaxConnections = 0;
|
|
nMaxOutbound = 0;
|
|
nMaxAddnode = 0;
|
|
nBestHeight = 0;
|
|
clientInterface = NULL;
|
|
flagInterruptMsgProc = false;
|
|
}
|
|
|
|
NodeId CConnman::GetNewNodeId()
|
|
{
|
|
return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
|
|
bool CConnman::Start(CScheduler& scheduler, std::string& strNodeError, Options connOptions)
|
|
{
|
|
nTotalBytesRecv = 0;
|
|
nTotalBytesSent = 0;
|
|
nMaxOutboundTotalBytesSentInCycle = 0;
|
|
nMaxOutboundCycleStartTime = 0;
|
|
|
|
nRelevantServices = connOptions.nRelevantServices;
|
|
nLocalServices = connOptions.nLocalServices;
|
|
nMaxConnections = connOptions.nMaxConnections;
|
|
nMaxOutbound = std::min((connOptions.nMaxOutbound), nMaxConnections);
|
|
nMaxAddnode = connOptions.nMaxAddnode;
|
|
nMaxFeeler = connOptions.nMaxFeeler;
|
|
|
|
nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
|
|
nReceiveFloodSize = connOptions.nSendBufferMaxSize;
|
|
|
|
nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
|
|
nMaxOutboundTimeframe = connOptions.nMaxOutboundTimeframe;
|
|
|
|
SetBestHeight(connOptions.nBestHeight);
|
|
|
|
clientInterface = connOptions.uiInterface;
|
|
if (clientInterface)
|
|
clientInterface->InitMessage(_("Loading addresses..."));
|
|
// Load addresses from peers.dat
|
|
int64_t nStart = GetTimeMillis();
|
|
{
|
|
CAddrDB adb;
|
|
if (adb.Read(addrman))
|
|
LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart);
|
|
else {
|
|
addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it
|
|
LogPrintf("Invalid or missing peers.dat; recreating\n");
|
|
DumpAddresses();
|
|
}
|
|
}
|
|
if (clientInterface)
|
|
clientInterface->InitMessage(_("Loading banlist..."));
|
|
// Load addresses from banlist.dat
|
|
nStart = GetTimeMillis();
|
|
CBanDB bandb;
|
|
banmap_t banmap;
|
|
if (bandb.Read(banmap)) {
|
|
SetBanned(banmap); // thread save setter
|
|
SetBannedSetDirty(false); // no need to write down, just read data
|
|
SweepBanned(); // sweep out unused entries
|
|
|
|
LogPrint("net", "Loaded %d banned node ips/subnets from banlist.dat %dms\n",
|
|
banmap.size(), GetTimeMillis() - nStart);
|
|
} else {
|
|
LogPrintf("Invalid or missing banlist.dat; recreating\n");
|
|
SetBannedSetDirty(true); // force write
|
|
DumpBanlist();
|
|
}
|
|
|
|
uiInterface.InitMessage(_("Starting network threads..."));
|
|
|
|
fAddressesInitialized = true;
|
|
|
|
if (semOutbound == NULL) {
|
|
// initialize semaphore
|
|
semOutbound = new CSemaphore(std::min((nMaxOutbound + nMaxFeeler), nMaxConnections));
|
|
}
|
|
if (semAddnode == NULL) {
|
|
// initialize semaphore
|
|
semAddnode = new CSemaphore(nMaxAddnode);
|
|
}
|
|
|
|
//
|
|
// Start threads
|
|
//
|
|
InterruptSocks5(false);
|
|
interruptNet.reset();
|
|
flagInterruptMsgProc = false;
|
|
|
|
// Send and receive from sockets, accept connections
|
|
threadSocketHandler = std::thread(&TraceThread<std::function<void()> >, "net", std::function<void()>(std::bind(&CConnman::ThreadSocketHandler, this)));
|
|
|
|
if (!GetBoolArg("-dnsseed", true))
|
|
LogPrintf("DNS seeding disabled\n");
|
|
else
|
|
threadDNSAddressSeed = std::thread(&TraceThread<std::function<void()> >, "dnsseed", std::function<void()>(std::bind(&CConnman::ThreadDNSAddressSeed, this)));
|
|
|
|
// Initiate outbound connections from -addnode
|
|
threadOpenAddedConnections = std::thread(&TraceThread<std::function<void()> >, "addcon", std::function<void()>(std::bind(&CConnman::ThreadOpenAddedConnections, this)));
|
|
|
|
// Initiate outbound connections unless connect=0
|
|
if (!mapMultiArgs.count("-connect") || mapMultiArgs.at("-connect").size() != 1 || mapMultiArgs.at("-connect")[0] != "0")
|
|
threadOpenConnections = std::thread(&TraceThread<std::function<void()> >, "opencon", std::function<void()>(std::bind(&CConnman::ThreadOpenConnections, this)));
|
|
|
|
// Process messages
|
|
threadMessageHandler = std::thread(&TraceThread<std::function<void()> >, "msghand", std::function<void()>(std::bind(&CConnman::ThreadMessageHandler, this)));
|
|
|
|
// Dump network addresses
|
|
scheduler.scheduleEvery(boost::bind(&CConnman::DumpData, this), DUMP_ADDRESSES_INTERVAL);
|
|
|
|
return true;
|
|
}
|
|
|
|
class CNetCleanup
|
|
{
|
|
public:
|
|
CNetCleanup() {}
|
|
|
|
~CNetCleanup()
|
|
{
|
|
#ifdef WIN32
|
|
// Shutdown Windows Sockets
|
|
WSACleanup();
|
|
#endif
|
|
}
|
|
}
|
|
instance_of_cnetcleanup;
|
|
|
|
void CConnman::Interrupt()
|
|
{
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutexMsgProc);
|
|
flagInterruptMsgProc = true;
|
|
}
|
|
condMsgProc.notify_all();
|
|
|
|
interruptNet();
|
|
InterruptSocks5(true);
|
|
|
|
if (semOutbound)
|
|
for (int i=0; i<(nMaxOutbound + nMaxFeeler); i++)
|
|
semOutbound->post();
|
|
}
|
|
|
|
void CConnman::Stop()
|
|
{
|
|
if (threadMessageHandler.joinable())
|
|
threadMessageHandler.join();
|
|
if (threadOpenConnections.joinable())
|
|
threadOpenConnections.join();
|
|
if (threadOpenAddedConnections.joinable())
|
|
threadOpenAddedConnections.join();
|
|
if (threadDNSAddressSeed.joinable())
|
|
threadDNSAddressSeed.join();
|
|
if (threadSocketHandler.joinable())
|
|
threadSocketHandler.join();
|
|
|
|
if (semAddnode)
|
|
for (int i=0; i<nMaxAddnode; i++)
|
|
semOutbound->post();
|
|
|
|
if (fAddressesInitialized)
|
|
{
|
|
DumpData();
|
|
fAddressesInitialized = false;
|
|
}
|
|
|
|
// Close sockets
|
|
BOOST_FOREACH(CNode* pnode, vNodes)
|
|
if (pnode->hSocket != INVALID_SOCKET)
|
|
CloseSocket(pnode->hSocket);
|
|
BOOST_FOREACH(ListenSocket& hListenSocket, vhListenSocket)
|
|
if (hListenSocket.socket != INVALID_SOCKET)
|
|
if (!CloseSocket(hListenSocket.socket))
|
|
LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError()));
|
|
|
|
// clean up some globals (to help leak detection)
|
|
BOOST_FOREACH(CNode *pnode, vNodes) {
|
|
DeleteNode(pnode);
|
|
}
|
|
BOOST_FOREACH(CNode *pnode, vNodesDisconnected) {
|
|
DeleteNode(pnode);
|
|
}
|
|
vNodes.clear();
|
|
vNodesDisconnected.clear();
|
|
vhListenSocket.clear();
|
|
delete semOutbound;
|
|
semOutbound = NULL;
|
|
delete semAddnode;
|
|
semAddnode = NULL;
|
|
}
|
|
|
|
void CConnman::DeleteNode(CNode* pnode)
|
|
{
|
|
assert(pnode);
|
|
bool fUpdateConnectionTime = false;
|
|
GetNodeSignals().FinalizeNode(pnode->GetId(), fUpdateConnectionTime);
|
|
if(fUpdateConnectionTime)
|
|
addrman.Connected(pnode->addr);
|
|
delete pnode;
|
|
}
|
|
|
|
CConnman::~CConnman()
|
|
{
|
|
Interrupt();
|
|
Stop();
|
|
}
|
|
|
|
size_t CConnman::GetAddressCount() const
|
|
{
|
|
return addrman.size();
|
|
}
|
|
|
|
void CConnman::SetServices(const CService &addr, ServiceFlags nServices)
|
|
{
|
|
addrman.SetServices(addr, nServices);
|
|
}
|
|
|
|
void CConnman::MarkAddressGood(const CAddress& addr)
|
|
{
|
|
addrman.Good(addr);
|
|
}
|
|
|
|
void CConnman::AddNewAddress(const CAddress& addr, const CAddress& addrFrom, int64_t nTimePenalty)
|
|
{
|
|
addrman.Add(addr, addrFrom, nTimePenalty);
|
|
}
|
|
|
|
void CConnman::AddNewAddresses(const std::vector<CAddress>& vAddr, const CAddress& addrFrom, int64_t nTimePenalty)
|
|
{
|
|
addrman.Add(vAddr, addrFrom, nTimePenalty);
|
|
}
|
|
|
|
std::vector<CAddress> CConnman::GetAddresses()
|
|
{
|
|
return addrman.GetAddr();
|
|
}
|
|
|
|
bool CConnman::AddNode(const std::string& strNode)
|
|
{
|
|
LOCK(cs_vAddedNodes);
|
|
for(std::vector<std::string>::const_iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) {
|
|
if (strNode == *it)
|
|
return false;
|
|
}
|
|
|
|
vAddedNodes.push_back(strNode);
|
|
return true;
|
|
}
|
|
|
|
bool CConnman::RemoveAddedNode(const std::string& strNode)
|
|
{
|
|
LOCK(cs_vAddedNodes);
|
|
for(std::vector<std::string>::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) {
|
|
if (strNode == *it) {
|
|
vAddedNodes.erase(it);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
size_t CConnman::GetNodeCount(NumConnections flags)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
if (flags == CConnman::CONNECTIONS_ALL) // Shortcut if we want total
|
|
return vNodes.size();
|
|
|
|
int nNum = 0;
|
|
for(std::vector<CNode*>::const_iterator it = vNodes.begin(); it != vNodes.end(); ++it)
|
|
if (flags & ((*it)->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT))
|
|
nNum++;
|
|
|
|
return nNum;
|
|
}
|
|
|
|
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats)
|
|
{
|
|
vstats.clear();
|
|
LOCK(cs_vNodes);
|
|
vstats.reserve(vNodes.size());
|
|
for(std::vector<CNode*>::iterator it = vNodes.begin(); it != vNodes.end(); ++it) {
|
|
CNode* pnode = *it;
|
|
CNodeStats stats;
|
|
pnode->copyStats(stats);
|
|
vstats.push_back(stats);
|
|
}
|
|
}
|
|
|
|
bool CConnman::DisconnectAddress(const CNetAddr& netAddr)
|
|
{
|
|
if (CNode* pnode = FindNode(netAddr)) {
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CConnman::DisconnectSubnet(const CSubNet& subNet)
|
|
{
|
|
if (CNode* pnode = FindNode(subNet)) {
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CConnman::DisconnectNode(const std::string& strNode)
|
|
{
|
|
if (CNode* pnode = FindNode(strNode)) {
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
bool CConnman::DisconnectNode(NodeId id)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for(CNode* pnode : vNodes) {
|
|
if (id == pnode->id) {
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::RelayTransaction(const CTransaction& tx)
|
|
{
|
|
CInv inv(MSG_TX, tx.GetHash());
|
|
LOCK(cs_vNodes);
|
|
BOOST_FOREACH(CNode* pnode, vNodes)
|
|
{
|
|
pnode->PushInventory(inv);
|
|
}
|
|
}
|
|
|
|
void CConnman::RecordBytesRecv(uint64_t bytes)
|
|
{
|
|
LOCK(cs_totalBytesRecv);
|
|
nTotalBytesRecv += bytes;
|
|
}
|
|
|
|
void CConnman::RecordBytesSent(uint64_t bytes)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
nTotalBytesSent += bytes;
|
|
|
|
uint64_t now = GetTime();
|
|
if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now)
|
|
{
|
|
// timeframe expired, reset cycle
|
|
nMaxOutboundCycleStartTime = now;
|
|
nMaxOutboundTotalBytesSentInCycle = 0;
|
|
}
|
|
|
|
// TODO, exclude whitebind peers
|
|
nMaxOutboundTotalBytesSentInCycle += bytes;
|
|
}
|
|
|
|
void CConnman::SetMaxOutboundTarget(uint64_t limit)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
nMaxOutboundLimit = limit;
|
|
}
|
|
|
|
uint64_t CConnman::GetMaxOutboundTarget()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
return nMaxOutboundLimit;
|
|
}
|
|
|
|
uint64_t CConnman::GetMaxOutboundTimeframe()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
return nMaxOutboundTimeframe;
|
|
}
|
|
|
|
uint64_t CConnman::GetMaxOutboundTimeLeftInCycle()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundLimit == 0)
|
|
return 0;
|
|
|
|
if (nMaxOutboundCycleStartTime == 0)
|
|
return nMaxOutboundTimeframe;
|
|
|
|
uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe;
|
|
uint64_t now = GetTime();
|
|
return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime();
|
|
}
|
|
|
|
void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundTimeframe != timeframe)
|
|
{
|
|
// reset measure-cycle in case of changing
|
|
// the timeframe
|
|
nMaxOutboundCycleStartTime = GetTime();
|
|
}
|
|
nMaxOutboundTimeframe = timeframe;
|
|
}
|
|
|
|
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundLimit == 0)
|
|
return false;
|
|
|
|
if (historicalBlockServingLimit)
|
|
{
|
|
// keep a large enough buffer to at least relay each block once
|
|
uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
|
|
uint64_t buffer = timeLeftInCycle / 600 * MAX_BLOCK_SERIALIZED_SIZE;
|
|
if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
|
|
return true;
|
|
}
|
|
else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
uint64_t CConnman::GetOutboundTargetBytesLeft()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundLimit == 0)
|
|
return 0;
|
|
|
|
return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
|
|
}
|
|
|
|
uint64_t CConnman::GetTotalBytesRecv()
|
|
{
|
|
LOCK(cs_totalBytesRecv);
|
|
return nTotalBytesRecv;
|
|
}
|
|
|
|
uint64_t CConnman::GetTotalBytesSent()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
return nTotalBytesSent;
|
|
}
|
|
|
|
ServiceFlags CConnman::GetLocalServices() const
|
|
{
|
|
return nLocalServices;
|
|
}
|
|
|
|
void CConnman::SetBestHeight(int height)
|
|
{
|
|
nBestHeight.store(height, std::memory_order_release);
|
|
}
|
|
|
|
int CConnman::GetBestHeight() const
|
|
{
|
|
return nBestHeight.load(std::memory_order_acquire);
|
|
}
|
|
|
|
unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; }
|
|
unsigned int CConnman::GetSendBufferSize() const{ return nSendBufferMaxSize; }
|
|
|
|
CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const std::string& addrNameIn, bool fInboundIn) :
|
|
addr(addrIn),
|
|
fInbound(fInboundIn),
|
|
id(idIn),
|
|
nKeyedNetGroup(nKeyedNetGroupIn),
|
|
addrKnown(5000, 0.001),
|
|
filterInventoryKnown(50000, 0.000001),
|
|
nLocalHostNonce(nLocalHostNonceIn),
|
|
nLocalServices(nLocalServicesIn),
|
|
nMyStartingHeight(nMyStartingHeightIn),
|
|
nSendVersion(0)
|
|
{
|
|
nServices = NODE_NONE;
|
|
nServicesExpected = NODE_NONE;
|
|
hSocket = hSocketIn;
|
|
nRecvVersion = INIT_PROTO_VERSION;
|
|
nLastSend = 0;
|
|
nLastRecv = 0;
|
|
nSendBytes = 0;
|
|
nRecvBytes = 0;
|
|
nTimeConnected = GetTime();
|
|
nTimeOffset = 0;
|
|
addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
|
|
nVersion = 0;
|
|
strSubVer = "";
|
|
fWhitelisted = false;
|
|
fOneShot = false;
|
|
fAddnode = false;
|
|
fClient = false; // set by version message
|
|
fFeeler = false;
|
|
fSuccessfullyConnected = false;
|
|
fDisconnect = false;
|
|
nRefCount = 0;
|
|
nSendSize = 0;
|
|
nSendOffset = 0;
|
|
hashContinue = uint256();
|
|
nStartingHeight = -1;
|
|
filterInventoryKnown.reset();
|
|
fSendMempool = false;
|
|
fGetAddr = false;
|
|
nNextLocalAddrSend = 0;
|
|
nNextAddrSend = 0;
|
|
nNextInvSend = 0;
|
|
fRelayTxes = false;
|
|
fSentAddr = false;
|
|
pfilter = new CBloomFilter();
|
|
timeLastMempoolReq = 0;
|
|
nLastBlockTime = 0;
|
|
nLastTXTime = 0;
|
|
nPingNonceSent = 0;
|
|
nPingUsecStart = 0;
|
|
nPingUsecTime = 0;
|
|
fPingQueued = false;
|
|
nMinPingUsecTime = std::numeric_limits<int64_t>::max();
|
|
minFeeFilter = 0;
|
|
lastSentFeeFilter = 0;
|
|
nextSendTimeFeeFilter = 0;
|
|
|
|
BOOST_FOREACH(const std::string &msg, getAllNetMessageTypes())
|
|
mapRecvBytesPerMsgCmd[msg] = 0;
|
|
mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
|
|
|
|
if (fLogIPs)
|
|
LogPrint("net", "Added connection to %s peer=%d\n", addrName, id);
|
|
else
|
|
LogPrint("net", "Added connection peer=%d\n", id);
|
|
}
|
|
|
|
CNode::~CNode()
|
|
{
|
|
CloseSocket(hSocket);
|
|
|
|
if (pfilter)
|
|
delete pfilter;
|
|
}
|
|
|
|
void CNode::AskFor(const CInv& inv)
|
|
{
|
|
if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ)
|
|
return;
|
|
// a peer may not have multiple non-responded queue positions for a single inv item
|
|
if (!setAskFor.insert(inv.hash).second)
|
|
return;
|
|
|
|
// We're using mapAskFor as a priority queue,
|
|
// the key is the earliest time the request can be sent
|
|
int64_t nRequestTime;
|
|
limitedmap<uint256, int64_t>::const_iterator it = mapAlreadyAskedFor.find(inv.hash);
|
|
if (it != mapAlreadyAskedFor.end())
|
|
nRequestTime = it->second;
|
|
else
|
|
nRequestTime = 0;
|
|
LogPrint("net", "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime/1000000), id);
|
|
|
|
// Make sure not to reuse time indexes to keep things in the same order
|
|
int64_t nNow = GetTimeMicros() - 1000000;
|
|
static int64_t nLastTime;
|
|
++nLastTime;
|
|
nNow = std::max(nNow, nLastTime);
|
|
nLastTime = nNow;
|
|
|
|
// Each retry is 2 minutes after the last
|
|
nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow);
|
|
if (it != mapAlreadyAskedFor.end())
|
|
mapAlreadyAskedFor.update(it, nRequestTime);
|
|
else
|
|
mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime));
|
|
mapAskFor.insert(std::make_pair(nRequestTime, inv));
|
|
}
|
|
|
|
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
|
|
{
|
|
size_t nMessageSize = msg.data.size();
|
|
size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE;
|
|
LogPrint("net", "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.command.c_str()), nMessageSize, pnode->id);
|
|
|
|
std::vector<unsigned char> serializedHeader;
|
|
serializedHeader.reserve(CMessageHeader::HEADER_SIZE);
|
|
uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize);
|
|
CMessageHeader hdr(Params().MessageStart(), msg.command.c_str(), nMessageSize);
|
|
memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
|
|
|
|
CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr};
|
|
|
|
size_t nBytesSent = 0;
|
|
{
|
|
LOCK(pnode->cs_vSend);
|
|
if(pnode->hSocket == INVALID_SOCKET) {
|
|
return;
|
|
}
|
|
bool optimisticSend(pnode->vSendMsg.empty());
|
|
|
|
//log total amount of bytes per command
|
|
pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize;
|
|
pnode->nSendSize += nTotalSize;
|
|
|
|
pnode->vSendMsg.push_back(std::move(serializedHeader));
|
|
if (nMessageSize)
|
|
pnode->vSendMsg.push_back(std::move(msg.data));
|
|
|
|
// If write queue empty, attempt "optimistic write"
|
|
if (optimisticSend == true)
|
|
nBytesSent = SocketSendData(pnode);
|
|
}
|
|
if (nBytesSent)
|
|
RecordBytesSent(nBytesSent);
|
|
}
|
|
|
|
bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
|
|
{
|
|
CNode* found = nullptr;
|
|
LOCK(cs_vNodes);
|
|
for (auto&& pnode : vNodes) {
|
|
if(pnode->id == id) {
|
|
found = pnode;
|
|
break;
|
|
}
|
|
}
|
|
return found != nullptr && func(found);
|
|
}
|
|
|
|
int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds) {
|
|
return nNow + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5);
|
|
}
|
|
|
|
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id)
|
|
{
|
|
return CSipHasher(nSeed0, nSeed1).Write(id);
|
|
}
|
|
|
|
uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& ad)
|
|
{
|
|
std::vector<unsigned char> vchNetGroup(ad.GetGroup());
|
|
|
|
return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(&vchNetGroup[0], vchNetGroup.size()).Finalize();
|
|
}
|