Pieter Wuille 7b49f22bdb Squashed 'src/secp256k1/' changes from 7a49cac..8225239
8225239 Merge #433: Make the libcrypto detection fail the newer API.
12de863 Make the libcrypto detection fail the newer API.
2928420 Merge #427: Remove Schnorr from travis as well
8eecc4a Remove Schnorr from travis as well
a8abae7 Merge #310: Add exhaustive test for group functions on a low-order subgroup
b4ceedf Add exhaustive test for verification
83836a9 Add exhaustive tests for group arithmetic, signing, and ecmult on a small group
20b8877 Add exhaustive test for group functions on a low-order subgroup
80773a6 Merge #425: Remove Schnorr experiment
e06e878 Remove Schnorr experiment
04c8ef3 Merge #407: Modify parameter order of internal functions to match API parameter order
6e06696 Merge #411: Remove guarantees about memcmp-ability
40c8d7e Merge #421: Update scalar_4x64_impl.h
a922365 Merge #422: Restructure nonce clearing
3769783 Restructure nonce clearing
0f9e69d Restructure nonce clearing
9d67afa Update scalar_4x64_impl.h
7d15cd7 Merge #413: fix auto-enabled static precompuatation
00c5d2e fix auto-enabled static precompuatation
91219a1 Remove guarantees about memcmp-ability
353c1bf Fix secp256k1_ge_set_table_gej_var parameter order
541b783 Fix secp256k1_ge_set_all_gej_var parameter order
7d893f4 Fix secp256k1_fe_inv_all_var parameter order

git-subtree-dir: src/secp256k1
git-subtree-split: 8225239f490f79842a5a3b82ad6cc8aa11d5208e
2016-12-12 11:08:47 -08:00

libsecp256k1

Build Status

Optimized C library for EC operations on curve secp256k1.

This library is a work in progress and is being used to research best practices. Use at your own risk.

Features:

  • secp256k1 ECDSA signing/verification and key generation.
  • Adding/multiplying private/public keys.
  • Serialization/parsing of private keys, public keys, signatures.
  • Constant time, constant memory access signing and pubkey generation.
  • Derandomized DSA (via RFC6979 or with a caller provided function.)
  • Very efficient implementation.

Implementation details

  • General
    • No runtime heap allocation.
    • Extensive testing infrastructure.
    • Structured to facilitate review and analysis.
    • Intended to be portable to any system with a C89 compiler and uint64_t support.
    • Expose only higher level interfaces to minimize the API surface and improve application security. ("Be difficult to use insecurely.")
  • Field operations
    • Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
      • Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys).
      • Using 10 26-bit limbs.
    • Field inverses and square roots using a sliding window over blocks of 1s (by Peter Dettman).
  • Scalar operations
    • Optimized implementation without data-dependent branches of arithmetic modulo the curve's order.
      • Using 4 64-bit limbs (relying on __int128 support in the compiler).
      • Using 8 32-bit limbs.
  • Group operations
    • Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7).
    • Use addition between points in Jacobian and affine coordinates where possible.
    • Use a unified addition/doubling formula where necessary to avoid data-dependent branches.
    • Point/x comparison without a field inversion by comparison in the Jacobian coordinate space.
  • Point multiplication for verification (aP + bG).
    • Use wNAF notation for point multiplicands.
    • Use a much larger window for multiples of G, using precomputed multiples.
    • Use Shamir's trick to do the multiplication with the public key and the generator simultaneously.
    • Optionally (off by default) use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones.
  • Point multiplication for signing
    • Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.
    • Access the table with branch-free conditional moves so memory access is uniform.
    • No data-dependent branches
    • The precomputed tables add and eventually subtract points for which no known scalar (private key) is known, preventing even an attacker with control over the private key used to control the data internally.

Build steps

libsecp256k1 is built using autotools:

$ ./autogen.sh
$ ./configure
$ make
$ ./tests
$ sudo make install  # optional
Description
Kevacoin source tree
Readme 130 MiB
Languages
C++ 66.7%
C 17.4%
Python 10.6%
M4 1.6%
Makefile 1%
Other 2.5%