You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
255 lines
8.8 KiB
255 lines
8.8 KiB
// Copyright (c) 2009-2010 Satoshi Nakamoto |
|
// Copyright (c) 2009-2013 The Bitcoin developers |
|
// Distributed under the MIT/X11 software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#ifndef BITCOIN_ALLOCATORS_H |
|
#define BITCOIN_ALLOCATORS_H |
|
|
|
#include <map> |
|
#include <string> |
|
#include <string.h> |
|
|
|
#include <boost/thread/mutex.hpp> |
|
#include <boost/thread/once.hpp> |
|
#include <openssl/crypto.h> // for OPENSSL_cleanse() |
|
|
|
/** |
|
* Thread-safe class to keep track of locked (ie, non-swappable) memory pages. |
|
* |
|
* Memory locks do not stack, that is, pages which have been locked several times by calls to mlock() |
|
* will be unlocked by a single call to munlock(). This can result in keying material ending up in swap when |
|
* those functions are used naively. This class simulates stacking memory locks by keeping a counter per page. |
|
* |
|
* @note By using a map from each page base address to lock count, this class is optimized for |
|
* small objects that span up to a few pages, mostly smaller than a page. To support large allocations, |
|
* something like an interval tree would be the preferred data structure. |
|
*/ |
|
template <class Locker> class LockedPageManagerBase |
|
{ |
|
public: |
|
LockedPageManagerBase(size_t page_size): |
|
page_size(page_size) |
|
{ |
|
// Determine bitmask for extracting page from address |
|
assert(!(page_size & (page_size-1))); // size must be power of two |
|
page_mask = ~(page_size - 1); |
|
} |
|
|
|
~LockedPageManagerBase() |
|
{ |
|
assert(this->GetLockedPageCount() == 0); |
|
} |
|
|
|
|
|
// For all pages in affected range, increase lock count |
|
void LockRange(void *p, size_t size) |
|
{ |
|
boost::mutex::scoped_lock lock(mutex); |
|
if(!size) return; |
|
const size_t base_addr = reinterpret_cast<size_t>(p); |
|
const size_t start_page = base_addr & page_mask; |
|
const size_t end_page = (base_addr + size - 1) & page_mask; |
|
for(size_t page = start_page; page <= end_page; page += page_size) |
|
{ |
|
Histogram::iterator it = histogram.find(page); |
|
if(it == histogram.end()) // Newly locked page |
|
{ |
|
locker.Lock(reinterpret_cast<void*>(page), page_size); |
|
histogram.insert(std::make_pair(page, 1)); |
|
} |
|
else // Page was already locked; increase counter |
|
{ |
|
it->second += 1; |
|
} |
|
} |
|
} |
|
|
|
// For all pages in affected range, decrease lock count |
|
void UnlockRange(void *p, size_t size) |
|
{ |
|
boost::mutex::scoped_lock lock(mutex); |
|
if(!size) return; |
|
const size_t base_addr = reinterpret_cast<size_t>(p); |
|
const size_t start_page = base_addr & page_mask; |
|
const size_t end_page = (base_addr + size - 1) & page_mask; |
|
for(size_t page = start_page; page <= end_page; page += page_size) |
|
{ |
|
Histogram::iterator it = histogram.find(page); |
|
assert(it != histogram.end()); // Cannot unlock an area that was not locked |
|
// Decrease counter for page, when it is zero, the page will be unlocked |
|
it->second -= 1; |
|
if(it->second == 0) // Nothing on the page anymore that keeps it locked |
|
{ |
|
// Unlock page and remove the count from histogram |
|
locker.Unlock(reinterpret_cast<void*>(page), page_size); |
|
histogram.erase(it); |
|
} |
|
} |
|
} |
|
|
|
// Get number of locked pages for diagnostics |
|
int GetLockedPageCount() |
|
{ |
|
boost::mutex::scoped_lock lock(mutex); |
|
return histogram.size(); |
|
} |
|
|
|
private: |
|
Locker locker; |
|
boost::mutex mutex; |
|
size_t page_size, page_mask; |
|
// map of page base address to lock count |
|
typedef std::map<size_t,int> Histogram; |
|
Histogram histogram; |
|
}; |
|
|
|
|
|
/** |
|
* OS-dependent memory page locking/unlocking. |
|
* Defined as policy class to make stubbing for test possible. |
|
*/ |
|
class MemoryPageLocker |
|
{ |
|
public: |
|
/** Lock memory pages. |
|
* addr and len must be a multiple of the system page size |
|
*/ |
|
bool Lock(const void *addr, size_t len); |
|
/** Unlock memory pages. |
|
* addr and len must be a multiple of the system page size |
|
*/ |
|
bool Unlock(const void *addr, size_t len); |
|
}; |
|
|
|
/** |
|
* Singleton class to keep track of locked (ie, non-swappable) memory pages, for use in |
|
* std::allocator templates. |
|
* |
|
* Some implementations of the STL allocate memory in some constructors (i.e., see |
|
* MSVC's vector<T> implementation where it allocates 1 byte of memory in the allocator.) |
|
* Due to the unpredictable order of static initializers, we have to make sure the |
|
* LockedPageManager instance exists before any other STL-based objects that use |
|
* secure_allocator are created. So instead of having LockedPageManager also be |
|
* static-intialized, it is created on demand. |
|
*/ |
|
class LockedPageManager: public LockedPageManagerBase<MemoryPageLocker> |
|
{ |
|
public: |
|
static LockedPageManager& Instance() |
|
{ |
|
boost::call_once(LockedPageManager::CreateInstance, LockedPageManager::init_flag); |
|
return *LockedPageManager::_instance; |
|
} |
|
|
|
private: |
|
LockedPageManager(); |
|
|
|
static void CreateInstance() |
|
{ |
|
// Using a local static instance guarantees that the object is initialized |
|
// when it's first needed and also deinitialized after all objects that use |
|
// it are done with it. I can think of one unlikely scenario where we may |
|
// have a static deinitialization order/problem, but the check in |
|
// LockedPageManagerBase's destructor helps us detect if that ever happens. |
|
static LockedPageManager instance; |
|
LockedPageManager::_instance = &instance; |
|
} |
|
|
|
static LockedPageManager* _instance; |
|
static boost::once_flag init_flag; |
|
}; |
|
|
|
// |
|
// Functions for directly locking/unlocking memory objects. |
|
// Intended for non-dynamically allocated structures. |
|
// |
|
template<typename T> void LockObject(const T &t) { |
|
LockedPageManager::Instance().LockRange((void*)(&t), sizeof(T)); |
|
} |
|
|
|
template<typename T> void UnlockObject(const T &t) { |
|
OPENSSL_cleanse((void*)(&t), sizeof(T)); |
|
LockedPageManager::Instance().UnlockRange((void*)(&t), sizeof(T)); |
|
} |
|
|
|
// |
|
// Allocator that locks its contents from being paged |
|
// out of memory and clears its contents before deletion. |
|
// |
|
template<typename T> |
|
struct secure_allocator : public std::allocator<T> |
|
{ |
|
// MSVC8 default copy constructor is broken |
|
typedef std::allocator<T> base; |
|
typedef typename base::size_type size_type; |
|
typedef typename base::difference_type difference_type; |
|
typedef typename base::pointer pointer; |
|
typedef typename base::const_pointer const_pointer; |
|
typedef typename base::reference reference; |
|
typedef typename base::const_reference const_reference; |
|
typedef typename base::value_type value_type; |
|
secure_allocator() throw() {} |
|
secure_allocator(const secure_allocator& a) throw() : base(a) {} |
|
template <typename U> |
|
secure_allocator(const secure_allocator<U>& a) throw() : base(a) {} |
|
~secure_allocator() throw() {} |
|
template<typename _Other> struct rebind |
|
{ typedef secure_allocator<_Other> other; }; |
|
|
|
T* allocate(std::size_t n, const void *hint = 0) |
|
{ |
|
T *p; |
|
p = std::allocator<T>::allocate(n, hint); |
|
if (p != NULL) |
|
LockedPageManager::Instance().LockRange(p, sizeof(T) * n); |
|
return p; |
|
} |
|
|
|
void deallocate(T* p, std::size_t n) |
|
{ |
|
if (p != NULL) |
|
{ |
|
OPENSSL_cleanse(p, sizeof(T) * n); |
|
LockedPageManager::Instance().UnlockRange(p, sizeof(T) * n); |
|
} |
|
std::allocator<T>::deallocate(p, n); |
|
} |
|
}; |
|
|
|
|
|
// |
|
// Allocator that clears its contents before deletion. |
|
// |
|
template<typename T> |
|
struct zero_after_free_allocator : public std::allocator<T> |
|
{ |
|
// MSVC8 default copy constructor is broken |
|
typedef std::allocator<T> base; |
|
typedef typename base::size_type size_type; |
|
typedef typename base::difference_type difference_type; |
|
typedef typename base::pointer pointer; |
|
typedef typename base::const_pointer const_pointer; |
|
typedef typename base::reference reference; |
|
typedef typename base::const_reference const_reference; |
|
typedef typename base::value_type value_type; |
|
zero_after_free_allocator() throw() {} |
|
zero_after_free_allocator(const zero_after_free_allocator& a) throw() : base(a) {} |
|
template <typename U> |
|
zero_after_free_allocator(const zero_after_free_allocator<U>& a) throw() : base(a) {} |
|
~zero_after_free_allocator() throw() {} |
|
template<typename _Other> struct rebind |
|
{ typedef zero_after_free_allocator<_Other> other; }; |
|
|
|
void deallocate(T* p, std::size_t n) |
|
{ |
|
if (p != NULL) |
|
OPENSSL_cleanse(p, sizeof(T) * n); |
|
std::allocator<T>::deallocate(p, n); |
|
} |
|
}; |
|
|
|
// This is exactly like std::string, but with a custom allocator. |
|
typedef std::basic_string<char, std::char_traits<char>, secure_allocator<char> > SecureString; |
|
|
|
#endif
|
|
|