You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
339 lines
10 KiB
339 lines
10 KiB
// Copyright (c) 2009-2010 Satoshi Nakamoto |
|
// Copyright (c) 2009-2013 The Bitcoin developers |
|
// Distributed under the MIT/X11 software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#ifndef BITCOIN_KEY_H |
|
#define BITCOIN_KEY_H |
|
|
|
#include "allocators.h" |
|
#include "hash.h" |
|
#include "serialize.h" |
|
#include "uint256.h" |
|
|
|
#include <stdexcept> |
|
#include <vector> |
|
|
|
// secp256k1: |
|
// const unsigned int PRIVATE_KEY_SIZE = 279; |
|
// const unsigned int PUBLIC_KEY_SIZE = 65; |
|
// const unsigned int SIGNATURE_SIZE = 72; |
|
// |
|
// see www.keylength.com |
|
// script supports up to 75 for single byte push |
|
|
|
/** A reference to a CKey: the Hash160 of its serialized public key */ |
|
class CKeyID : public uint160 |
|
{ |
|
public: |
|
CKeyID() : uint160(0) {} |
|
CKeyID(const uint160& in) : uint160(in) {} |
|
}; |
|
|
|
/** A reference to a CScript: the Hash160 of its serialization (see script.h) */ |
|
class CScriptID : public uint160 |
|
{ |
|
public: |
|
CScriptID() : uint160(0) {} |
|
CScriptID(const uint160& in) : uint160(in) {} |
|
}; |
|
|
|
/** An encapsulated public key. */ |
|
class CPubKey |
|
{ |
|
private: |
|
// Just store the serialized data. |
|
// Its length can very cheaply be computed from the first byte. |
|
unsigned char vch[65]; |
|
|
|
// Compute the length of a pubkey with a given first byte. |
|
unsigned int static GetLen(unsigned char chHeader) |
|
{ |
|
if (chHeader == 2 || chHeader == 3) |
|
return 33; |
|
if (chHeader == 4 || chHeader == 6 || chHeader == 7) |
|
return 65; |
|
return 0; |
|
} |
|
|
|
// Set this key data to be invalid |
|
void Invalidate() |
|
{ |
|
vch[0] = 0xFF; |
|
} |
|
|
|
public: |
|
// Construct an invalid public key. |
|
CPubKey() |
|
{ |
|
Invalidate(); |
|
} |
|
|
|
// Initialize a public key using begin/end iterators to byte data. |
|
template <typename T> |
|
void Set(const T pbegin, const T pend) |
|
{ |
|
int len = pend == pbegin ? 0 : GetLen(pbegin[0]); |
|
if (len && len == (pend - pbegin)) |
|
memcpy(vch, (unsigned char*)&pbegin[0], len); |
|
else |
|
Invalidate(); |
|
} |
|
|
|
// Construct a public key using begin/end iterators to byte data. |
|
template <typename T> |
|
CPubKey(const T pbegin, const T pend) |
|
{ |
|
Set(pbegin, pend); |
|
} |
|
|
|
// Construct a public key from a byte vector. |
|
CPubKey(const std::vector<unsigned char>& vch) |
|
{ |
|
Set(vch.begin(), vch.end()); |
|
} |
|
|
|
// Simple read-only vector-like interface to the pubkey data. |
|
unsigned int size() const { return GetLen(vch[0]); } |
|
const unsigned char* begin() const { return vch; } |
|
const unsigned char* end() const { return vch + size(); } |
|
const unsigned char& operator[](unsigned int pos) const { return vch[pos]; } |
|
|
|
// Comparator implementation. |
|
friend bool operator==(const CPubKey& a, const CPubKey& b) |
|
{ |
|
return a.vch[0] == b.vch[0] && |
|
memcmp(a.vch, b.vch, a.size()) == 0; |
|
} |
|
friend bool operator!=(const CPubKey& a, const CPubKey& b) |
|
{ |
|
return !(a == b); |
|
} |
|
friend bool operator<(const CPubKey& a, const CPubKey& b) |
|
{ |
|
return a.vch[0] < b.vch[0] || |
|
(a.vch[0] == b.vch[0] && memcmp(a.vch, b.vch, a.size()) < 0); |
|
} |
|
|
|
// Implement serialization, as if this was a byte vector. |
|
unsigned int GetSerializeSize(int nType, int nVersion) const |
|
{ |
|
return size() + 1; |
|
} |
|
template <typename Stream> |
|
void Serialize(Stream& s, int nType, int nVersion) const |
|
{ |
|
unsigned int len = size(); |
|
::WriteCompactSize(s, len); |
|
s.write((char*)vch, len); |
|
} |
|
template <typename Stream> |
|
void Unserialize(Stream& s, int nType, int nVersion) |
|
{ |
|
unsigned int len = ::ReadCompactSize(s); |
|
if (len <= 65) { |
|
s.read((char*)vch, len); |
|
} else { |
|
// invalid pubkey, skip available data |
|
char dummy; |
|
while (len--) |
|
s.read(&dummy, 1); |
|
Invalidate(); |
|
} |
|
} |
|
|
|
// Get the KeyID of this public key (hash of its serialization) |
|
CKeyID GetID() const |
|
{ |
|
return CKeyID(Hash160(vch, vch + size())); |
|
} |
|
|
|
// Get the 256-bit hash of this public key. |
|
uint256 GetHash() const |
|
{ |
|
return Hash(vch, vch + size()); |
|
} |
|
|
|
// Check syntactic correctness. |
|
// |
|
// Note that this is consensus critical as CheckSig() calls it! |
|
bool IsValid() const |
|
{ |
|
return size() > 0; |
|
} |
|
|
|
// fully validate whether this is a valid public key (more expensive than IsValid()) |
|
bool IsFullyValid() const; |
|
|
|
// Check whether this is a compressed public key. |
|
bool IsCompressed() const |
|
{ |
|
return size() == 33; |
|
} |
|
|
|
// Verify a DER signature (~72 bytes). |
|
// If this public key is not fully valid, the return value will be false. |
|
bool Verify(const uint256& hash, const std::vector<unsigned char>& vchSig) const; |
|
|
|
// Recover a public key from a compact signature. |
|
bool RecoverCompact(const uint256& hash, const std::vector<unsigned char>& vchSig); |
|
|
|
// Turn this public key into an uncompressed public key. |
|
bool Decompress(); |
|
|
|
// Derive BIP32 child pubkey. |
|
bool Derive(CPubKey& pubkeyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const; |
|
}; |
|
|
|
|
|
// secure_allocator is defined in allocators.h |
|
// CPrivKey is a serialized private key, with all parameters included (279 bytes) |
|
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey; |
|
|
|
/** An encapsulated private key. */ |
|
class CKey |
|
{ |
|
private: |
|
// Whether this private key is valid. We check for correctness when modifying the key |
|
// data, so fValid should always correspond to the actual state. |
|
bool fValid; |
|
|
|
// Whether the public key corresponding to this private key is (to be) compressed. |
|
bool fCompressed; |
|
|
|
// The actual byte data |
|
unsigned char vch[32]; |
|
|
|
// Check whether the 32-byte array pointed to be vch is valid keydata. |
|
bool static Check(const unsigned char* vch); |
|
|
|
public: |
|
// Construct an invalid private key. |
|
CKey() : fValid(false), fCompressed(false) |
|
{ |
|
LockObject(vch); |
|
} |
|
|
|
// Copy constructor. This is necessary because of memlocking. |
|
CKey(const CKey& secret) : fValid(secret.fValid), fCompressed(secret.fCompressed) |
|
{ |
|
LockObject(vch); |
|
memcpy(vch, secret.vch, sizeof(vch)); |
|
} |
|
|
|
// Destructor (again necessary because of memlocking). |
|
~CKey() |
|
{ |
|
UnlockObject(vch); |
|
} |
|
|
|
friend bool operator==(const CKey& a, const CKey& b) |
|
{ |
|
return a.fCompressed == b.fCompressed && a.size() == b.size() && |
|
memcmp(&a.vch[0], &b.vch[0], a.size()) == 0; |
|
} |
|
|
|
// Initialize using begin and end iterators to byte data. |
|
template <typename T> |
|
void Set(const T pbegin, const T pend, bool fCompressedIn) |
|
{ |
|
if (pend - pbegin != 32) { |
|
fValid = false; |
|
return; |
|
} |
|
if (Check(&pbegin[0])) { |
|
memcpy(vch, (unsigned char*)&pbegin[0], 32); |
|
fValid = true; |
|
fCompressed = fCompressedIn; |
|
} else { |
|
fValid = false; |
|
} |
|
} |
|
|
|
// Simple read-only vector-like interface. |
|
unsigned int size() const { return (fValid ? 32 : 0); } |
|
const unsigned char* begin() const { return vch; } |
|
const unsigned char* end() const { return vch + size(); } |
|
|
|
// Check whether this private key is valid. |
|
bool IsValid() const { return fValid; } |
|
|
|
// Check whether the public key corresponding to this private key is (to be) compressed. |
|
bool IsCompressed() const { return fCompressed; } |
|
|
|
// Initialize from a CPrivKey (serialized OpenSSL private key data). |
|
bool SetPrivKey(const CPrivKey& vchPrivKey, bool fCompressed); |
|
|
|
// Generate a new private key using a cryptographic PRNG. |
|
void MakeNewKey(bool fCompressed); |
|
|
|
// Convert the private key to a CPrivKey (serialized OpenSSL private key data). |
|
// This is expensive. |
|
CPrivKey GetPrivKey() const; |
|
|
|
// Compute the public key from a private key. |
|
// This is expensive. |
|
CPubKey GetPubKey() const; |
|
|
|
// Create a DER-serialized signature. |
|
bool Sign(const uint256& hash, std::vector<unsigned char>& vchSig, bool lowS = true) const; |
|
|
|
// Create a compact signature (65 bytes), which allows reconstructing the used public key. |
|
// The format is one header byte, followed by two times 32 bytes for the serialized r and s values. |
|
// The header byte: 0x1B = first key with even y, 0x1C = first key with odd y, |
|
// 0x1D = second key with even y, 0x1E = second key with odd y, |
|
// add 0x04 for compressed keys. |
|
bool SignCompact(const uint256& hash, std::vector<unsigned char>& vchSig) const; |
|
|
|
// Derive BIP32 child key. |
|
bool Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const; |
|
|
|
// Load private key and check that public key matches. |
|
bool Load(CPrivKey& privkey, CPubKey& vchPubKey, bool fSkipCheck); |
|
|
|
// Check whether an element of a signature (r or s) is valid. |
|
static bool CheckSignatureElement(const unsigned char* vch, int len, bool half); |
|
}; |
|
|
|
struct CExtPubKey { |
|
unsigned char nDepth; |
|
unsigned char vchFingerprint[4]; |
|
unsigned int nChild; |
|
unsigned char vchChainCode[32]; |
|
CPubKey pubkey; |
|
|
|
friend bool operator==(const CExtPubKey& a, const CExtPubKey& b) |
|
{ |
|
return a.nDepth == b.nDepth && memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], 4) == 0 && a.nChild == b.nChild && |
|
memcmp(&a.vchChainCode[0], &b.vchChainCode[0], 32) == 0 && a.pubkey == b.pubkey; |
|
} |
|
|
|
void Encode(unsigned char code[74]) const; |
|
void Decode(const unsigned char code[74]); |
|
bool Derive(CExtPubKey& out, unsigned int nChild) const; |
|
}; |
|
|
|
struct CExtKey { |
|
unsigned char nDepth; |
|
unsigned char vchFingerprint[4]; |
|
unsigned int nChild; |
|
unsigned char vchChainCode[32]; |
|
CKey key; |
|
|
|
friend bool operator==(const CExtKey& a, const CExtKey& b) |
|
{ |
|
return a.nDepth == b.nDepth && memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], 4) == 0 && a.nChild == b.nChild && |
|
memcmp(&a.vchChainCode[0], &b.vchChainCode[0], 32) == 0 && a.key == b.key; |
|
} |
|
|
|
void Encode(unsigned char code[74]) const; |
|
void Decode(const unsigned char code[74]); |
|
bool Derive(CExtKey& out, unsigned int nChild) const; |
|
CExtPubKey Neuter() const; |
|
void SetMaster(const unsigned char* seed, unsigned int nSeedLen); |
|
}; |
|
|
|
/** Check that required EC support is available at runtime */ |
|
bool ECC_InitSanityCheck(void); |
|
|
|
#endif // BITCOIN_KEY_H
|
|
|