You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
262 lines
7.3 KiB
262 lines
7.3 KiB
// Copyright (c) 2009-2010 Satoshi Nakamoto |
|
// Copyright (c) 2009-2016 The Bitcoin Core developers |
|
// Distributed under the MIT software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#include <arith_uint256.h> |
|
|
|
#include <uint256.h> |
|
#include <utilstrencodings.h> |
|
#include <crypto/common.h> |
|
|
|
#include <stdio.h> |
|
#include <string.h> |
|
|
|
template <unsigned int BITS> |
|
base_uint<BITS>::base_uint(const std::string& str) |
|
{ |
|
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32."); |
|
|
|
SetHex(str); |
|
} |
|
|
|
template <unsigned int BITS> |
|
base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift) |
|
{ |
|
base_uint<BITS> a(*this); |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] = 0; |
|
int k = shift / 32; |
|
shift = shift % 32; |
|
for (int i = 0; i < WIDTH; i++) { |
|
if (i + k + 1 < WIDTH && shift != 0) |
|
pn[i + k + 1] |= (a.pn[i] >> (32 - shift)); |
|
if (i + k < WIDTH) |
|
pn[i + k] |= (a.pn[i] << shift); |
|
} |
|
return *this; |
|
} |
|
|
|
template <unsigned int BITS> |
|
base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift) |
|
{ |
|
base_uint<BITS> a(*this); |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] = 0; |
|
int k = shift / 32; |
|
shift = shift % 32; |
|
for (int i = 0; i < WIDTH; i++) { |
|
if (i - k - 1 >= 0 && shift != 0) |
|
pn[i - k - 1] |= (a.pn[i] << (32 - shift)); |
|
if (i - k >= 0) |
|
pn[i - k] |= (a.pn[i] >> shift); |
|
} |
|
return *this; |
|
} |
|
|
|
template <unsigned int BITS> |
|
base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32) |
|
{ |
|
uint64_t carry = 0; |
|
for (int i = 0; i < WIDTH; i++) { |
|
uint64_t n = carry + (uint64_t)b32 * pn[i]; |
|
pn[i] = n & 0xffffffff; |
|
carry = n >> 32; |
|
} |
|
return *this; |
|
} |
|
|
|
template <unsigned int BITS> |
|
base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b) |
|
{ |
|
base_uint<BITS> a = *this; |
|
*this = 0; |
|
for (int j = 0; j < WIDTH; j++) { |
|
uint64_t carry = 0; |
|
for (int i = 0; i + j < WIDTH; i++) { |
|
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i]; |
|
pn[i + j] = n & 0xffffffff; |
|
carry = n >> 32; |
|
} |
|
} |
|
return *this; |
|
} |
|
|
|
template <unsigned int BITS> |
|
base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b) |
|
{ |
|
base_uint<BITS> div = b; // make a copy, so we can shift. |
|
base_uint<BITS> num = *this; // make a copy, so we can subtract. |
|
*this = 0; // the quotient. |
|
int num_bits = num.bits(); |
|
int div_bits = div.bits(); |
|
if (div_bits == 0) |
|
throw uint_error("Division by zero"); |
|
if (div_bits > num_bits) // the result is certainly 0. |
|
return *this; |
|
int shift = num_bits - div_bits; |
|
div <<= shift; // shift so that div and num align. |
|
while (shift >= 0) { |
|
if (num >= div) { |
|
num -= div; |
|
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result. |
|
} |
|
div >>= 1; // shift back. |
|
shift--; |
|
} |
|
// num now contains the remainder of the division. |
|
return *this; |
|
} |
|
|
|
template <unsigned int BITS> |
|
int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const |
|
{ |
|
for (int i = WIDTH - 1; i >= 0; i--) { |
|
if (pn[i] < b.pn[i]) |
|
return -1; |
|
if (pn[i] > b.pn[i]) |
|
return 1; |
|
} |
|
return 0; |
|
} |
|
|
|
template <unsigned int BITS> |
|
bool base_uint<BITS>::EqualTo(uint64_t b) const |
|
{ |
|
for (int i = WIDTH - 1; i >= 2; i--) { |
|
if (pn[i]) |
|
return false; |
|
} |
|
if (pn[1] != (b >> 32)) |
|
return false; |
|
if (pn[0] != (b & 0xfffffffful)) |
|
return false; |
|
return true; |
|
} |
|
|
|
template <unsigned int BITS> |
|
double base_uint<BITS>::getdouble() const |
|
{ |
|
double ret = 0.0; |
|
double fact = 1.0; |
|
for (int i = 0; i < WIDTH; i++) { |
|
ret += fact * pn[i]; |
|
fact *= 4294967296.0; |
|
} |
|
return ret; |
|
} |
|
|
|
template <unsigned int BITS> |
|
std::string base_uint<BITS>::GetHex() const |
|
{ |
|
return ArithToUint256(*this).GetHex(); |
|
} |
|
|
|
template <unsigned int BITS> |
|
void base_uint<BITS>::SetHex(const char* psz) |
|
{ |
|
*this = UintToArith256(uint256S(psz)); |
|
} |
|
|
|
template <unsigned int BITS> |
|
void base_uint<BITS>::SetHex(const std::string& str) |
|
{ |
|
SetHex(str.c_str()); |
|
} |
|
|
|
template <unsigned int BITS> |
|
std::string base_uint<BITS>::ToString() const |
|
{ |
|
return (GetHex()); |
|
} |
|
|
|
template <unsigned int BITS> |
|
unsigned int base_uint<BITS>::bits() const |
|
{ |
|
for (int pos = WIDTH - 1; pos >= 0; pos--) { |
|
if (pn[pos]) { |
|
for (int nbits = 31; nbits > 0; nbits--) { |
|
if (pn[pos] & 1 << nbits) |
|
return 32 * pos + nbits + 1; |
|
} |
|
return 32 * pos + 1; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
// Explicit instantiations for base_uint<256> |
|
template base_uint<256>::base_uint(const std::string&); |
|
template base_uint<256>& base_uint<256>::operator<<=(unsigned int); |
|
template base_uint<256>& base_uint<256>::operator>>=(unsigned int); |
|
template base_uint<256>& base_uint<256>::operator*=(uint32_t b32); |
|
template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b); |
|
template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b); |
|
template int base_uint<256>::CompareTo(const base_uint<256>&) const; |
|
template bool base_uint<256>::EqualTo(uint64_t) const; |
|
template double base_uint<256>::getdouble() const; |
|
template std::string base_uint<256>::GetHex() const; |
|
template std::string base_uint<256>::ToString() const; |
|
template void base_uint<256>::SetHex(const char*); |
|
template void base_uint<256>::SetHex(const std::string&); |
|
template unsigned int base_uint<256>::bits() const; |
|
|
|
// This implementation directly uses shifts instead of going |
|
// through an intermediate MPI representation. |
|
arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow) |
|
{ |
|
int nSize = nCompact >> 24; |
|
uint32_t nWord = nCompact & 0x007fffff; |
|
if (nSize <= 3) { |
|
nWord >>= 8 * (3 - nSize); |
|
*this = nWord; |
|
} else { |
|
*this = nWord; |
|
*this <<= 8 * (nSize - 3); |
|
} |
|
if (pfNegative) |
|
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0; |
|
if (pfOverflow) |
|
*pfOverflow = nWord != 0 && ((nSize > 34) || |
|
(nWord > 0xff && nSize > 33) || |
|
(nWord > 0xffff && nSize > 32)); |
|
return *this; |
|
} |
|
|
|
uint32_t arith_uint256::GetCompact(bool fNegative) const |
|
{ |
|
int nSize = (bits() + 7) / 8; |
|
uint32_t nCompact = 0; |
|
if (nSize <= 3) { |
|
nCompact = GetLow64() << 8 * (3 - nSize); |
|
} else { |
|
arith_uint256 bn = *this >> 8 * (nSize - 3); |
|
nCompact = bn.GetLow64(); |
|
} |
|
// The 0x00800000 bit denotes the sign. |
|
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent. |
|
if (nCompact & 0x00800000) { |
|
nCompact >>= 8; |
|
nSize++; |
|
} |
|
assert((nCompact & ~0x007fffff) == 0); |
|
assert(nSize < 256); |
|
nCompact |= nSize << 24; |
|
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0); |
|
return nCompact; |
|
} |
|
|
|
uint256 ArithToUint256(const arith_uint256 &a) |
|
{ |
|
uint256 b; |
|
for(int x=0; x<a.WIDTH; ++x) |
|
WriteLE32(b.begin() + x*4, a.pn[x]); |
|
return b; |
|
} |
|
arith_uint256 UintToArith256(const uint256 &a) |
|
{ |
|
arith_uint256 b; |
|
for(int x=0; x<b.WIDTH; ++x) |
|
b.pn[x] = ReadLE32(a.begin() + x*4); |
|
return b; |
|
}
|
|
|