kevacoin/qa/rpc-tests/p2p-compactblocks.py
Suhas Daftuar b73f0653f3 [qa] Another attempt to fix race condition in p2p-compactblocks.py
sync_with_ping() only guarantees that the node has processed messages
it's received from the peer, not that block announcements from the node have
made it back to the peer.  Replace sync_with_ping() with an explicit check that
the node's tip has been announced.

Github-Pull: #8882
Rebased-From: 6976db2f46
2016-10-05 11:19:17 +02:00

647 lines
28 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
from test_framework.mininode import *
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
from test_framework.blocktools import create_block, create_coinbase
from test_framework.siphash import siphash256
from test_framework.script import CScript, OP_TRUE
'''
CompactBlocksTest -- test compact blocks (BIP 152)
'''
# TestNode: A peer we use to send messages to bitcoind, and store responses.
class TestNode(SingleNodeConnCB):
def __init__(self):
SingleNodeConnCB.__init__(self)
self.last_sendcmpct = None
self.last_headers = None
self.last_inv = None
self.last_cmpctblock = None
self.block_announced = False
self.last_getdata = None
self.last_getblocktxn = None
self.last_block = None
self.last_blocktxn = None
# Store the hashes of blocks we've seen announced.
# This is for synchronizing the p2p message traffic,
# so we can eg wait until a particular block is announced.
self.set_announced_blockhashes = set()
def on_sendcmpct(self, conn, message):
self.last_sendcmpct = message
def on_block(self, conn, message):
self.last_block = message
def on_cmpctblock(self, conn, message):
self.last_cmpctblock = message
self.block_announced = True
self.last_cmpctblock.header_and_shortids.header.calc_sha256()
self.set_announced_blockhashes.add(self.last_cmpctblock.header_and_shortids.header.sha256)
def on_headers(self, conn, message):
self.last_headers = message
self.block_announced = True
for x in self.last_headers.headers:
x.calc_sha256()
self.set_announced_blockhashes.add(x.sha256)
def on_inv(self, conn, message):
self.last_inv = message
for x in self.last_inv.inv:
if x.type == 2:
self.block_announced = True
self.set_announced_blockhashes.add(x.hash)
def on_getdata(self, conn, message):
self.last_getdata = message
def on_getblocktxn(self, conn, message):
self.last_getblocktxn = message
def on_blocktxn(self, conn, message):
self.last_blocktxn = message
# Requires caller to hold mininode_lock
def received_block_announcement(self):
return self.block_announced
def clear_block_announcement(self):
with mininode_lock:
self.block_announced = False
self.last_inv = None
self.last_headers = None
self.last_cmpctblock = None
def get_headers(self, locator, hashstop):
msg = msg_getheaders()
msg.locator.vHave = locator
msg.hashstop = hashstop
self.connection.send_message(msg)
def send_header_for_blocks(self, new_blocks):
headers_message = msg_headers()
headers_message.headers = [CBlockHeader(b) for b in new_blocks]
self.send_message(headers_message)
def request_headers_and_sync(self, locator, hashstop=0):
self.clear_block_announcement()
self.get_headers(locator, hashstop)
assert(wait_until(self.received_block_announcement, timeout=30))
assert(self.received_block_announcement())
self.clear_block_announcement()
# Block until a block announcement for a particular block hash is
# received.
def wait_for_block_announcement(self, block_hash, timeout=30):
def received_hash():
return (block_hash in self.set_announced_blockhashes)
return wait_until(received_hash, timeout=timeout)
class CompactBlocksTest(BitcoinTestFramework):
def __init__(self):
super().__init__()
self.setup_clean_chain = True
self.num_nodes = 1
self.utxos = []
def setup_network(self):
self.nodes = []
# Turn off segwit in this test, as compact blocks don't currently work
# with segwit. (After BIP 152 is updated to support segwit, we can
# test behavior with and without segwit enabled by adding a second node
# to the test.)
self.nodes = start_nodes(self.num_nodes, self.options.tmpdir, [["-debug", "-logtimemicros=1", "-bip9params=segwit:0:0"]])
def build_block_on_tip(self):
height = self.nodes[0].getblockcount()
tip = self.nodes[0].getbestblockhash()
mtp = self.nodes[0].getblockheader(tip)['mediantime']
block = create_block(int(tip, 16), create_coinbase(height + 1), mtp + 1)
block.solve()
return block
# Create 10 more anyone-can-spend utxo's for testing.
def make_utxos(self):
block = self.build_block_on_tip()
self.test_node.send_and_ping(msg_block(block))
assert(int(self.nodes[0].getbestblockhash(), 16) == block.sha256)
self.nodes[0].generate(100)
total_value = block.vtx[0].vout[0].nValue
out_value = total_value // 10
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(block.vtx[0].sha256, 0), b''))
for i in range(10):
tx.vout.append(CTxOut(out_value, CScript([OP_TRUE])))
tx.rehash()
block2 = self.build_block_on_tip()
block2.vtx.append(tx)
block2.hashMerkleRoot = block2.calc_merkle_root()
block2.solve()
self.test_node.send_and_ping(msg_block(block2))
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block2.sha256)
self.utxos.extend([[tx.sha256, i, out_value] for i in range(10)])
return
# Test "sendcmpct":
# - No compact block announcements or getdata(MSG_CMPCT_BLOCK) unless
# sendcmpct is sent.
# - If sendcmpct is sent with version > 1, the message is ignored.
# - If sendcmpct is sent with boolean 0, then block announcements are not
# made with compact blocks.
# - If sendcmpct is then sent with boolean 1, then new block announcements
# are made with compact blocks.
def test_sendcmpct(self):
print("Testing SENDCMPCT p2p message... ")
# Make sure we get a version 0 SENDCMPCT message from our peer
def received_sendcmpct():
return (self.test_node.last_sendcmpct is not None)
got_message = wait_until(received_sendcmpct, timeout=30)
assert(received_sendcmpct())
assert(got_message)
assert_equal(self.test_node.last_sendcmpct.version, 1)
tip = int(self.nodes[0].getbestblockhash(), 16)
def check_announcement_of_new_block(node, peer, predicate):
peer.clear_block_announcement()
node.generate(1)
got_message = wait_until(lambda: peer.block_announced, timeout=30)
assert(peer.block_announced)
assert(got_message)
with mininode_lock:
assert(predicate(peer))
# We shouldn't get any block announcements via cmpctblock yet.
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda p: p.last_cmpctblock is None)
# Try one more time, this time after requesting headers.
self.test_node.request_headers_and_sync(locator=[tip])
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda p: p.last_cmpctblock is None and p.last_inv is not None)
# Test a few ways of using sendcmpct that should NOT
# result in compact block announcements.
# Before each test, sync the headers chain.
self.test_node.request_headers_and_sync(locator=[tip])
# Now try a SENDCMPCT message with too-high version
sendcmpct = msg_sendcmpct()
sendcmpct.version = 2
self.test_node.send_and_ping(sendcmpct)
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda p: p.last_cmpctblock is None)
# Headers sync before next test.
self.test_node.request_headers_and_sync(locator=[tip])
# Now try a SENDCMPCT message with valid version, but announce=False
self.test_node.send_and_ping(msg_sendcmpct())
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda p: p.last_cmpctblock is None)
# Headers sync before next test.
self.test_node.request_headers_and_sync(locator=[tip])
# Finally, try a SENDCMPCT message with announce=True
sendcmpct.version = 1
sendcmpct.announce = True
self.test_node.send_and_ping(sendcmpct)
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda p: p.last_cmpctblock is not None)
# Try one more time (no headers sync should be needed!)
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda p: p.last_cmpctblock is not None)
# Try one more time, after turning on sendheaders
self.test_node.send_and_ping(msg_sendheaders())
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda p: p.last_cmpctblock is not None)
# Now turn off announcements
sendcmpct.announce = False
self.test_node.send_and_ping(sendcmpct)
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda p: p.last_cmpctblock is None and p.last_headers is not None)
# This test actually causes bitcoind to (reasonably!) disconnect us, so do this last.
def test_invalid_cmpctblock_message(self):
print("Testing invalid index in cmpctblock message...")
self.nodes[0].generate(101)
block = self.build_block_on_tip()
cmpct_block = P2PHeaderAndShortIDs()
cmpct_block.header = CBlockHeader(block)
cmpct_block.prefilled_txn_length = 1
# This index will be too high
prefilled_txn = PrefilledTransaction(1, block.vtx[0])
cmpct_block.prefilled_txn = [prefilled_txn]
self.test_node.send_and_ping(msg_cmpctblock(cmpct_block))
assert(int(self.nodes[0].getbestblockhash(), 16) == block.hashPrevBlock)
# Compare the generated shortids to what we expect based on BIP 152, given
# bitcoind's choice of nonce.
def test_compactblock_construction(self):
print("Testing compactblock headers and shortIDs are correct...")
# Generate a bunch of transactions.
self.nodes[0].generate(101)
num_transactions = 25
address = self.nodes[0].getnewaddress()
for i in range(num_transactions):
self.nodes[0].sendtoaddress(address, 0.1)
# Wait until we've seen the block announcement for the resulting tip
tip = int(self.nodes[0].getbestblockhash(), 16)
assert(self.test_node.wait_for_block_announcement(tip))
# Now mine a block, and look at the resulting compact block.
self.test_node.clear_block_announcement()
block_hash = int(self.nodes[0].generate(1)[0], 16)
# Store the raw block in our internal format.
block = FromHex(CBlock(), self.nodes[0].getblock("%02x" % block_hash, False))
[tx.calc_sha256() for tx in block.vtx]
block.rehash()
# Don't care which type of announcement came back for this test; just
# request the compact block if we didn't get one yet.
wait_until(self.test_node.received_block_announcement, timeout=30)
with mininode_lock:
if self.test_node.last_cmpctblock is None:
self.test_node.clear_block_announcement()
inv = CInv(4, block_hash) # 4 == "CompactBlock"
self.test_node.send_message(msg_getdata([inv]))
wait_until(self.test_node.received_block_announcement, timeout=30)
# Now we should have the compactblock
header_and_shortids = None
with mininode_lock:
assert(self.test_node.last_cmpctblock is not None)
# Convert the on-the-wire representation to absolute indexes
header_and_shortids = HeaderAndShortIDs(self.test_node.last_cmpctblock.header_and_shortids)
# Check that we got the right block!
header_and_shortids.header.calc_sha256()
assert_equal(header_and_shortids.header.sha256, block_hash)
# Make sure the prefilled_txn appears to have included the coinbase
assert(len(header_and_shortids.prefilled_txn) >= 1)
assert_equal(header_and_shortids.prefilled_txn[0].index, 0)
# Check that all prefilled_txn entries match what's in the block.
for entry in header_and_shortids.prefilled_txn:
entry.tx.calc_sha256()
assert_equal(entry.tx.sha256, block.vtx[entry.index].sha256)
# Check that the cmpctblock message announced all the transactions.
assert_equal(len(header_and_shortids.prefilled_txn) + len(header_and_shortids.shortids), len(block.vtx))
# And now check that all the shortids are as expected as well.
# Determine the siphash keys to use.
[k0, k1] = header_and_shortids.get_siphash_keys()
index = 0
while index < len(block.vtx):
if (len(header_and_shortids.prefilled_txn) > 0 and
header_and_shortids.prefilled_txn[0].index == index):
# Already checked prefilled transactions above
header_and_shortids.prefilled_txn.pop(0)
else:
shortid = calculate_shortid(k0, k1, block.vtx[index].sha256)
assert_equal(shortid, header_and_shortids.shortids[0])
header_and_shortids.shortids.pop(0)
index += 1
# Test that bitcoind requests compact blocks when we announce new blocks
# via header or inv, and that responding to getblocktxn causes the block
# to be successfully reconstructed.
def test_compactblock_requests(self):
print("Testing compactblock requests... ")
# Try announcing a block with an inv or header, expect a compactblock
# request
for announce in ["inv", "header"]:
block = self.build_block_on_tip()
with mininode_lock:
self.test_node.last_getdata = None
if announce == "inv":
self.test_node.send_message(msg_inv([CInv(2, block.sha256)]))
else:
self.test_node.send_header_for_blocks([block])
success = wait_until(lambda: self.test_node.last_getdata is not None, timeout=30)
assert(success)
assert_equal(len(self.test_node.last_getdata.inv), 1)
assert_equal(self.test_node.last_getdata.inv[0].type, 4)
assert_equal(self.test_node.last_getdata.inv[0].hash, block.sha256)
# Send back a compactblock message that omits the coinbase
comp_block = HeaderAndShortIDs()
comp_block.header = CBlockHeader(block)
comp_block.nonce = 0
comp_block.shortids = [1] # this is useless, and wrong
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.hashPrevBlock)
# Expect a getblocktxn message.
with mininode_lock:
assert(self.test_node.last_getblocktxn is not None)
absolute_indexes = self.test_node.last_getblocktxn.block_txn_request.to_absolute()
assert_equal(absolute_indexes, [0]) # should be a coinbase request
# Send the coinbase, and verify that the tip advances.
msg = msg_blocktxn()
msg.block_transactions.blockhash = block.sha256
msg.block_transactions.transactions = [block.vtx[0]]
self.test_node.send_and_ping(msg)
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
# Create a chain of transactions from given utxo, and add to a new block.
def build_block_with_transactions(self, utxo, num_transactions):
block = self.build_block_on_tip()
for i in range(num_transactions):
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(utxo[0], utxo[1]), b''))
tx.vout.append(CTxOut(utxo[2] - 1000, CScript([OP_TRUE])))
tx.rehash()
utxo = [tx.sha256, 0, tx.vout[0].nValue]
block.vtx.append(tx)
block.hashMerkleRoot = block.calc_merkle_root()
block.solve()
return block
# Test that we only receive getblocktxn requests for transactions that the
# node needs, and that responding to them causes the block to be
# reconstructed.
def test_getblocktxn_requests(self):
print("Testing getblocktxn requests...")
# First try announcing compactblocks that won't reconstruct, and verify
# that we receive getblocktxn messages back.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block)
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
with mininode_lock:
assert(self.test_node.last_getblocktxn is not None)
absolute_indexes = self.test_node.last_getblocktxn.block_txn_request.to_absolute()
assert_equal(absolute_indexes, [1, 2, 3, 4, 5])
msg = msg_blocktxn()
msg.block_transactions = BlockTransactions(block.sha256, block.vtx[1:])
self.test_node.send_and_ping(msg)
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
# Now try interspersing the prefilled transactions
comp_block.initialize_from_block(block, prefill_list=[0, 1, 5])
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
with mininode_lock:
assert(self.test_node.last_getblocktxn is not None)
absolute_indexes = self.test_node.last_getblocktxn.block_txn_request.to_absolute()
assert_equal(absolute_indexes, [2, 3, 4])
msg.block_transactions = BlockTransactions(block.sha256, block.vtx[2:5])
self.test_node.send_and_ping(msg)
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
# Now try giving one transaction ahead of time.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
self.test_node.send_and_ping(msg_tx(block.vtx[1]))
assert(block.vtx[1].hash in self.nodes[0].getrawmempool())
# Prefill 4 out of the 6 transactions, and verify that only the one
# that was not in the mempool is requested.
comp_block.initialize_from_block(block, prefill_list=[0, 2, 3, 4])
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
with mininode_lock:
assert(self.test_node.last_getblocktxn is not None)
absolute_indexes = self.test_node.last_getblocktxn.block_txn_request.to_absolute()
assert_equal(absolute_indexes, [5])
msg.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]])
self.test_node.send_and_ping(msg)
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
# Now provide all transactions to the node before the block is
# announced and verify reconstruction happens immediately.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(utxo, 10)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
for tx in block.vtx[1:]:
self.test_node.send_message(msg_tx(tx))
self.test_node.sync_with_ping()
# Make sure all transactions were accepted.
mempool = self.nodes[0].getrawmempool()
for tx in block.vtx[1:]:
assert(tx.hash in mempool)
# Clear out last request.
with mininode_lock:
self.test_node.last_getblocktxn = None
# Send compact block
comp_block.initialize_from_block(block, prefill_list=[0])
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
with mininode_lock:
# Shouldn't have gotten a request for any transaction
assert(self.test_node.last_getblocktxn is None)
# Tip should have updated
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
# Incorrectly responding to a getblocktxn shouldn't cause the block to be
# permanently failed.
def test_incorrect_blocktxn_response(self):
print("Testing handling of incorrect blocktxn responses...")
if (len(self.utxos) == 0):
self.make_utxos()
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(utxo, 10)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
# Relay the first 5 transactions from the block in advance
for tx in block.vtx[1:6]:
self.test_node.send_message(msg_tx(tx))
self.test_node.sync_with_ping()
# Make sure all transactions were accepted.
mempool = self.nodes[0].getrawmempool()
for tx in block.vtx[1:6]:
assert(tx.hash in mempool)
# Send compact block
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block, prefill_list=[0])
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
absolute_indexes = []
with mininode_lock:
assert(self.test_node.last_getblocktxn is not None)
absolute_indexes = self.test_node.last_getblocktxn.block_txn_request.to_absolute()
assert_equal(absolute_indexes, [6, 7, 8, 9, 10])
# Now give an incorrect response.
# Note that it's possible for bitcoind to be smart enough to know we're
# lying, since it could check to see if the shortid matches what we're
# sending, and eg disconnect us for misbehavior. If that behavior
# change were made, we could just modify this test by having a
# different peer provide the block further down, so that we're still
# verifying that the block isn't marked bad permanently. This is good
# enough for now.
msg = msg_blocktxn()
msg.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]] + block.vtx[7:])
self.test_node.send_and_ping(msg)
# Tip should not have updated
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.hashPrevBlock)
# We should receive a getdata request
success = wait_until(lambda: self.test_node.last_getdata is not None, timeout=10)
assert(success)
assert_equal(len(self.test_node.last_getdata.inv), 1)
assert_equal(self.test_node.last_getdata.inv[0].type, 2)
assert_equal(self.test_node.last_getdata.inv[0].hash, block.sha256)
# Deliver the block
self.test_node.send_and_ping(msg_block(block))
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
def test_getblocktxn_handler(self):
print("Testing getblocktxn handler...")
# bitcoind won't respond for blocks whose height is more than 15 blocks
# deep.
MAX_GETBLOCKTXN_DEPTH = 15
chain_height = self.nodes[0].getblockcount()
current_height = chain_height
while (current_height >= chain_height - MAX_GETBLOCKTXN_DEPTH):
block_hash = self.nodes[0].getblockhash(current_height)
block = FromHex(CBlock(), self.nodes[0].getblock(block_hash, False))
msg = msg_getblocktxn()
msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [])
num_to_request = random.randint(1, len(block.vtx))
msg.block_txn_request.from_absolute(sorted(random.sample(range(len(block.vtx)), num_to_request)))
self.test_node.send_message(msg)
success = wait_until(lambda: self.test_node.last_blocktxn is not None, timeout=10)
assert(success)
[tx.calc_sha256() for tx in block.vtx]
with mininode_lock:
assert_equal(self.test_node.last_blocktxn.block_transactions.blockhash, int(block_hash, 16))
all_indices = msg.block_txn_request.to_absolute()
for index in all_indices:
tx = self.test_node.last_blocktxn.block_transactions.transactions.pop(0)
tx.calc_sha256()
assert_equal(tx.sha256, block.vtx[index].sha256)
self.test_node.last_blocktxn = None
current_height -= 1
# Next request should be ignored, as we're past the allowed depth.
block_hash = self.nodes[0].getblockhash(current_height)
msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [0])
self.test_node.send_and_ping(msg)
with mininode_lock:
assert_equal(self.test_node.last_blocktxn, None)
def test_compactblocks_not_at_tip(self):
print("Testing compactblock requests/announcements not at chain tip...")
# Test that requesting old compactblocks doesn't work.
MAX_CMPCTBLOCK_DEPTH = 11
new_blocks = []
for i in range(MAX_CMPCTBLOCK_DEPTH):
self.test_node.clear_block_announcement()
new_blocks.append(self.nodes[0].generate(1)[0])
wait_until(self.test_node.received_block_announcement, timeout=30)
self.test_node.clear_block_announcement()
self.test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))]))
success = wait_until(lambda: self.test_node.last_cmpctblock is not None, timeout=30)
assert(success)
self.test_node.clear_block_announcement()
self.nodes[0].generate(1)
wait_until(self.test_node.received_block_announcement, timeout=30)
self.test_node.clear_block_announcement()
self.test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))]))
success = wait_until(lambda: self.test_node.last_block is not None, timeout=30)
assert(success)
with mininode_lock:
self.test_node.last_block.block.calc_sha256()
assert_equal(self.test_node.last_block.block.sha256, int(new_blocks[0], 16))
# Generate an old compactblock, and verify that it's not accepted.
cur_height = self.nodes[0].getblockcount()
hashPrevBlock = int(self.nodes[0].getblockhash(cur_height-5), 16)
block = self.build_block_on_tip()
block.hashPrevBlock = hashPrevBlock
block.solve()
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block)
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
tips = self.nodes[0].getchaintips()
found = False
for x in tips:
if x["hash"] == block.hash:
assert_equal(x["status"], "headers-only")
found = True
break
assert(found)
# Requesting this block via getblocktxn should silently fail
# (to avoid fingerprinting attacks).
msg = msg_getblocktxn()
msg.block_txn_request = BlockTransactionsRequest(block.sha256, [0])
with mininode_lock:
self.test_node.last_blocktxn = None
self.test_node.send_and_ping(msg)
with mininode_lock:
assert(self.test_node.last_blocktxn is None)
def run_test(self):
# Setup the p2p connections and start up the network thread.
self.test_node = TestNode()
connections = []
connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.test_node))
self.test_node.add_connection(connections[0])
NetworkThread().start() # Start up network handling in another thread
# Test logic begins here
self.test_node.wait_for_verack()
# We will need UTXOs to construct transactions in later tests.
self.make_utxos()
self.test_sendcmpct()
self.test_compactblock_construction()
self.test_compactblock_requests()
self.test_getblocktxn_requests()
self.test_getblocktxn_handler()
self.test_compactblocks_not_at_tip()
self.test_incorrect_blocktxn_response()
self.test_invalid_cmpctblock_message()
if __name__ == '__main__':
CompactBlocksTest().main()