You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
641 lines
20 KiB
641 lines
20 KiB
// Copyright (c) 2009-2013 The Bitcoin developers |
|
// Distributed under the MIT/X11 software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#include "key.h" |
|
|
|
#include "crypto/sha2.h" |
|
|
|
#include <openssl/bn.h> |
|
#include <openssl/ecdsa.h> |
|
#include <openssl/obj_mac.h> |
|
#include <openssl/rand.h> |
|
|
|
// anonymous namespace with local implementation code (OpenSSL interaction) |
|
namespace { |
|
|
|
// Generate a private key from just the secret parameter |
|
int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key) |
|
{ |
|
int ok = 0; |
|
BN_CTX *ctx = NULL; |
|
EC_POINT *pub_key = NULL; |
|
|
|
if (!eckey) return 0; |
|
|
|
const EC_GROUP *group = EC_KEY_get0_group(eckey); |
|
|
|
if ((ctx = BN_CTX_new()) == NULL) |
|
goto err; |
|
|
|
pub_key = EC_POINT_new(group); |
|
|
|
if (pub_key == NULL) |
|
goto err; |
|
|
|
if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx)) |
|
goto err; |
|
|
|
EC_KEY_set_private_key(eckey,priv_key); |
|
EC_KEY_set_public_key(eckey,pub_key); |
|
|
|
ok = 1; |
|
|
|
err: |
|
|
|
if (pub_key) |
|
EC_POINT_free(pub_key); |
|
if (ctx != NULL) |
|
BN_CTX_free(ctx); |
|
|
|
return(ok); |
|
} |
|
|
|
// Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields |
|
// recid selects which key is recovered |
|
// if check is non-zero, additional checks are performed |
|
int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check) |
|
{ |
|
if (!eckey) return 0; |
|
|
|
int ret = 0; |
|
BN_CTX *ctx = NULL; |
|
|
|
BIGNUM *x = NULL; |
|
BIGNUM *e = NULL; |
|
BIGNUM *order = NULL; |
|
BIGNUM *sor = NULL; |
|
BIGNUM *eor = NULL; |
|
BIGNUM *field = NULL; |
|
EC_POINT *R = NULL; |
|
EC_POINT *O = NULL; |
|
EC_POINT *Q = NULL; |
|
BIGNUM *rr = NULL; |
|
BIGNUM *zero = NULL; |
|
int n = 0; |
|
int i = recid / 2; |
|
|
|
const EC_GROUP *group = EC_KEY_get0_group(eckey); |
|
if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; } |
|
BN_CTX_start(ctx); |
|
order = BN_CTX_get(ctx); |
|
if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; } |
|
x = BN_CTX_get(ctx); |
|
if (!BN_copy(x, order)) { ret=-1; goto err; } |
|
if (!BN_mul_word(x, i)) { ret=-1; goto err; } |
|
if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; } |
|
field = BN_CTX_get(ctx); |
|
if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; } |
|
if (BN_cmp(x, field) >= 0) { ret=0; goto err; } |
|
if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } |
|
if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; } |
|
if (check) |
|
{ |
|
if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } |
|
if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; } |
|
if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; } |
|
} |
|
if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } |
|
n = EC_GROUP_get_degree(group); |
|
e = BN_CTX_get(ctx); |
|
if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; } |
|
if (8*msglen > n) BN_rshift(e, e, 8-(n & 7)); |
|
zero = BN_CTX_get(ctx); |
|
if (!BN_zero(zero)) { ret=-1; goto err; } |
|
if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; } |
|
rr = BN_CTX_get(ctx); |
|
if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; } |
|
sor = BN_CTX_get(ctx); |
|
if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; } |
|
eor = BN_CTX_get(ctx); |
|
if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; } |
|
if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; } |
|
if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; } |
|
|
|
ret = 1; |
|
|
|
err: |
|
if (ctx) { |
|
BN_CTX_end(ctx); |
|
BN_CTX_free(ctx); |
|
} |
|
if (R != NULL) EC_POINT_free(R); |
|
if (O != NULL) EC_POINT_free(O); |
|
if (Q != NULL) EC_POINT_free(Q); |
|
return ret; |
|
} |
|
|
|
// RAII Wrapper around OpenSSL's EC_KEY |
|
class CECKey { |
|
private: |
|
EC_KEY *pkey; |
|
|
|
public: |
|
CECKey() { |
|
pkey = EC_KEY_new_by_curve_name(NID_secp256k1); |
|
assert(pkey != NULL); |
|
} |
|
|
|
~CECKey() { |
|
EC_KEY_free(pkey); |
|
} |
|
|
|
void GetSecretBytes(unsigned char vch[32]) const { |
|
const BIGNUM *bn = EC_KEY_get0_private_key(pkey); |
|
assert(bn); |
|
int nBytes = BN_num_bytes(bn); |
|
int n=BN_bn2bin(bn,&vch[32 - nBytes]); |
|
assert(n == nBytes); |
|
memset(vch, 0, 32 - nBytes); |
|
} |
|
|
|
void SetSecretBytes(const unsigned char vch[32]) { |
|
bool ret; |
|
BIGNUM bn; |
|
BN_init(&bn); |
|
ret = BN_bin2bn(vch, 32, &bn); |
|
assert(ret); |
|
ret = EC_KEY_regenerate_key(pkey, &bn); |
|
assert(ret); |
|
BN_clear_free(&bn); |
|
} |
|
|
|
void GetPrivKey(CPrivKey &privkey, bool fCompressed) { |
|
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED); |
|
int nSize = i2d_ECPrivateKey(pkey, NULL); |
|
assert(nSize); |
|
privkey.resize(nSize); |
|
unsigned char* pbegin = &privkey[0]; |
|
int nSize2 = i2d_ECPrivateKey(pkey, &pbegin); |
|
assert(nSize == nSize2); |
|
} |
|
|
|
bool SetPrivKey(const CPrivKey &privkey, bool fSkipCheck=false) { |
|
const unsigned char* pbegin = &privkey[0]; |
|
if (d2i_ECPrivateKey(&pkey, &pbegin, privkey.size())) { |
|
if(fSkipCheck) |
|
return true; |
|
|
|
// d2i_ECPrivateKey returns true if parsing succeeds. |
|
// This doesn't necessarily mean the key is valid. |
|
if (EC_KEY_check_key(pkey)) |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
void GetPubKey(CPubKey &pubkey, bool fCompressed) { |
|
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED); |
|
int nSize = i2o_ECPublicKey(pkey, NULL); |
|
assert(nSize); |
|
assert(nSize <= 65); |
|
unsigned char c[65]; |
|
unsigned char *pbegin = c; |
|
int nSize2 = i2o_ECPublicKey(pkey, &pbegin); |
|
assert(nSize == nSize2); |
|
pubkey.Set(&c[0], &c[nSize]); |
|
} |
|
|
|
bool SetPubKey(const CPubKey &pubkey) { |
|
const unsigned char* pbegin = pubkey.begin(); |
|
return o2i_ECPublicKey(&pkey, &pbegin, pubkey.size()); |
|
} |
|
|
|
bool Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) { |
|
vchSig.clear(); |
|
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey); |
|
if (sig == NULL) |
|
return false; |
|
BN_CTX *ctx = BN_CTX_new(); |
|
BN_CTX_start(ctx); |
|
const EC_GROUP *group = EC_KEY_get0_group(pkey); |
|
BIGNUM *order = BN_CTX_get(ctx); |
|
BIGNUM *halforder = BN_CTX_get(ctx); |
|
EC_GROUP_get_order(group, order, ctx); |
|
BN_rshift1(halforder, order); |
|
if (BN_cmp(sig->s, halforder) > 0) { |
|
// enforce low S values, by negating the value (modulo the order) if above order/2. |
|
BN_sub(sig->s, order, sig->s); |
|
} |
|
BN_CTX_end(ctx); |
|
BN_CTX_free(ctx); |
|
unsigned int nSize = ECDSA_size(pkey); |
|
vchSig.resize(nSize); // Make sure it is big enough |
|
unsigned char *pos = &vchSig[0]; |
|
nSize = i2d_ECDSA_SIG(sig, &pos); |
|
ECDSA_SIG_free(sig); |
|
vchSig.resize(nSize); // Shrink to fit actual size |
|
return true; |
|
} |
|
|
|
bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) { |
|
// -1 = error, 0 = bad sig, 1 = good |
|
if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool SignCompact(const uint256 &hash, unsigned char *p64, int &rec) { |
|
bool fOk = false; |
|
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey); |
|
if (sig==NULL) |
|
return false; |
|
memset(p64, 0, 64); |
|
int nBitsR = BN_num_bits(sig->r); |
|
int nBitsS = BN_num_bits(sig->s); |
|
if (nBitsR <= 256 && nBitsS <= 256) { |
|
CPubKey pubkey; |
|
GetPubKey(pubkey, true); |
|
for (int i=0; i<4; i++) { |
|
CECKey keyRec; |
|
if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) { |
|
CPubKey pubkeyRec; |
|
keyRec.GetPubKey(pubkeyRec, true); |
|
if (pubkeyRec == pubkey) { |
|
rec = i; |
|
fOk = true; |
|
break; |
|
} |
|
} |
|
} |
|
assert(fOk); |
|
BN_bn2bin(sig->r,&p64[32-(nBitsR+7)/8]); |
|
BN_bn2bin(sig->s,&p64[64-(nBitsS+7)/8]); |
|
} |
|
ECDSA_SIG_free(sig); |
|
return fOk; |
|
} |
|
|
|
// reconstruct public key from a compact signature |
|
// This is only slightly more CPU intensive than just verifying it. |
|
// If this function succeeds, the recovered public key is guaranteed to be valid |
|
// (the signature is a valid signature of the given data for that key) |
|
bool Recover(const uint256 &hash, const unsigned char *p64, int rec) |
|
{ |
|
if (rec<0 || rec>=3) |
|
return false; |
|
ECDSA_SIG *sig = ECDSA_SIG_new(); |
|
BN_bin2bn(&p64[0], 32, sig->r); |
|
BN_bin2bn(&p64[32], 32, sig->s); |
|
bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1; |
|
ECDSA_SIG_free(sig); |
|
return ret; |
|
} |
|
|
|
static bool TweakSecret(unsigned char vchSecretOut[32], const unsigned char vchSecretIn[32], const unsigned char vchTweak[32]) |
|
{ |
|
bool ret = true; |
|
BN_CTX *ctx = BN_CTX_new(); |
|
BN_CTX_start(ctx); |
|
BIGNUM *bnSecret = BN_CTX_get(ctx); |
|
BIGNUM *bnTweak = BN_CTX_get(ctx); |
|
BIGNUM *bnOrder = BN_CTX_get(ctx); |
|
EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp256k1); |
|
EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order... |
|
BN_bin2bn(vchTweak, 32, bnTweak); |
|
if (BN_cmp(bnTweak, bnOrder) >= 0) |
|
ret = false; // extremely unlikely |
|
BN_bin2bn(vchSecretIn, 32, bnSecret); |
|
BN_add(bnSecret, bnSecret, bnTweak); |
|
BN_nnmod(bnSecret, bnSecret, bnOrder, ctx); |
|
if (BN_is_zero(bnSecret)) |
|
ret = false; // ridiculously unlikely |
|
int nBits = BN_num_bits(bnSecret); |
|
memset(vchSecretOut, 0, 32); |
|
BN_bn2bin(bnSecret, &vchSecretOut[32-(nBits+7)/8]); |
|
EC_GROUP_free(group); |
|
BN_CTX_end(ctx); |
|
BN_CTX_free(ctx); |
|
return ret; |
|
} |
|
|
|
bool TweakPublic(const unsigned char vchTweak[32]) { |
|
bool ret = true; |
|
BN_CTX *ctx = BN_CTX_new(); |
|
BN_CTX_start(ctx); |
|
BIGNUM *bnTweak = BN_CTX_get(ctx); |
|
BIGNUM *bnOrder = BN_CTX_get(ctx); |
|
BIGNUM *bnOne = BN_CTX_get(ctx); |
|
const EC_GROUP *group = EC_KEY_get0_group(pkey); |
|
EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order... |
|
BN_bin2bn(vchTweak, 32, bnTweak); |
|
if (BN_cmp(bnTweak, bnOrder) >= 0) |
|
ret = false; // extremely unlikely |
|
EC_POINT *point = EC_POINT_dup(EC_KEY_get0_public_key(pkey), group); |
|
BN_one(bnOne); |
|
EC_POINT_mul(group, point, bnTweak, point, bnOne, ctx); |
|
if (EC_POINT_is_at_infinity(group, point)) |
|
ret = false; // ridiculously unlikely |
|
EC_KEY_set_public_key(pkey, point); |
|
EC_POINT_free(point); |
|
BN_CTX_end(ctx); |
|
BN_CTX_free(ctx); |
|
return ret; |
|
} |
|
}; |
|
|
|
int CompareBigEndian(const unsigned char *c1, size_t c1len, const unsigned char *c2, size_t c2len) { |
|
while (c1len > c2len) { |
|
if (*c1) |
|
return 1; |
|
c1++; |
|
c1len--; |
|
} |
|
while (c2len > c1len) { |
|
if (*c2) |
|
return -1; |
|
c2++; |
|
c2len--; |
|
} |
|
while (c1len > 0) { |
|
if (*c1 > *c2) |
|
return 1; |
|
if (*c2 > *c1) |
|
return -1; |
|
c1++; |
|
c2++; |
|
c1len--; |
|
} |
|
return 0; |
|
} |
|
|
|
// Order of secp256k1's generator minus 1. |
|
const unsigned char vchMaxModOrder[32] = { |
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, |
|
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, |
|
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40 |
|
}; |
|
|
|
// Half of the order of secp256k1's generator minus 1. |
|
const unsigned char vchMaxModHalfOrder[32] = { |
|
0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
|
0x5D,0x57,0x6E,0x73,0x57,0xA4,0x50,0x1D, |
|
0xDF,0xE9,0x2F,0x46,0x68,0x1B,0x20,0xA0 |
|
}; |
|
|
|
const unsigned char vchZero[0] = {}; |
|
|
|
} // anon namespace |
|
|
|
bool CKey::Check(const unsigned char *vch) { |
|
return CompareBigEndian(vch, 32, vchZero, 0) > 0 && |
|
CompareBigEndian(vch, 32, vchMaxModOrder, 32) <= 0; |
|
} |
|
|
|
bool CKey::CheckSignatureElement(const unsigned char *vch, int len, bool half) { |
|
return CompareBigEndian(vch, len, vchZero, 0) > 0 && |
|
CompareBigEndian(vch, len, half ? vchMaxModHalfOrder : vchMaxModOrder, 32) <= 0; |
|
} |
|
|
|
void CKey::MakeNewKey(bool fCompressedIn) { |
|
do { |
|
RAND_bytes(vch, sizeof(vch)); |
|
} while (!Check(vch)); |
|
fValid = true; |
|
fCompressed = fCompressedIn; |
|
} |
|
|
|
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) { |
|
CECKey key; |
|
if (!key.SetPrivKey(privkey)) |
|
return false; |
|
key.GetSecretBytes(vch); |
|
fCompressed = fCompressedIn; |
|
fValid = true; |
|
return true; |
|
} |
|
|
|
CPrivKey CKey::GetPrivKey() const { |
|
assert(fValid); |
|
CECKey key; |
|
key.SetSecretBytes(vch); |
|
CPrivKey privkey; |
|
key.GetPrivKey(privkey, fCompressed); |
|
return privkey; |
|
} |
|
|
|
CPubKey CKey::GetPubKey() const { |
|
assert(fValid); |
|
CECKey key; |
|
key.SetSecretBytes(vch); |
|
CPubKey pubkey; |
|
key.GetPubKey(pubkey, fCompressed); |
|
return pubkey; |
|
} |
|
|
|
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const { |
|
if (!fValid) |
|
return false; |
|
CECKey key; |
|
key.SetSecretBytes(vch); |
|
return key.Sign(hash, vchSig); |
|
} |
|
|
|
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const { |
|
if (!fValid) |
|
return false; |
|
CECKey key; |
|
key.SetSecretBytes(vch); |
|
vchSig.resize(65); |
|
int rec = -1; |
|
if (!key.SignCompact(hash, &vchSig[1], rec)) |
|
return false; |
|
assert(rec != -1); |
|
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0); |
|
return true; |
|
} |
|
|
|
bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) { |
|
CECKey key; |
|
if (!key.SetPrivKey(privkey, fSkipCheck)) |
|
return false; |
|
|
|
key.GetSecretBytes(vch); |
|
fCompressed = vchPubKey.IsCompressed(); |
|
fValid = true; |
|
|
|
if (fSkipCheck) |
|
return true; |
|
|
|
if (GetPubKey() != vchPubKey) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const { |
|
if (!IsValid()) |
|
return false; |
|
CECKey key; |
|
if (!key.SetPubKey(*this)) |
|
return false; |
|
if (!key.Verify(hash, vchSig)) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) { |
|
if (vchSig.size() != 65) |
|
return false; |
|
CECKey key; |
|
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4)) |
|
return false; |
|
key.GetPubKey(*this, (vchSig[0] - 27) & 4); |
|
return true; |
|
} |
|
|
|
bool CPubKey::IsFullyValid() const { |
|
if (!IsValid()) |
|
return false; |
|
CECKey key; |
|
if (!key.SetPubKey(*this)) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool CPubKey::Decompress() { |
|
if (!IsValid()) |
|
return false; |
|
CECKey key; |
|
if (!key.SetPubKey(*this)) |
|
return false; |
|
key.GetPubKey(*this, false); |
|
return true; |
|
} |
|
|
|
void static BIP32Hash(const unsigned char chainCode[32], unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]) { |
|
unsigned char num[4]; |
|
num[0] = (nChild >> 24) & 0xFF; |
|
num[1] = (nChild >> 16) & 0xFF; |
|
num[2] = (nChild >> 8) & 0xFF; |
|
num[3] = (nChild >> 0) & 0xFF; |
|
CHMAC_SHA512(chainCode, 32).Write(&header, 1) |
|
.Write(data, 32) |
|
.Write(num, 4) |
|
.Finalize(output); |
|
} |
|
|
|
bool CKey::Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const { |
|
assert(IsValid()); |
|
assert(IsCompressed()); |
|
unsigned char out[64]; |
|
LockObject(out); |
|
if ((nChild >> 31) == 0) { |
|
CPubKey pubkey = GetPubKey(); |
|
assert(pubkey.begin() + 33 == pubkey.end()); |
|
BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out); |
|
} else { |
|
assert(begin() + 32 == end()); |
|
BIP32Hash(cc, nChild, 0, begin(), out); |
|
} |
|
memcpy(ccChild, out+32, 32); |
|
bool ret = CECKey::TweakSecret((unsigned char*)keyChild.begin(), begin(), out); |
|
UnlockObject(out); |
|
keyChild.fCompressed = true; |
|
keyChild.fValid = ret; |
|
return ret; |
|
} |
|
|
|
bool CPubKey::Derive(CPubKey& pubkeyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const { |
|
assert(IsValid()); |
|
assert((nChild >> 31) == 0); |
|
assert(begin() + 33 == end()); |
|
unsigned char out[64]; |
|
BIP32Hash(cc, nChild, *begin(), begin()+1, out); |
|
memcpy(ccChild, out+32, 32); |
|
CECKey key; |
|
bool ret = key.SetPubKey(*this); |
|
ret &= key.TweakPublic(out); |
|
key.GetPubKey(pubkeyChild, true); |
|
return ret; |
|
} |
|
|
|
bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const { |
|
out.nDepth = nDepth + 1; |
|
CKeyID id = key.GetPubKey().GetID(); |
|
memcpy(&out.vchFingerprint[0], &id, 4); |
|
out.nChild = nChild; |
|
return key.Derive(out.key, out.vchChainCode, nChild, vchChainCode); |
|
} |
|
|
|
void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) { |
|
static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'}; |
|
unsigned char out[64]; |
|
LockObject(out); |
|
CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out); |
|
key.Set(&out[0], &out[32], true); |
|
memcpy(vchChainCode, &out[32], 32); |
|
UnlockObject(out); |
|
nDepth = 0; |
|
nChild = 0; |
|
memset(vchFingerprint, 0, sizeof(vchFingerprint)); |
|
} |
|
|
|
CExtPubKey CExtKey::Neuter() const { |
|
CExtPubKey ret; |
|
ret.nDepth = nDepth; |
|
memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4); |
|
ret.nChild = nChild; |
|
ret.pubkey = key.GetPubKey(); |
|
memcpy(&ret.vchChainCode[0], &vchChainCode[0], 32); |
|
return ret; |
|
} |
|
|
|
void CExtKey::Encode(unsigned char code[74]) const { |
|
code[0] = nDepth; |
|
memcpy(code+1, vchFingerprint, 4); |
|
code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF; |
|
code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF; |
|
memcpy(code+9, vchChainCode, 32); |
|
code[41] = 0; |
|
assert(key.size() == 32); |
|
memcpy(code+42, key.begin(), 32); |
|
} |
|
|
|
void CExtKey::Decode(const unsigned char code[74]) { |
|
nDepth = code[0]; |
|
memcpy(vchFingerprint, code+1, 4); |
|
nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8]; |
|
memcpy(vchChainCode, code+9, 32); |
|
key.Set(code+42, code+74, true); |
|
} |
|
|
|
void CExtPubKey::Encode(unsigned char code[74]) const { |
|
code[0] = nDepth; |
|
memcpy(code+1, vchFingerprint, 4); |
|
code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF; |
|
code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF; |
|
memcpy(code+9, vchChainCode, 32); |
|
assert(pubkey.size() == 33); |
|
memcpy(code+41, pubkey.begin(), 33); |
|
} |
|
|
|
void CExtPubKey::Decode(const unsigned char code[74]) { |
|
nDepth = code[0]; |
|
memcpy(vchFingerprint, code+1, 4); |
|
nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8]; |
|
memcpy(vchChainCode, code+9, 32); |
|
pubkey.Set(code+41, code+74); |
|
} |
|
|
|
bool CExtPubKey::Derive(CExtPubKey &out, unsigned int nChild) const { |
|
out.nDepth = nDepth + 1; |
|
CKeyID id = pubkey.GetID(); |
|
memcpy(&out.vchFingerprint[0], &id, 4); |
|
out.nChild = nChild; |
|
return pubkey.Derive(out.pubkey, out.vchChainCode, nChild, vchChainCode); |
|
} |
|
|
|
bool ECC_InitSanityCheck() { |
|
EC_KEY *pkey = EC_KEY_new_by_curve_name(NID_secp256k1); |
|
if(pkey == NULL) |
|
return false; |
|
EC_KEY_free(pkey); |
|
|
|
// TODO Is there more EC functionality that could be missing? |
|
return true; |
|
} |
|
|
|
|
|
|