You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
347 lines
13 KiB
347 lines
13 KiB
// Copyright (c) 2009-2017 The Bitcoin Core developers |
|
// Copyright (c) 2017 The Zcash developers |
|
// Distributed under the MIT software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#include <key.h> |
|
|
|
#include <arith_uint256.h> |
|
#include <crypto/common.h> |
|
#include <crypto/hmac_sha512.h> |
|
#include <random.h> |
|
|
|
#include <secp256k1.h> |
|
#include <secp256k1_recovery.h> |
|
|
|
static secp256k1_context* secp256k1_context_sign = nullptr; |
|
|
|
/** These functions are taken from the libsecp256k1 distribution and are very ugly. */ |
|
|
|
/** |
|
* This parses a format loosely based on a DER encoding of the ECPrivateKey type from |
|
* section C.4 of SEC 1 <http://www.secg.org/sec1-v2.pdf>, with the following caveats: |
|
* |
|
* * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not |
|
* required to be encoded as one octet if it is less than 256, as DER would require. |
|
* * The octet-length of the SEQUENCE must not be greater than the remaining |
|
* length of the key encoding, but need not match it (i.e. the encoding may contain |
|
* junk after the encoded SEQUENCE). |
|
* * The privateKey OCTET STRING is zero-filled on the left to 32 octets. |
|
* * Anything after the encoding of the privateKey OCTET STRING is ignored, whether |
|
* or not it is validly encoded DER. |
|
* |
|
* out32 must point to an output buffer of length at least 32 bytes. |
|
*/ |
|
static int ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) { |
|
const unsigned char *end = privkey + privkeylen; |
|
memset(out32, 0, 32); |
|
/* sequence header */ |
|
if (end - privkey < 1 || *privkey != 0x30u) { |
|
return 0; |
|
} |
|
privkey++; |
|
/* sequence length constructor */ |
|
if (end - privkey < 1 || !(*privkey & 0x80u)) { |
|
return 0; |
|
} |
|
size_t lenb = *privkey & ~0x80u; privkey++; |
|
if (lenb < 1 || lenb > 2) { |
|
return 0; |
|
} |
|
if (end - privkey < lenb) { |
|
return 0; |
|
} |
|
/* sequence length */ |
|
size_t len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0u); |
|
privkey += lenb; |
|
if (end - privkey < len) { |
|
return 0; |
|
} |
|
/* sequence element 0: version number (=1) */ |
|
if (end - privkey < 3 || privkey[0] != 0x02u || privkey[1] != 0x01u || privkey[2] != 0x01u) { |
|
return 0; |
|
} |
|
privkey += 3; |
|
/* sequence element 1: octet string, up to 32 bytes */ |
|
if (end - privkey < 2 || privkey[0] != 0x04u) { |
|
return 0; |
|
} |
|
size_t oslen = privkey[1]; |
|
privkey += 2; |
|
if (oslen > 32 || end - privkey < oslen) { |
|
return 0; |
|
} |
|
memcpy(out32 + (32 - oslen), privkey, oslen); |
|
if (!secp256k1_ec_seckey_verify(ctx, out32)) { |
|
memset(out32, 0, 32); |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
/** |
|
* This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1 |
|
* <http://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are |
|
* included. |
|
* |
|
* privkey must point to an output buffer of length at least CKey::PRIVATE_KEY_SIZE bytes. |
|
* privkeylen must initially be set to the size of the privkey buffer. Upon return it |
|
* will be set to the number of bytes used in the buffer. |
|
* key32 must point to a 32-byte raw private key. |
|
*/ |
|
static int ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) { |
|
assert(*privkeylen >= CKey::PRIVATE_KEY_SIZE); |
|
secp256k1_pubkey pubkey; |
|
size_t pubkeylen = 0; |
|
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) { |
|
*privkeylen = 0; |
|
return 0; |
|
} |
|
if (compressed) { |
|
static const unsigned char begin[] = { |
|
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20 |
|
}; |
|
static const unsigned char middle[] = { |
|
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, |
|
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
|
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, |
|
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, |
|
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, |
|
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
|
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, |
|
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00 |
|
}; |
|
unsigned char *ptr = privkey; |
|
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); |
|
memcpy(ptr, key32, 32); ptr += 32; |
|
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); |
|
pubkeylen = CPubKey::COMPRESSED_PUBLIC_KEY_SIZE; |
|
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED); |
|
ptr += pubkeylen; |
|
*privkeylen = ptr - privkey; |
|
assert(*privkeylen == CKey::COMPRESSED_PRIVATE_KEY_SIZE); |
|
} else { |
|
static const unsigned char begin[] = { |
|
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20 |
|
}; |
|
static const unsigned char middle[] = { |
|
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, |
|
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
|
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, |
|
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, |
|
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, |
|
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11, |
|
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10, |
|
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
|
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, |
|
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00 |
|
}; |
|
unsigned char *ptr = privkey; |
|
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); |
|
memcpy(ptr, key32, 32); ptr += 32; |
|
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); |
|
pubkeylen = CPubKey::PUBLIC_KEY_SIZE; |
|
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED); |
|
ptr += pubkeylen; |
|
*privkeylen = ptr - privkey; |
|
assert(*privkeylen == CKey::PRIVATE_KEY_SIZE); |
|
} |
|
return 1; |
|
} |
|
|
|
bool CKey::Check(const unsigned char *vch) { |
|
return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch); |
|
} |
|
|
|
void CKey::MakeNewKey(bool fCompressedIn) { |
|
do { |
|
GetStrongRandBytes(keydata.data(), keydata.size()); |
|
} while (!Check(keydata.data())); |
|
fValid = true; |
|
fCompressed = fCompressedIn; |
|
} |
|
|
|
CPrivKey CKey::GetPrivKey() const { |
|
assert(fValid); |
|
CPrivKey privkey; |
|
int ret; |
|
size_t privkeylen; |
|
privkey.resize(PRIVATE_KEY_SIZE); |
|
privkeylen = PRIVATE_KEY_SIZE; |
|
ret = ec_privkey_export_der(secp256k1_context_sign, (unsigned char*) privkey.data(), &privkeylen, begin(), fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED); |
|
assert(ret); |
|
privkey.resize(privkeylen); |
|
return privkey; |
|
} |
|
|
|
CPubKey CKey::GetPubKey() const { |
|
assert(fValid); |
|
secp256k1_pubkey pubkey; |
|
size_t clen = CPubKey::PUBLIC_KEY_SIZE; |
|
CPubKey result; |
|
int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin()); |
|
assert(ret); |
|
secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED); |
|
assert(result.size() == clen); |
|
assert(result.IsValid()); |
|
return result; |
|
} |
|
|
|
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, uint32_t test_case) const { |
|
if (!fValid) |
|
return false; |
|
vchSig.resize(CPubKey::SIGNATURE_SIZE); |
|
size_t nSigLen = CPubKey::SIGNATURE_SIZE; |
|
unsigned char extra_entropy[32] = {0}; |
|
WriteLE32(extra_entropy, test_case); |
|
secp256k1_ecdsa_signature sig; |
|
int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, test_case ? extra_entropy : nullptr); |
|
assert(ret); |
|
secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, (unsigned char*)vchSig.data(), &nSigLen, &sig); |
|
vchSig.resize(nSigLen); |
|
return true; |
|
} |
|
|
|
bool CKey::VerifyPubKey(const CPubKey& pubkey) const { |
|
if (pubkey.IsCompressed() != fCompressed) { |
|
return false; |
|
} |
|
unsigned char rnd[8]; |
|
std::string str = "Bitcoin key verification\n"; |
|
GetRandBytes(rnd, sizeof(rnd)); |
|
uint256 hash; |
|
CHash256().Write((unsigned char*)str.data(), str.size()).Write(rnd, sizeof(rnd)).Finalize(hash.begin()); |
|
std::vector<unsigned char> vchSig; |
|
Sign(hash, vchSig); |
|
return pubkey.Verify(hash, vchSig); |
|
} |
|
|
|
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const { |
|
if (!fValid) |
|
return false; |
|
vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE); |
|
int rec = -1; |
|
secp256k1_ecdsa_recoverable_signature sig; |
|
int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, nullptr); |
|
assert(ret); |
|
secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, (unsigned char*)&vchSig[1], &rec, &sig); |
|
assert(ret); |
|
assert(rec != -1); |
|
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0); |
|
return true; |
|
} |
|
|
|
bool CKey::Load(const CPrivKey &privkey, const CPubKey &vchPubKey, bool fSkipCheck=false) { |
|
if (!ec_privkey_import_der(secp256k1_context_sign, (unsigned char*)begin(), privkey.data(), privkey.size())) |
|
return false; |
|
fCompressed = vchPubKey.IsCompressed(); |
|
fValid = true; |
|
|
|
if (fSkipCheck) |
|
return true; |
|
|
|
return VerifyPubKey(vchPubKey); |
|
} |
|
|
|
bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const { |
|
assert(IsValid()); |
|
assert(IsCompressed()); |
|
std::vector<unsigned char, secure_allocator<unsigned char>> vout(64); |
|
if ((nChild >> 31) == 0) { |
|
CPubKey pubkey = GetPubKey(); |
|
assert(pubkey.size() == CPubKey::COMPRESSED_PUBLIC_KEY_SIZE); |
|
BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data()); |
|
} else { |
|
assert(size() == 32); |
|
BIP32Hash(cc, nChild, 0, begin(), vout.data()); |
|
} |
|
memcpy(ccChild.begin(), vout.data()+32, 32); |
|
memcpy((unsigned char*)keyChild.begin(), begin(), 32); |
|
bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), vout.data()); |
|
keyChild.fCompressed = true; |
|
keyChild.fValid = ret; |
|
return ret; |
|
} |
|
|
|
bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const { |
|
out.nDepth = nDepth + 1; |
|
CKeyID id = key.GetPubKey().GetID(); |
|
memcpy(&out.vchFingerprint[0], &id, 4); |
|
out.nChild = _nChild; |
|
return key.Derive(out.key, out.chaincode, _nChild, chaincode); |
|
} |
|
|
|
void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) { |
|
static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'}; |
|
std::vector<unsigned char, secure_allocator<unsigned char>> vout(64); |
|
CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(vout.data()); |
|
key.Set(vout.data(), vout.data() + 32, true); |
|
memcpy(chaincode.begin(), vout.data() + 32, 32); |
|
nDepth = 0; |
|
nChild = 0; |
|
memset(vchFingerprint, 0, sizeof(vchFingerprint)); |
|
} |
|
|
|
CExtPubKey CExtKey::Neuter() const { |
|
CExtPubKey ret; |
|
ret.nDepth = nDepth; |
|
memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4); |
|
ret.nChild = nChild; |
|
ret.pubkey = key.GetPubKey(); |
|
ret.chaincode = chaincode; |
|
return ret; |
|
} |
|
|
|
void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const { |
|
code[0] = nDepth; |
|
memcpy(code+1, vchFingerprint, 4); |
|
code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF; |
|
code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF; |
|
memcpy(code+9, chaincode.begin(), 32); |
|
code[41] = 0; |
|
assert(key.size() == 32); |
|
memcpy(code+42, key.begin(), 32); |
|
} |
|
|
|
void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) { |
|
nDepth = code[0]; |
|
memcpy(vchFingerprint, code+1, 4); |
|
nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8]; |
|
memcpy(chaincode.begin(), code+9, 32); |
|
key.Set(code+42, code+BIP32_EXTKEY_SIZE, true); |
|
} |
|
|
|
bool ECC_InitSanityCheck() { |
|
CKey key; |
|
key.MakeNewKey(true); |
|
CPubKey pubkey = key.GetPubKey(); |
|
return key.VerifyPubKey(pubkey); |
|
} |
|
|
|
void ECC_Start() { |
|
assert(secp256k1_context_sign == nullptr); |
|
|
|
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); |
|
assert(ctx != nullptr); |
|
|
|
{ |
|
// Pass in a random blinding seed to the secp256k1 context. |
|
std::vector<unsigned char, secure_allocator<unsigned char>> vseed(32); |
|
GetRandBytes(vseed.data(), 32); |
|
bool ret = secp256k1_context_randomize(ctx, vseed.data()); |
|
assert(ret); |
|
} |
|
|
|
secp256k1_context_sign = ctx; |
|
} |
|
|
|
void ECC_Stop() { |
|
secp256k1_context *ctx = secp256k1_context_sign; |
|
secp256k1_context_sign = nullptr; |
|
|
|
if (ctx) { |
|
secp256k1_context_destroy(ctx); |
|
} |
|
}
|
|
|