mirror of
https://github.com/kvazar-network/kevacoin.git
synced 2025-01-18 02:51:06 +00:00
65 lines
2.0 KiB
Python
65 lines
2.0 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) 2016 The Bitcoin Core developers
|
|
# Distributed under the MIT software license, see the accompanying
|
|
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#
|
|
# siphash.py - Specialized SipHash-2-4 implementations
|
|
#
|
|
# This implements SipHash-2-4 for 256-bit integers.
|
|
|
|
def rotl64(n, b):
|
|
return n >> (64 - b) | (n & ((1 << (64 - b)) - 1)) << b
|
|
|
|
def siphash_round(v0, v1, v2, v3):
|
|
v0 = (v0 + v1) & ((1 << 64) - 1)
|
|
v1 = rotl64(v1, 13)
|
|
v1 ^= v0
|
|
v0 = rotl64(v0, 32)
|
|
v2 = (v2 + v3) & ((1 << 64) - 1)
|
|
v3 = rotl64(v3, 16)
|
|
v3 ^= v2
|
|
v0 = (v0 + v3) & ((1 << 64) - 1)
|
|
v3 = rotl64(v3, 21)
|
|
v3 ^= v0
|
|
v2 = (v2 + v1) & ((1 << 64) - 1)
|
|
v1 = rotl64(v1, 17)
|
|
v1 ^= v2
|
|
v2 = rotl64(v2, 32)
|
|
return (v0, v1, v2, v3)
|
|
|
|
def siphash256(k0, k1, h):
|
|
n0 = h & ((1 << 64) - 1)
|
|
n1 = (h >> 64) & ((1 << 64) - 1)
|
|
n2 = (h >> 128) & ((1 << 64) - 1)
|
|
n3 = (h >> 192) & ((1 << 64) - 1)
|
|
v0 = 0x736f6d6570736575 ^ k0
|
|
v1 = 0x646f72616e646f6d ^ k1
|
|
v2 = 0x6c7967656e657261 ^ k0
|
|
v3 = 0x7465646279746573 ^ k1 ^ n0
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0 ^= n0
|
|
v3 ^= n1
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0 ^= n1
|
|
v3 ^= n2
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0 ^= n2
|
|
v3 ^= n3
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0 ^= n3
|
|
v3 ^= 0x2000000000000000
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0 ^= 0x2000000000000000
|
|
v2 ^= 0xFF
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
|
|
return v0 ^ v1 ^ v2 ^ v3
|