You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
393 lines
17 KiB
393 lines
17 KiB
#!/usr/bin/env python3 |
|
# Copyright (c) 2014-2016 The Bitcoin Core developers |
|
# Distributed under the MIT software license, see the accompanying |
|
# file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
"""Test BIP68 implementation.""" |
|
|
|
from test_framework.test_framework import BitcoinTestFramework |
|
from test_framework.util import * |
|
from test_framework.blocktools import * |
|
|
|
SEQUENCE_LOCKTIME_DISABLE_FLAG = (1<<31) |
|
SEQUENCE_LOCKTIME_TYPE_FLAG = (1<<22) # this means use time (0 means height) |
|
SEQUENCE_LOCKTIME_GRANULARITY = 9 # this is a bit-shift |
|
SEQUENCE_LOCKTIME_MASK = 0x0000ffff |
|
|
|
# RPC error for non-BIP68 final transactions |
|
NOT_FINAL_ERROR = "64: non-BIP68-final" |
|
|
|
class BIP68Test(BitcoinTestFramework): |
|
def __init__(self): |
|
super().__init__() |
|
self.num_nodes = 2 |
|
self.setup_clean_chain = False |
|
self.extra_args = [[], ["-acceptnonstdtxn=0"]] |
|
|
|
def run_test(self): |
|
self.relayfee = self.nodes[0].getnetworkinfo()["relayfee"] |
|
|
|
# Generate some coins |
|
self.nodes[0].generate(110) |
|
|
|
self.log.info("Running test disable flag") |
|
self.test_disable_flag() |
|
|
|
self.log.info("Running test sequence-lock-confirmed-inputs") |
|
self.test_sequence_lock_confirmed_inputs() |
|
|
|
self.log.info("Running test sequence-lock-unconfirmed-inputs") |
|
self.test_sequence_lock_unconfirmed_inputs() |
|
|
|
self.log.info("Running test BIP68 not consensus before versionbits activation") |
|
self.test_bip68_not_consensus() |
|
|
|
self.log.info("Activating BIP68 (and 112/113)") |
|
self.activateCSV() |
|
|
|
self.log.info("Verifying nVersion=2 transactions are standard.") |
|
self.log.info("Note that nVersion=2 transactions are always standard (independent of BIP68 activation status).") |
|
self.test_version2_relay() |
|
|
|
self.log.info("Passed") |
|
|
|
# Test that BIP68 is not in effect if tx version is 1, or if |
|
# the first sequence bit is set. |
|
def test_disable_flag(self): |
|
# Create some unconfirmed inputs |
|
new_addr = self.nodes[0].getnewaddress() |
|
self.nodes[0].sendtoaddress(new_addr, 2) # send 2 BTC |
|
|
|
utxos = self.nodes[0].listunspent(0, 0) |
|
assert(len(utxos) > 0) |
|
|
|
utxo = utxos[0] |
|
|
|
tx1 = CTransaction() |
|
value = int(satoshi_round(utxo["amount"] - self.relayfee)*COIN) |
|
|
|
# Check that the disable flag disables relative locktime. |
|
# If sequence locks were used, this would require 1 block for the |
|
# input to mature. |
|
sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1 |
|
tx1.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=sequence_value)] |
|
tx1.vout = [CTxOut(value, CScript([b'a']))] |
|
|
|
tx1_signed = self.nodes[0].signrawtransaction(ToHex(tx1))["hex"] |
|
tx1_id = self.nodes[0].sendrawtransaction(tx1_signed) |
|
tx1_id = int(tx1_id, 16) |
|
|
|
# This transaction will enable sequence-locks, so this transaction should |
|
# fail |
|
tx2 = CTransaction() |
|
tx2.nVersion = 2 |
|
sequence_value = sequence_value & 0x7fffffff |
|
tx2.vin = [CTxIn(COutPoint(tx1_id, 0), nSequence=sequence_value)] |
|
tx2.vout = [CTxOut(int(value-self.relayfee*COIN), CScript([b'a']))] |
|
tx2.rehash() |
|
|
|
assert_raises_jsonrpc(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx2)) |
|
|
|
# Setting the version back down to 1 should disable the sequence lock, |
|
# so this should be accepted. |
|
tx2.nVersion = 1 |
|
|
|
self.nodes[0].sendrawtransaction(ToHex(tx2)) |
|
|
|
# Calculate the median time past of a prior block ("confirmations" before |
|
# the current tip). |
|
def get_median_time_past(self, confirmations): |
|
block_hash = self.nodes[0].getblockhash(self.nodes[0].getblockcount()-confirmations) |
|
return self.nodes[0].getblockheader(block_hash)["mediantime"] |
|
|
|
# Test that sequence locks are respected for transactions spending confirmed inputs. |
|
def test_sequence_lock_confirmed_inputs(self): |
|
# Create lots of confirmed utxos, and use them to generate lots of random |
|
# transactions. |
|
max_outputs = 50 |
|
addresses = [] |
|
while len(addresses) < max_outputs: |
|
addresses.append(self.nodes[0].getnewaddress()) |
|
while len(self.nodes[0].listunspent()) < 200: |
|
import random |
|
random.shuffle(addresses) |
|
num_outputs = random.randint(1, max_outputs) |
|
outputs = {} |
|
for i in range(num_outputs): |
|
outputs[addresses[i]] = random.randint(1, 20)*0.01 |
|
self.nodes[0].sendmany("", outputs) |
|
self.nodes[0].generate(1) |
|
|
|
utxos = self.nodes[0].listunspent() |
|
|
|
# Try creating a lot of random transactions. |
|
# Each time, choose a random number of inputs, and randomly set |
|
# some of those inputs to be sequence locked (and randomly choose |
|
# between height/time locking). Small random chance of making the locks |
|
# all pass. |
|
for i in range(400): |
|
# Randomly choose up to 10 inputs |
|
num_inputs = random.randint(1, 10) |
|
random.shuffle(utxos) |
|
|
|
# Track whether any sequence locks used should fail |
|
should_pass = True |
|
|
|
# Track whether this transaction was built with sequence locks |
|
using_sequence_locks = False |
|
|
|
tx = CTransaction() |
|
tx.nVersion = 2 |
|
value = 0 |
|
for j in range(num_inputs): |
|
sequence_value = 0xfffffffe # this disables sequence locks |
|
|
|
# 50% chance we enable sequence locks |
|
if random.randint(0,1): |
|
using_sequence_locks = True |
|
|
|
# 10% of the time, make the input sequence value pass |
|
input_will_pass = (random.randint(1,10) == 1) |
|
sequence_value = utxos[j]["confirmations"] |
|
if not input_will_pass: |
|
sequence_value += 1 |
|
should_pass = False |
|
|
|
# Figure out what the median-time-past was for the confirmed input |
|
# Note that if an input has N confirmations, we're going back N blocks |
|
# from the tip so that we're looking up MTP of the block |
|
# PRIOR to the one the input appears in, as per the BIP68 spec. |
|
orig_time = self.get_median_time_past(utxos[j]["confirmations"]) |
|
cur_time = self.get_median_time_past(0) # MTP of the tip |
|
|
|
# can only timelock this input if it's not too old -- otherwise use height |
|
can_time_lock = True |
|
if ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY) >= SEQUENCE_LOCKTIME_MASK: |
|
can_time_lock = False |
|
|
|
# if time-lockable, then 50% chance we make this a time lock |
|
if random.randint(0,1) and can_time_lock: |
|
# Find first time-lock value that fails, or latest one that succeeds |
|
time_delta = sequence_value << SEQUENCE_LOCKTIME_GRANULARITY |
|
if input_will_pass and time_delta > cur_time - orig_time: |
|
sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY) |
|
elif (not input_will_pass and time_delta <= cur_time - orig_time): |
|
sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)+1 |
|
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG |
|
tx.vin.append(CTxIn(COutPoint(int(utxos[j]["txid"], 16), utxos[j]["vout"]), nSequence=sequence_value)) |
|
value += utxos[j]["amount"]*COIN |
|
# Overestimate the size of the tx - signatures should be less than 120 bytes, and leave 50 for the output |
|
tx_size = len(ToHex(tx))//2 + 120*num_inputs + 50 |
|
tx.vout.append(CTxOut(int(value-self.relayfee*tx_size*COIN/1000), CScript([b'a']))) |
|
rawtx = self.nodes[0].signrawtransaction(ToHex(tx))["hex"] |
|
|
|
if (using_sequence_locks and not should_pass): |
|
# This transaction should be rejected |
|
assert_raises_jsonrpc(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, rawtx) |
|
else: |
|
# This raw transaction should be accepted |
|
self.nodes[0].sendrawtransaction(rawtx) |
|
utxos = self.nodes[0].listunspent() |
|
|
|
# Test that sequence locks on unconfirmed inputs must have nSequence |
|
# height or time of 0 to be accepted. |
|
# Then test that BIP68-invalid transactions are removed from the mempool |
|
# after a reorg. |
|
def test_sequence_lock_unconfirmed_inputs(self): |
|
# Store height so we can easily reset the chain at the end of the test |
|
cur_height = self.nodes[0].getblockcount() |
|
|
|
# Create a mempool tx. |
|
txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2) |
|
tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid)) |
|
tx1.rehash() |
|
|
|
# Anyone-can-spend mempool tx. |
|
# Sequence lock of 0 should pass. |
|
tx2 = CTransaction() |
|
tx2.nVersion = 2 |
|
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)] |
|
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))] |
|
tx2_raw = self.nodes[0].signrawtransaction(ToHex(tx2))["hex"] |
|
tx2 = FromHex(tx2, tx2_raw) |
|
tx2.rehash() |
|
|
|
self.nodes[0].sendrawtransaction(tx2_raw) |
|
|
|
# Create a spend of the 0th output of orig_tx with a sequence lock |
|
# of 1, and test what happens when submitting. |
|
# orig_tx.vout[0] must be an anyone-can-spend output |
|
def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock): |
|
sequence_value = 1 |
|
if not use_height_lock: |
|
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG |
|
|
|
tx = CTransaction() |
|
tx.nVersion = 2 |
|
tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)] |
|
tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee*COIN), CScript([b'a']))] |
|
tx.rehash() |
|
|
|
if (orig_tx.hash in node.getrawmempool()): |
|
# sendrawtransaction should fail if the tx is in the mempool |
|
assert_raises_jsonrpc(-26, NOT_FINAL_ERROR, node.sendrawtransaction, ToHex(tx)) |
|
else: |
|
# sendrawtransaction should succeed if the tx is not in the mempool |
|
node.sendrawtransaction(ToHex(tx)) |
|
|
|
return tx |
|
|
|
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True) |
|
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False) |
|
|
|
# Now mine some blocks, but make sure tx2 doesn't get mined. |
|
# Use prioritisetransaction to lower the effective feerate to 0 |
|
self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(-self.relayfee*COIN)) |
|
cur_time = int(time.time()) |
|
for i in range(10): |
|
self.nodes[0].setmocktime(cur_time + 600) |
|
self.nodes[0].generate(1) |
|
cur_time += 600 |
|
|
|
assert(tx2.hash in self.nodes[0].getrawmempool()) |
|
|
|
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True) |
|
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False) |
|
|
|
# Mine tx2, and then try again |
|
self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(self.relayfee*COIN)) |
|
|
|
# Advance the time on the node so that we can test timelocks |
|
self.nodes[0].setmocktime(cur_time+600) |
|
self.nodes[0].generate(1) |
|
assert(tx2.hash not in self.nodes[0].getrawmempool()) |
|
|
|
# Now that tx2 is not in the mempool, a sequence locked spend should |
|
# succeed |
|
tx3 = test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False) |
|
assert(tx3.hash in self.nodes[0].getrawmempool()) |
|
|
|
self.nodes[0].generate(1) |
|
assert(tx3.hash not in self.nodes[0].getrawmempool()) |
|
|
|
# One more test, this time using height locks |
|
tx4 = test_nonzero_locks(tx3, self.nodes[0], self.relayfee, use_height_lock=True) |
|
assert(tx4.hash in self.nodes[0].getrawmempool()) |
|
|
|
# Now try combining confirmed and unconfirmed inputs |
|
tx5 = test_nonzero_locks(tx4, self.nodes[0], self.relayfee, use_height_lock=True) |
|
assert(tx5.hash not in self.nodes[0].getrawmempool()) |
|
|
|
utxos = self.nodes[0].listunspent() |
|
tx5.vin.append(CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]), nSequence=1)) |
|
tx5.vout[0].nValue += int(utxos[0]["amount"]*COIN) |
|
raw_tx5 = self.nodes[0].signrawtransaction(ToHex(tx5))["hex"] |
|
|
|
assert_raises_jsonrpc(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, raw_tx5) |
|
|
|
# Test mempool-BIP68 consistency after reorg |
|
# |
|
# State of the transactions in the last blocks: |
|
# ... -> [ tx2 ] -> [ tx3 ] |
|
# tip-1 tip |
|
# And currently tx4 is in the mempool. |
|
# |
|
# If we invalidate the tip, tx3 should get added to the mempool, causing |
|
# tx4 to be removed (fails sequence-lock). |
|
self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) |
|
assert(tx4.hash not in self.nodes[0].getrawmempool()) |
|
assert(tx3.hash in self.nodes[0].getrawmempool()) |
|
|
|
# Now mine 2 empty blocks to reorg out the current tip (labeled tip-1 in |
|
# diagram above). |
|
# This would cause tx2 to be added back to the mempool, which in turn causes |
|
# tx3 to be removed. |
|
tip = int(self.nodes[0].getblockhash(self.nodes[0].getblockcount()-1), 16) |
|
height = self.nodes[0].getblockcount() |
|
for i in range(2): |
|
block = create_block(tip, create_coinbase(height), cur_time) |
|
block.nVersion = 3 |
|
block.rehash() |
|
block.solve() |
|
tip = block.sha256 |
|
height += 1 |
|
self.nodes[0].submitblock(ToHex(block)) |
|
cur_time += 1 |
|
|
|
mempool = self.nodes[0].getrawmempool() |
|
assert(tx3.hash not in mempool) |
|
assert(tx2.hash in mempool) |
|
|
|
# Reset the chain and get rid of the mocktimed-blocks |
|
self.nodes[0].setmocktime(0) |
|
self.nodes[0].invalidateblock(self.nodes[0].getblockhash(cur_height+1)) |
|
self.nodes[0].generate(10) |
|
|
|
# Make sure that BIP68 isn't being used to validate blocks, prior to |
|
# versionbits activation. If more blocks are mined prior to this test |
|
# being run, then it's possible the test has activated the soft fork, and |
|
# this test should be moved to run earlier, or deleted. |
|
def test_bip68_not_consensus(self): |
|
assert(get_bip9_status(self.nodes[0], 'csv')['status'] != 'active') |
|
txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2) |
|
|
|
tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid)) |
|
tx1.rehash() |
|
|
|
# Make an anyone-can-spend transaction |
|
tx2 = CTransaction() |
|
tx2.nVersion = 1 |
|
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)] |
|
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))] |
|
|
|
# sign tx2 |
|
tx2_raw = self.nodes[0].signrawtransaction(ToHex(tx2))["hex"] |
|
tx2 = FromHex(tx2, tx2_raw) |
|
tx2.rehash() |
|
|
|
self.nodes[0].sendrawtransaction(ToHex(tx2)) |
|
|
|
# Now make an invalid spend of tx2 according to BIP68 |
|
sequence_value = 100 # 100 block relative locktime |
|
|
|
tx3 = CTransaction() |
|
tx3.nVersion = 2 |
|
tx3.vin = [CTxIn(COutPoint(tx2.sha256, 0), nSequence=sequence_value)] |
|
tx3.vout = [CTxOut(int(tx2.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))] |
|
tx3.rehash() |
|
|
|
assert_raises_jsonrpc(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx3)) |
|
|
|
# make a block that violates bip68; ensure that the tip updates |
|
tip = int(self.nodes[0].getbestblockhash(), 16) |
|
block = create_block(tip, create_coinbase(self.nodes[0].getblockcount()+1)) |
|
block.nVersion = 3 |
|
block.vtx.extend([tx1, tx2, tx3]) |
|
block.hashMerkleRoot = block.calc_merkle_root() |
|
block.rehash() |
|
block.solve() |
|
|
|
self.nodes[0].submitblock(ToHex(block)) |
|
assert_equal(self.nodes[0].getbestblockhash(), block.hash) |
|
|
|
def activateCSV(self): |
|
# activation should happen at block height 432 (3 periods) |
|
min_activation_height = 432 |
|
height = self.nodes[0].getblockcount() |
|
assert(height < min_activation_height) |
|
self.nodes[0].generate(min_activation_height-height) |
|
assert(get_bip9_status(self.nodes[0], 'csv')['status'] == 'active') |
|
sync_blocks(self.nodes) |
|
|
|
# Use self.nodes[1] to test that version 2 transactions are standard. |
|
def test_version2_relay(self): |
|
inputs = [ ] |
|
outputs = { self.nodes[1].getnewaddress() : 1.0 } |
|
rawtx = self.nodes[1].createrawtransaction(inputs, outputs) |
|
rawtxfund = self.nodes[1].fundrawtransaction(rawtx)['hex'] |
|
tx = FromHex(CTransaction(), rawtxfund) |
|
tx.nVersion = 2 |
|
tx_signed = self.nodes[1].signrawtransaction(ToHex(tx))["hex"] |
|
tx_id = self.nodes[1].sendrawtransaction(tx_signed) |
|
|
|
if __name__ == '__main__': |
|
BIP68Test().main()
|
|
|