You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
8.8 KiB
296 lines
8.8 KiB
// Copyright (c) 2009-2010 Satoshi Nakamoto |
|
// Copyright (c) 2009-2017 The Bitcoin Core developers |
|
// Distributed under the MIT software license, see the accompanying |
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php. |
|
|
|
#ifndef BITCOIN_ARITH_UINT256_H |
|
#define BITCOIN_ARITH_UINT256_H |
|
|
|
#include <assert.h> |
|
#include <cstring> |
|
#include <stdexcept> |
|
#include <stdint.h> |
|
#include <string> |
|
#include <vector> |
|
|
|
class uint256; |
|
|
|
class uint_error : public std::runtime_error { |
|
public: |
|
explicit uint_error(const std::string& str) : std::runtime_error(str) {} |
|
}; |
|
|
|
/** Template base class for unsigned big integers. */ |
|
template<unsigned int BITS> |
|
class base_uint |
|
{ |
|
protected: |
|
static constexpr int WIDTH = BITS / 32; |
|
uint32_t pn[WIDTH]; |
|
public: |
|
|
|
base_uint() |
|
{ |
|
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32."); |
|
|
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] = 0; |
|
} |
|
|
|
base_uint(const base_uint& b) |
|
{ |
|
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32."); |
|
|
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] = b.pn[i]; |
|
} |
|
|
|
base_uint& operator=(const base_uint& b) |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] = b.pn[i]; |
|
return *this; |
|
} |
|
|
|
base_uint(uint64_t b) |
|
{ |
|
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32."); |
|
|
|
pn[0] = (unsigned int)b; |
|
pn[1] = (unsigned int)(b >> 32); |
|
for (int i = 2; i < WIDTH; i++) |
|
pn[i] = 0; |
|
} |
|
|
|
explicit base_uint(const std::string& str); |
|
|
|
bool operator!() const |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
if (pn[i] != 0) |
|
return false; |
|
return true; |
|
} |
|
|
|
const base_uint operator~() const |
|
{ |
|
base_uint ret; |
|
for (int i = 0; i < WIDTH; i++) |
|
ret.pn[i] = ~pn[i]; |
|
return ret; |
|
} |
|
|
|
const base_uint operator-() const |
|
{ |
|
base_uint ret; |
|
for (int i = 0; i < WIDTH; i++) |
|
ret.pn[i] = ~pn[i]; |
|
ret++; |
|
return ret; |
|
} |
|
|
|
double getdouble() const; |
|
|
|
base_uint& operator=(uint64_t b) |
|
{ |
|
pn[0] = (unsigned int)b; |
|
pn[1] = (unsigned int)(b >> 32); |
|
for (int i = 2; i < WIDTH; i++) |
|
pn[i] = 0; |
|
return *this; |
|
} |
|
|
|
base_uint& operator^=(const base_uint& b) |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] ^= b.pn[i]; |
|
return *this; |
|
} |
|
|
|
base_uint& operator&=(const base_uint& b) |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] &= b.pn[i]; |
|
return *this; |
|
} |
|
|
|
base_uint& operator|=(const base_uint& b) |
|
{ |
|
for (int i = 0; i < WIDTH; i++) |
|
pn[i] |= b.pn[i]; |
|
return *this; |
|
} |
|
|
|
base_uint& operator^=(uint64_t b) |
|
{ |
|
pn[0] ^= (unsigned int)b; |
|
pn[1] ^= (unsigned int)(b >> 32); |
|
return *this; |
|
} |
|
|
|
base_uint& operator|=(uint64_t b) |
|
{ |
|
pn[0] |= (unsigned int)b; |
|
pn[1] |= (unsigned int)(b >> 32); |
|
return *this; |
|
} |
|
|
|
base_uint& operator<<=(unsigned int shift); |
|
base_uint& operator>>=(unsigned int shift); |
|
|
|
base_uint& operator+=(const base_uint& b) |
|
{ |
|
uint64_t carry = 0; |
|
for (int i = 0; i < WIDTH; i++) |
|
{ |
|
uint64_t n = carry + pn[i] + b.pn[i]; |
|
pn[i] = n & 0xffffffff; |
|
carry = n >> 32; |
|
} |
|
return *this; |
|
} |
|
|
|
base_uint& operator-=(const base_uint& b) |
|
{ |
|
*this += -b; |
|
return *this; |
|
} |
|
|
|
base_uint& operator+=(uint64_t b64) |
|
{ |
|
base_uint b; |
|
b = b64; |
|
*this += b; |
|
return *this; |
|
} |
|
|
|
base_uint& operator-=(uint64_t b64) |
|
{ |
|
base_uint b; |
|
b = b64; |
|
*this += -b; |
|
return *this; |
|
} |
|
|
|
base_uint& operator*=(uint32_t b32); |
|
base_uint& operator*=(const base_uint& b); |
|
base_uint& operator/=(const base_uint& b); |
|
|
|
base_uint& operator++() |
|
{ |
|
// prefix operator |
|
int i = 0; |
|
while (i < WIDTH && ++pn[i] == 0) |
|
i++; |
|
return *this; |
|
} |
|
|
|
const base_uint operator++(int) |
|
{ |
|
// postfix operator |
|
const base_uint ret = *this; |
|
++(*this); |
|
return ret; |
|
} |
|
|
|
base_uint& operator--() |
|
{ |
|
// prefix operator |
|
int i = 0; |
|
while (i < WIDTH && --pn[i] == (uint32_t)-1) |
|
i++; |
|
return *this; |
|
} |
|
|
|
const base_uint operator--(int) |
|
{ |
|
// postfix operator |
|
const base_uint ret = *this; |
|
--(*this); |
|
return ret; |
|
} |
|
|
|
int CompareTo(const base_uint& b) const; |
|
bool EqualTo(uint64_t b) const; |
|
|
|
friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; } |
|
friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; } |
|
friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; } |
|
friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; } |
|
friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; } |
|
friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; } |
|
friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; } |
|
friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; } |
|
friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; } |
|
friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; } |
|
friend inline bool operator==(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; } |
|
friend inline bool operator!=(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) != 0; } |
|
friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; } |
|
friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; } |
|
friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; } |
|
friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; } |
|
friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); } |
|
friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); } |
|
|
|
std::string GetHex() const; |
|
void SetHex(const char* psz); |
|
void SetHex(const std::string& str); |
|
std::string ToString() const; |
|
|
|
unsigned int size() const |
|
{ |
|
return sizeof(pn); |
|
} |
|
|
|
/** |
|
* Returns the position of the highest bit set plus one, or zero if the |
|
* value is zero. |
|
*/ |
|
unsigned int bits() const; |
|
|
|
uint64_t GetLow64() const |
|
{ |
|
static_assert(WIDTH >= 2, "Assertion WIDTH >= 2 failed (WIDTH = BITS / 32). BITS is a template parameter."); |
|
return pn[0] | (uint64_t)pn[1] << 32; |
|
} |
|
}; |
|
|
|
/** 256-bit unsigned big integer. */ |
|
class arith_uint256 : public base_uint<256> { |
|
public: |
|
arith_uint256() {} |
|
arith_uint256(const base_uint<256>& b) : base_uint<256>(b) {} |
|
arith_uint256(uint64_t b) : base_uint<256>(b) {} |
|
explicit arith_uint256(const std::string& str) : base_uint<256>(str) {} |
|
|
|
/** |
|
* The "compact" format is a representation of a whole |
|
* number N using an unsigned 32bit number similar to a |
|
* floating point format. |
|
* The most significant 8 bits are the unsigned exponent of base 256. |
|
* This exponent can be thought of as "number of bytes of N". |
|
* The lower 23 bits are the mantissa. |
|
* Bit number 24 (0x800000) represents the sign of N. |
|
* N = (-1^sign) * mantissa * 256^(exponent-3) |
|
* |
|
* Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn(). |
|
* MPI uses the most significant bit of the first byte as sign. |
|
* Thus 0x1234560000 is compact (0x05123456) |
|
* and 0xc0de000000 is compact (0x0600c0de) |
|
* |
|
* Bitcoin only uses this "compact" format for encoding difficulty |
|
* targets, which are unsigned 256bit quantities. Thus, all the |
|
* complexities of the sign bit and using base 256 are probably an |
|
* implementation accident. |
|
*/ |
|
arith_uint256& SetCompact(uint32_t nCompact, bool *pfNegative = nullptr, bool *pfOverflow = nullptr); |
|
uint32_t GetCompact(bool fNegative = false) const; |
|
|
|
friend uint256 ArithToUint256(const arith_uint256 &); |
|
friend arith_uint256 UintToArith256(const uint256 &); |
|
}; |
|
|
|
uint256 ArithToUint256(const arith_uint256 &); |
|
arith_uint256 UintToArith256(const uint256 &); |
|
|
|
#endif // BITCOIN_ARITH_UINT256_H
|
|
|