#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Helpful routines for regression testing # import os import sys from binascii import hexlify, unhexlify from base64 import b64encode from decimal import Decimal, ROUND_DOWN import json import http.client import random import shutil import subprocess import time import re import errno from . import coverage from .authproxy import AuthServiceProxy, JSONRPCException COVERAGE_DIR = None # The maximum number of nodes a single test can spawn MAX_NODES = 8 # Don't assign rpc or p2p ports lower than this PORT_MIN = 11000 # The number of ports to "reserve" for p2p and rpc, each PORT_RANGE = 5000 class PortSeed: # Must be initialized with a unique integer for each process n = None #Set Mocktime default to OFF. #MOCKTIME is only needed for scripts that use the #cached version of the blockchain. If the cached #version of the blockchain is used without MOCKTIME #then the mempools will not sync due to IBD. MOCKTIME = 0 def enable_mocktime(): #For backwared compatibility of the python scripts #with previous versions of the cache, set MOCKTIME #to Jan 1, 2014 + (201 * 10 * 60) global MOCKTIME MOCKTIME = 1388534400 + (201 * 10 * 60) def disable_mocktime(): global MOCKTIME MOCKTIME = 0 def get_mocktime(): return MOCKTIME def enable_coverage(dirname): """Maintain a log of which RPC calls are made during testing.""" global COVERAGE_DIR COVERAGE_DIR = dirname def get_rpc_proxy(url, node_number, timeout=None): """ Args: url (str): URL of the RPC server to call node_number (int): the node number (or id) that this calls to Kwargs: timeout (int): HTTP timeout in seconds Returns: AuthServiceProxy. convenience object for making RPC calls. """ proxy_kwargs = {} if timeout is not None: proxy_kwargs['timeout'] = timeout proxy = AuthServiceProxy(url, **proxy_kwargs) proxy.url = url # store URL on proxy for info coverage_logfile = coverage.get_filename( COVERAGE_DIR, node_number) if COVERAGE_DIR else None return coverage.AuthServiceProxyWrapper(proxy, coverage_logfile) def p2p_port(n): assert(n <= MAX_NODES) return PORT_MIN + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def rpc_port(n): return PORT_MIN + PORT_RANGE + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def count_bytes(hex_string): return len(bytearray.fromhex(hex_string)) def bytes_to_hex_str(byte_str): return hexlify(byte_str).decode('ascii') def hex_str_to_bytes(hex_str): return unhexlify(hex_str.encode('ascii')) def str_to_b64str(string): return b64encode(string.encode('utf-8')).decode('ascii') def sync_blocks(rpc_connections, wait=1): """ Wait until everybody has the same block count """ while True: counts = [ x.getblockcount() for x in rpc_connections ] if counts == [ counts[0] ]*len(counts): break time.sleep(wait) def sync_mempools(rpc_connections, wait=1): """ Wait until everybody has the same transactions in their memory pools """ while True: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): break time.sleep(wait) bitcoind_processes = {} def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) rpc_u, rpc_p = rpc_auth_pair(n) with open(os.path.join(datadir, "bitcoin.conf"), 'w') as f: f.write("regtest=1\n") f.write("rpcuser=" + rpc_u + "\n") f.write("rpcpassword=" + rpc_p + "\n") f.write("port="+str(p2p_port(n))+"\n") f.write("rpcport="+str(rpc_port(n))+"\n") f.write("listenonion=0\n") return datadir def rpc_auth_pair(n): return 'rpcuser💻' + str(n), 'rpcpass🔑' + str(n) def rpc_url(i, rpchost=None): rpc_u, rpc_p = rpc_auth_pair(i) return "http://%s:%s@%s:%d" % (rpc_u, rpc_p, rpchost or '127.0.0.1', rpc_port(i)) def wait_for_bitcoind_start(process, url, i): ''' Wait for bitcoind to start. This means that RPC is accessible and fully initialized. Raise an exception if bitcoind exits during initialization. ''' while True: if process.poll() is not None: raise Exception('bitcoind exited with status %i during initialization' % process.returncode) try: rpc = get_rpc_proxy(url, i) blocks = rpc.getblockcount() break # break out of loop on success except IOError as e: if e.errno != errno.ECONNREFUSED: # Port not yet open? raise # unknown IO error except JSONRPCException as e: # Initialization phase if e.error['code'] != -28: # RPC in warmup? raise # unkown JSON RPC exception time.sleep(0.25) def initialize_chain(test_dir): """ Create (or copy from cache) a 200-block-long chain and 4 wallets. """ if (not os.path.isdir(os.path.join("cache","node0")) or not os.path.isdir(os.path.join("cache","node1")) or not os.path.isdir(os.path.join("cache","node2")) or not os.path.isdir(os.path.join("cache","node3"))): #find and delete old cache directories if any exist for i in range(4): if os.path.isdir(os.path.join("cache","node"+str(i))): shutil.rmtree(os.path.join("cache","node"+str(i))) # Create cache directories, run bitcoinds: for i in range(4): datadir=initialize_datadir("cache", i) args = [ os.getenv("BITCOIND", "bitcoind"), "-server", "-keypool=1", "-datadir="+datadir, "-discover=0" ] if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) if os.getenv("PYTHON_DEBUG", ""): print("initialize_chain: bitcoind started, waiting for RPC to come up") wait_for_bitcoind_start(bitcoind_processes[i], rpc_url(i), i) if os.getenv("PYTHON_DEBUG", ""): print("initialize_chain: RPC succesfully started") rpcs = [] for i in range(4): try: rpcs.append(get_rpc_proxy(rpc_url(i), i)) except: sys.stderr.write("Error connecting to "+url+"\n") sys.exit(1) # Create a 200-block-long chain; each of the 4 nodes # gets 25 mature blocks and 25 immature. # blocks are created with timestamps 10 minutes apart # starting from 2010 minutes in the past enable_mocktime() block_time = get_mocktime() - (201 * 10 * 60) for i in range(2): for peer in range(4): for j in range(25): set_node_times(rpcs, block_time) rpcs[peer].generate(1) block_time += 10*60 # Must sync before next peer starts generating blocks sync_blocks(rpcs) # Shut them down, and clean up cache directories: stop_nodes(rpcs) wait_bitcoinds() disable_mocktime() for i in range(4): os.remove(log_filename("cache", i, "debug.log")) os.remove(log_filename("cache", i, "db.log")) os.remove(log_filename("cache", i, "peers.dat")) os.remove(log_filename("cache", i, "fee_estimates.dat")) for i in range(4): from_dir = os.path.join("cache", "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) # Overwrite port/rpcport in bitcoin.conf def initialize_chain_clean(test_dir, num_nodes): """ Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization. """ for i in range(num_nodes): datadir=initialize_datadir(test_dir, i) def _rpchost_to_args(rpchost): '''Convert optional IP:port spec to rpcconnect/rpcport args''' if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): # remove IPv6 [...] wrapping rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dirname, extra_args=None, rpchost=None, timewait=None, binary=None): """ Start a bitcoind and return RPC connection to it """ datadir = os.path.join(dirname, "node"+str(i)) if binary is None: binary = os.getenv("BITCOIND", "bitcoind") args = [ binary, "-datadir="+datadir, "-server", "-keypool=1", "-discover=0", "-rest", "-mocktime="+str(get_mocktime()) ] if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args) if os.getenv("PYTHON_DEBUG", ""): print("start_node: bitcoind started, waiting for RPC to come up") url = rpc_url(i, rpchost) wait_for_bitcoind_start(bitcoind_processes[i], url, i) if os.getenv("PYTHON_DEBUG", ""): print("start_node: RPC succesfully started") proxy = get_rpc_proxy(url, i, timeout=timewait) if COVERAGE_DIR: coverage.write_all_rpc_commands(COVERAGE_DIR, proxy) return proxy def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None, binary=None): """ Start multiple bitcoinds, return RPC connections to them """ if extra_args is None: extra_args = [ None for _ in range(num_nodes) ] if binary is None: binary = [ None for _ in range(num_nodes) ] rpcs = [] try: for i in range(num_nodes): rpcs.append(start_node(i, dirname, extra_args[i], rpchost, binary=binary[i])) except: # If one node failed to start, stop the others stop_nodes(rpcs) raise return rpcs def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node"+str(n_node), "regtest", logname) def stop_node(node, i): try: node.stop() except http.client.CannotSendRequest as e: print("WARN: Unable to stop node: " + repr(e)) bitcoind_processes[i].wait() del bitcoind_processes[i] def stop_nodes(nodes): for node in nodes: try: node.stop() except http.client.CannotSendRequest as e: print("WARN: Unable to stop node: " + repr(e)) del nodes[:] # Emptying array closes connections as a side effect def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def wait_bitcoinds(): # Wait for all bitcoinds to cleanly exit for bitcoind in bitcoind_processes.values(): bitcoind.wait() bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >=0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using its output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_equal(thing1, thing2): if thing1 != thing2: raise AssertionError("%s != %s"%(str(thing1),str(thing2))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s"%(str(thing1),str(thing2))) def assert_raises(exc, fun, *args, **kwds): try: fun(*args, **kwds) except exc: pass except Exception as e: raise AssertionError("Unexpected exception raised: "+type(e).__name__) else: raise AssertionError("No exception raised") def assert_is_hex_string(string): try: int(string, 16) except Exception as e: raise AssertionError( "Couldn't interpret %r as hexadecimal; raised: %s" % (string, e)) def assert_is_hash_string(string, length=64): if not isinstance(string, str): raise AssertionError("Expected a string, got type %r" % type(string)) elif length and len(string) != length: raise AssertionError( "String of length %d expected; got %d" % (length, len(string))) elif not re.match('[abcdef0-9]+$', string): raise AssertionError( "String %r contains invalid characters for a hash." % string) def assert_array_result(object_array, to_match, expected, should_not_find = False): """ Pass in array of JSON objects, a dictionary with key/value pairs to match against, and another dictionary with expected key/value pairs. If the should_not_find flag is true, to_match should not be found in object_array """ if should_not_find == True: assert_equal(expected, { }) num_matched = 0 for item in object_array: all_match = True for key,value in to_match.items(): if item[key] != value: all_match = False if not all_match: continue elif should_not_find == True: num_matched = num_matched+1 for key,value in expected.items(): if item[key] != value: raise AssertionError("%s : expected %s=%s"%(str(item), str(key), str(value))) num_matched = num_matched+1 if num_matched == 0 and should_not_find != True: raise AssertionError("No objects matched %s"%(str(to_match))) if num_matched > 0 and should_not_find == True: raise AssertionError("Objects were found %s"%(str(to_match))) def satoshi_round(amount): return Decimal(amount).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) # Helper to create at least "count" utxos # Pass in a fee that is sufficient for relay and mining new transactions. def create_confirmed_utxos(fee, node, count): node.generate(int(0.5*count)+101) utxos = node.listunspent() iterations = count - len(utxos) addr1 = node.getnewaddress() addr2 = node.getnewaddress() if iterations <= 0: return utxos for i in range(iterations): t = utxos.pop() inputs = [] inputs.append({ "txid" : t["txid"], "vout" : t["vout"]}) outputs = {} send_value = t['amount'] - fee outputs[addr1] = satoshi_round(send_value/2) outputs[addr2] = satoshi_round(send_value/2) raw_tx = node.createrawtransaction(inputs, outputs) signed_tx = node.signrawtransaction(raw_tx)["hex"] txid = node.sendrawtransaction(signed_tx) while (node.getmempoolinfo()['size'] > 0): node.generate(1) utxos = node.listunspent() assert(len(utxos) >= count) return utxos # Create large OP_RETURN txouts that can be appended to a transaction # to make it large (helper for constructing large transactions). def gen_return_txouts(): # Some pre-processing to create a bunch of OP_RETURN txouts to insert into transactions we create # So we have big transactions (and therefore can't fit very many into each block) # create one script_pubkey script_pubkey = "6a4d0200" #OP_RETURN OP_PUSH2 512 bytes for i in range (512): script_pubkey = script_pubkey + "01" # concatenate 128 txouts of above script_pubkey which we'll insert before the txout for change txouts = "81" for k in range(128): # add txout value txouts = txouts + "0000000000000000" # add length of script_pubkey txouts = txouts + "fd0402" # add script_pubkey txouts = txouts + script_pubkey return txouts def create_tx(node, coinbase, to_address, amount): inputs = [{ "txid" : coinbase, "vout" : 0}] outputs = { to_address : amount } rawtx = node.createrawtransaction(inputs, outputs) signresult = node.signrawtransaction(rawtx) assert_equal(signresult["complete"], True) return signresult["hex"] # Create a spend of each passed-in utxo, splicing in "txouts" to each raw # transaction to make it large. See gen_return_txouts() above. def create_lots_of_big_transactions(node, txouts, utxos, fee): addr = node.getnewaddress() txids = [] for i in range(len(utxos)): t = utxos.pop() inputs = [] inputs.append({ "txid" : t["txid"], "vout" : t["vout"]}) outputs = {} send_value = t['amount'] - fee outputs[addr] = satoshi_round(send_value) rawtx = node.createrawtransaction(inputs, outputs) newtx = rawtx[0:92] newtx = newtx + txouts newtx = newtx + rawtx[94:] signresult = node.signrawtransaction(newtx, None, None, "NONE") txid = node.sendrawtransaction(signresult["hex"], True) txids.append(txid) return txids def get_bip9_status(node, key): info = node.getblockchaininfo() return info['bip9_softforks'][key]