#!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Bitcoin P2P network half-a-node. This python code was modified from ArtForz' public domain half-a-node, as found in the mini-node branch of http://github.com/jgarzik/pynode. NodeConn: an object which manages p2p connectivity to a bitcoin node NodeConnCB: a base class that describes the interface for receiving callbacks with network messages from a NodeConn CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: data structures that should map to corresponding structures in bitcoin/primitives msg_block, msg_tx, msg_headers, etc.: data structures that represent network messages ser_*, deser_*: functions that handle serialization/deserialization """ import asyncore from codecs import encode from collections import defaultdict import copy import hashlib from io import BytesIO import logging import random import socket import struct import sys import time from threading import RLock, Thread from test_framework.siphash import siphash256 from test_framework.util import hex_str_to_bytes, bytes_to_hex_str, wait_until BIP0031_VERSION = 60000 MY_VERSION = 70014 # past bip-31 for ping/pong MY_SUBVERSION = b"/python-mininode-tester:0.0.3/" MY_RELAY = 1 # from version 70001 onwards, fRelay should be appended to version messages (BIP37) MAX_INV_SZ = 50000 MAX_BLOCK_BASE_SIZE = 1000000 COIN = 100000000 # 1 btc in satoshis NODE_NETWORK = (1 << 0) NODE_GETUTXO = (1 << 1) NODE_BLOOM = (1 << 2) NODE_WITNESS = (1 << 3) NODE_UNSUPPORTED_SERVICE_BIT_5 = (1 << 5) NODE_UNSUPPORTED_SERVICE_BIT_7 = (1 << 7) logger = logging.getLogger("TestFramework.mininode") # Keep our own socket map for asyncore, so that we can track disconnects # ourselves (to workaround an issue with closing an asyncore socket when # using select) mininode_socket_map = dict() # One lock for synchronizing all data access between the networking thread (see # NetworkThread below) and the thread running the test logic. For simplicity, # NodeConn acquires this lock whenever delivering a message to a NodeConnCB, # and whenever adding anything to the send buffer (in send_message()). This # lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the NodeConnCB or NodeConn. mininode_lock = RLock() # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def ripemd160(s): return hashlib.new('ripemd160', s).digest() def hash256(s): return sha256(sha256(s)) def ser_compact_size(l): r = b"" if l < 253: r = struct.pack("B", l) elif l < 0x10000: r = struct.pack(">= 32 return rs def uint256_from_str(s): r = 0 t = struct.unpack("> 24) & 0xFF v = (c & 0xFFFFFF) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = deser_compact_size(f) r = [] for i in range(nit): t = c() t.deserialize(f) r.append(t) return r # ser_function_name: Allow for an alternate serialization function on the # entries in the vector (we use this for serializing the vector of transactions # for a witness block). def ser_vector(l, ser_function_name=None): r = ser_compact_size(len(l)) for i in l: if ser_function_name: r += getattr(i, ser_function_name)() else: r += i.serialize() return r def deser_uint256_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = ser_compact_size(len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = ser_compact_size(len(l)) for sv in l: r += ser_string(sv) return r def deser_int_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = struct.unpack("H", f.read(2))[0] def serialize(self): r = b"" r += struct.pack("H", self.port) return r def __repr__(self): return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices, self.ip, self.port) MSG_WITNESS_FLAG = 1<<30 class CInv(object): typemap = { 0: "Error", 1: "TX", 2: "Block", 1|MSG_WITNESS_FLAG: "WitnessTx", 2|MSG_WITNESS_FLAG : "WitnessBlock", 4: "CompactBlock" } def __init__(self, t=0, h=0): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack(" 21000000 * COIN: return False return True def __repr__(self): return "CTransaction(nVersion=%i vin=%s vout=%s wit=%s nLockTime=%i)" \ % (self.nVersion, repr(self.vin), repr(self.vout), repr(self.wit), self.nLockTime) class CBlockHeader(object): def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 1 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack(" 1: newhashes = [] for i in range(0, len(hashes), 2): i2 = min(i+1, len(hashes)-1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) return self.get_merkle_root(hashes) def calc_witness_merkle_root(self): # For witness root purposes, the hash of the # coinbase, with witness, is defined to be 0...0 hashes = [ser_uint256(0)] for tx in self.vtx[1:]: # Calculate the hashes with witness data hashes.append(ser_uint256(tx.calc_sha256(True))) return self.get_merkle_root(hashes) def is_valid(self): self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): self.rehash() target = uint256_from_compact(self.nBits) while self.sha256 > target: self.nNonce += 1 self.rehash() def __repr__(self): return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x vtx=%s)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx)) class CUnsignedAlert(object): def __init__(self): self.nVersion = 1 self.nRelayUntil = 0 self.nExpiration = 0 self.nID = 0 self.nCancel = 0 self.setCancel = [] self.nMinVer = 0 self.nMaxVer = 0 self.setSubVer = [] self.nPriority = 0 self.strComment = b"" self.strStatusBar = b"" self.strReserved = b"" def deserialize(self, f): self.nVersion = struct.unpack("= 106: self.addrFrom = CAddress() self.addrFrom.deserialize(f) self.nNonce = struct.unpack("= 209: self.nStartingHeight = struct.unpack("= 70001: # Relay field is optional for version 70001 onwards try: self.nRelay = struct.unpack(" class msg_headers(object): command = b"headers" def __init__(self): self.headers = [] def deserialize(self, f): # comment in bitcoind indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers=%s)" % repr(self.headers) class msg_reject(object): command = b"reject" REJECT_MALFORMED = 1 def __init__(self): self.message = b"" self.code = 0 self.reason = b"" self.data = 0 def deserialize(self, f): self.message = deser_string(f) self.code = struct.unpack(" BIP0031_VERSION: conn.send_message(msg_pong(message.nonce)) def on_verack(self, conn, message): conn.ver_recv = conn.ver_send self.verack_received = True def on_version(self, conn, message): if message.nVersion >= 209: conn.send_message(msg_verack()) conn.ver_send = min(MY_VERSION, message.nVersion) if message.nVersion < 209: conn.ver_recv = conn.ver_send conn.nServices = message.nServices # Connection helper methods def add_connection(self, conn): self.connection = conn def wait_for_disconnect(self, timeout=60): test_function = lambda: not self.connected wait_until(test_function, timeout=timeout, lock=mininode_lock) # Message receiving helper methods def wait_for_block(self, blockhash, timeout=60): test_function = lambda: self.last_message.get("block") and self.last_message["block"].block.rehash() == blockhash wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_getdata(self, timeout=60): test_function = lambda: self.last_message.get("getdata") wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_getheaders(self, timeout=60): test_function = lambda: self.last_message.get("getheaders") wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_inv(self, expected_inv, timeout=60): """Waits for an INV message and checks that the first inv object in the message was as expected.""" if len(expected_inv) > 1: raise NotImplementedError("wait_for_inv() will only verify the first inv object") test_function = lambda: self.last_message.get("inv") and \ self.last_message["inv"].inv[0].type == expected_inv[0].type and \ self.last_message["inv"].inv[0].hash == expected_inv[0].hash wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_verack(self, timeout=60): test_function = lambda: self.message_count["verack"] wait_until(test_function, timeout=timeout, lock=mininode_lock) # Message sending helper functions def send_message(self, message): if self.connection: self.connection.send_message(message) else: logger.error("Cannot send message. No connection to node!") def send_and_ping(self, message): self.send_message(message) self.sync_with_ping() # Sync up with the node def sync_with_ping(self, timeout=60): self.send_message(msg_ping(nonce=self.ping_counter)) test_function = lambda: self.last_message.get("pong") and self.last_message["pong"].nonce == self.ping_counter wait_until(test_function, timeout=timeout, lock=mininode_lock) self.ping_counter += 1 # The actual NodeConn class # This class provides an interface for a p2p connection to a specified node class NodeConn(asyncore.dispatcher): messagemap = { b"version": msg_version, b"verack": msg_verack, b"addr": msg_addr, b"alert": msg_alert, b"inv": msg_inv, b"getdata": msg_getdata, b"getblocks": msg_getblocks, b"tx": msg_tx, b"block": msg_block, b"getaddr": msg_getaddr, b"ping": msg_ping, b"pong": msg_pong, b"headers": msg_headers, b"getheaders": msg_getheaders, b"reject": msg_reject, b"mempool": msg_mempool, b"feefilter": msg_feefilter, b"sendheaders": msg_sendheaders, b"sendcmpct": msg_sendcmpct, b"cmpctblock": msg_cmpctblock, b"getblocktxn": msg_getblocktxn, b"blocktxn": msg_blocktxn } MAGIC_BYTES = { "mainnet": b"\xf9\xbe\xb4\xd9", # mainnet "testnet3": b"\x0b\x11\x09\x07", # testnet3 "regtest": b"\xfa\xbf\xb5\xda", # regtest } def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", services=NODE_NETWORK, send_version=True): asyncore.dispatcher.__init__(self, map=mininode_socket_map) self.dstaddr = dstaddr self.dstport = dstport self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.sendbuf = b"" self.recvbuf = b"" self.ver_send = 209 self.ver_recv = 209 self.last_sent = 0 self.state = "connecting" self.network = net self.cb = callback self.disconnect = False self.nServices = 0 if send_version: # stuff version msg into sendbuf vt = msg_version() vt.nServices = services vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.send_message(vt, True) logger.info('Connecting to Bitcoin Node: %s:%d' % (self.dstaddr, self.dstport)) try: self.connect((dstaddr, dstport)) except: self.handle_close() self.rpc = rpc def handle_connect(self): if self.state != "connected": logger.debug("Connected & Listening: %s:%d" % (self.dstaddr, self.dstport)) self.state = "connected" self.cb.on_open(self) def handle_close(self): logger.debug("Closing connection to: %s:%d" % (self.dstaddr, self.dstport)) self.state = "closed" self.recvbuf = b"" self.sendbuf = b"" try: self.close() except: pass self.cb.on_close(self) def handle_read(self): t = self.recv(8192) if len(t) > 0: self.recvbuf += t self.got_data() def readable(self): return True def writable(self): with mininode_lock: pre_connection = self.state == "connecting" length = len(self.sendbuf) return (length > 0 or pre_connection) def handle_write(self): with mininode_lock: # asyncore does not expose socket connection, only the first read/write # event, thus we must check connection manually here to know when we # actually connect if self.state == "connecting": self.handle_connect() if not self.writable(): return try: sent = self.send(self.sendbuf) except: self.handle_close() return self.sendbuf = self.sendbuf[sent:] def got_data(self): try: while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != self.MAGIC_BYTES[self.network]: raise ValueError("got garbage %s" % repr(self.recvbuf)) if self.ver_recv < 209: if len(self.recvbuf) < 4 + 12 + 4: return command = self.recvbuf[4:4+12].split(b"\x00", 1)[0] msglen = struct.unpack("= 209: th = sha256(data) h = sha256(th) tmsg += h[:4] tmsg += data with mininode_lock: self.sendbuf += tmsg self.last_sent = time.time() def got_message(self, message): if message.command == b"version": if message.nVersion <= BIP0031_VERSION: self.messagemap[b'ping'] = msg_ping_prebip31 if self.last_sent + 30 * 60 < time.time(): self.send_message(self.messagemap[b'ping']()) self._log_message("receive", message) self.cb.deliver(self, message) def _log_message(self, direction, msg): if direction == "send": log_message = "Send message to " elif direction == "receive": log_message = "Received message from " log_message += "%s:%d: %s" % (self.dstaddr, self.dstport, repr(msg)[:500]) if len(log_message) > 500: log_message += "... (msg truncated)" logger.debug(log_message) def disconnect_node(self): self.disconnect = True class NetworkThread(Thread): def run(self): while mininode_socket_map: # We check for whether to disconnect outside of the asyncore # loop to workaround the behavior of asyncore when using # select disconnected = [] for fd, obj in mininode_socket_map.items(): if obj.disconnect: disconnected.append(obj) [ obj.handle_close() for obj in disconnected ] asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1) logger.debug("Network thread closing") # An exception we can raise if we detect a potential disconnect # (p2p or rpc) before the test is complete class EarlyDisconnectError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value)