#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test block processing. This reimplements tests from the bitcoinj/FullBlockTestGenerator used by the pull-tester. We use the testing framework in which we expect a particular answer from each test. """ from test_framework.test_framework import ComparisonTestFramework from test_framework.util import * from test_framework.comptool import TestManager, TestInstance, RejectResult from test_framework.blocktools import * import time from test_framework.key import CECKey from test_framework.script import * import struct class PreviousSpendableOutput(object): def __init__(self, tx = CTransaction(), n = -1): self.tx = tx self.n = n # the output we're spending # Use this class for tests that require behavior other than normal "mininode" behavior. # For now, it is used to serialize a bloated varint (b64). class CBrokenBlock(CBlock): def __init__(self, header=None): super(CBrokenBlock, self).__init__(header) def initialize(self, base_block): self.vtx = copy.deepcopy(base_block.vtx) self.hashMerkleRoot = self.calc_merkle_root() def serialize(self): r = b"" r += super(CBlock, self).serialize() r += struct.pack("<BQ", 255, len(self.vtx)) for tx in self.vtx: r += tx.serialize() return r def normal_serialize(self): r = b"" r += super(CBrokenBlock, self).serialize() return r class FullBlockTest(ComparisonTestFramework): # Can either run this test as 1 node with expected answers, or two and compare them. # Change the "outcome" variable from each TestInstance object to only do the comparison. def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.block_heights = {} self.coinbase_key = CECKey() self.coinbase_key.set_secretbytes(b"horsebattery") self.coinbase_pubkey = self.coinbase_key.get_pubkey() self.tip = None self.blocks = {} def add_options(self, parser): super().add_options(parser) parser.add_option("--runbarelyexpensive", dest="runbarelyexpensive", default=True) def run_test(self): self.test = TestManager(self, self.options.tmpdir) self.test.add_all_connections(self.nodes) NetworkThread().start() # Start up network handling in another thread self.test.run() def add_transactions_to_block(self, block, tx_list): [ tx.rehash() for tx in tx_list ] block.vtx.extend(tx_list) # this is a little handier to use than the version in blocktools.py def create_tx(self, spend_tx, n, value, script=CScript([OP_TRUE])): tx = create_transaction(spend_tx, n, b"", value, script) return tx # sign a transaction, using the key we know about # this signs input 0 in tx, which is assumed to be spending output n in spend_tx def sign_tx(self, tx, spend_tx, n): scriptPubKey = bytearray(spend_tx.vout[n].scriptPubKey) if (scriptPubKey[0] == OP_TRUE): # an anyone-can-spend tx.vin[0].scriptSig = CScript() return (sighash, err) = SignatureHash(spend_tx.vout[n].scriptPubKey, tx, 0, SIGHASH_ALL) tx.vin[0].scriptSig = CScript([self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))]) def create_and_sign_transaction(self, spend_tx, n, value, script=CScript([OP_TRUE])): tx = self.create_tx(spend_tx, n, value, script) self.sign_tx(tx, spend_tx, n) tx.rehash() return tx def next_block(self, number, spend=None, additional_coinbase_value=0, script=CScript([OP_TRUE]), solve=True): if self.tip == None: base_block_hash = self.genesis_hash block_time = int(time.time())+1 else: base_block_hash = self.tip.sha256 block_time = self.tip.nTime + 1 # First create the coinbase height = self.block_heights[base_block_hash] + 1 coinbase = create_coinbase(height, self.coinbase_pubkey) coinbase.vout[0].nValue += additional_coinbase_value coinbase.rehash() if spend == None: block = create_block(base_block_hash, coinbase, block_time) else: coinbase.vout[0].nValue += spend.tx.vout[spend.n].nValue - 1 # all but one satoshi to fees coinbase.rehash() block = create_block(base_block_hash, coinbase, block_time) tx = create_transaction(spend.tx, spend.n, b"", 1, script) # spend 1 satoshi self.sign_tx(tx, spend.tx, spend.n) self.add_transactions_to_block(block, [tx]) block.hashMerkleRoot = block.calc_merkle_root() if solve: block.solve() self.tip = block self.block_heights[block.sha256] = height assert number not in self.blocks self.blocks[number] = block return block def get_tests(self): self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16) self.block_heights[self.genesis_hash] = 0 spendable_outputs = [] # save the current tip so it can be spent by a later block def save_spendable_output(): spendable_outputs.append(self.tip) # get an output that we previously marked as spendable def get_spendable_output(): return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0) # returns a test case that asserts that the current tip was accepted def accepted(): return TestInstance([[self.tip, True]]) # returns a test case that asserts that the current tip was rejected def rejected(reject = None): if reject is None: return TestInstance([[self.tip, False]]) else: return TestInstance([[self.tip, reject]]) # move the tip back to a previous block def tip(number): self.tip = self.blocks[number] # adds transactions to the block and updates state def update_block(block_number, new_transactions): block = self.blocks[block_number] self.add_transactions_to_block(block, new_transactions) old_sha256 = block.sha256 block.hashMerkleRoot = block.calc_merkle_root() block.solve() # Update the internal state just like in next_block self.tip = block if block.sha256 != old_sha256: self.block_heights[block.sha256] = self.block_heights[old_sha256] del self.block_heights[old_sha256] self.blocks[block_number] = block return block # shorthand for functions block = self.next_block create_tx = self.create_tx create_and_sign_tx = self.create_and_sign_transaction # these must be updated if consensus changes MAX_BLOCK_SIGOPS = 20000 # Create a new block block(0) save_spendable_output() yield accepted() # Now we need that block to mature so we can spend the coinbase. test = TestInstance(sync_every_block=False) for i in range(99): block(5000 + i) test.blocks_and_transactions.append([self.tip, True]) save_spendable_output() yield test # collect spendable outputs now to avoid cluttering the code later on out = [] for i in range(33): out.append(get_spendable_output()) # Start by building a couple of blocks on top (which output is spent is # in parentheses): # genesis -> b1 (0) -> b2 (1) block(1, spend=out[0]) save_spendable_output() yield accepted() block(2, spend=out[1]) yield accepted() save_spendable_output() # so fork like this: # # genesis -> b1 (0) -> b2 (1) # \-> b3 (1) # # Nothing should happen at this point. We saw b2 first so it takes priority. tip(1) b3 = block(3, spend=out[1]) txout_b3 = PreviousSpendableOutput(b3.vtx[1], 0) yield rejected() # Now we add another block to make the alternative chain longer. # # genesis -> b1 (0) -> b2 (1) # \-> b3 (1) -> b4 (2) block(4, spend=out[2]) yield accepted() # ... and back to the first chain. # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b3 (1) -> b4 (2) tip(2) block(5, spend=out[2]) save_spendable_output() yield rejected() block(6, spend=out[3]) yield accepted() # Try to create a fork that double-spends # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b7 (2) -> b8 (4) # \-> b3 (1) -> b4 (2) tip(5) block(7, spend=out[2]) yield rejected() block(8, spend=out[4]) yield rejected() # Try to create a block that has too much fee # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b9 (4) # \-> b3 (1) -> b4 (2) tip(6) block(9, spend=out[4], additional_coinbase_value=1) yield rejected(RejectResult(16, b'bad-cb-amount')) # Create a fork that ends in a block with too much fee (the one that causes the reorg) # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b10 (3) -> b11 (4) # \-> b3 (1) -> b4 (2) tip(5) block(10, spend=out[3]) yield rejected() block(11, spend=out[4], additional_coinbase_value=1) yield rejected(RejectResult(16, b'bad-cb-amount')) # Try again, but with a valid fork first # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b14 (5) # (b12 added last) # \-> b3 (1) -> b4 (2) tip(5) b12 = block(12, spend=out[3]) save_spendable_output() b13 = block(13, spend=out[4]) # Deliver the block header for b12, and the block b13. # b13 should be accepted but the tip won't advance until b12 is delivered. yield TestInstance([[CBlockHeader(b12), None], [b13, False]]) save_spendable_output() # b14 is invalid, but the node won't know that until it tries to connect # Tip still can't advance because b12 is missing block(14, spend=out[5], additional_coinbase_value=1) yield rejected() yield TestInstance([[b12, True, b13.sha256]]) # New tip should be b13. # Add a block with MAX_BLOCK_SIGOPS and one with one more sigop # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b16 (6) # \-> b3 (1) -> b4 (2) # Test that a block with a lot of checksigs is okay lots_of_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS - 1)) tip(13) block(15, spend=out[5], script=lots_of_checksigs) yield accepted() save_spendable_output() # Test that a block with too many checksigs is rejected too_many_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS)) block(16, spend=out[6], script=too_many_checksigs) yield rejected(RejectResult(16, b'bad-blk-sigops')) # Attempt to spend a transaction created on a different fork # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b17 (b3.vtx[1]) # \-> b3 (1) -> b4 (2) tip(15) block(17, spend=txout_b3) yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) # Attempt to spend a transaction created on a different fork (on a fork this time) # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) # \-> b18 (b3.vtx[1]) -> b19 (6) # \-> b3 (1) -> b4 (2) tip(13) block(18, spend=txout_b3) yield rejected() block(19, spend=out[6]) yield rejected() # Attempt to spend a coinbase at depth too low # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b20 (7) # \-> b3 (1) -> b4 (2) tip(15) block(20, spend=out[7]) yield rejected(RejectResult(16, b'bad-txns-premature-spend-of-coinbase')) # Attempt to spend a coinbase at depth too low (on a fork this time) # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) # \-> b21 (6) -> b22 (5) # \-> b3 (1) -> b4 (2) tip(13) block(21, spend=out[6]) yield rejected() block(22, spend=out[5]) yield rejected() # Create a block on either side of MAX_BLOCK_BASE_SIZE and make sure its accepted/rejected # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) # \-> b24 (6) -> b25 (7) # \-> b3 (1) -> b4 (2) tip(15) b23 = block(23, spend=out[6]) tx = CTransaction() script_length = MAX_BLOCK_BASE_SIZE - len(b23.serialize()) - 69 script_output = CScript([b'\x00' * script_length]) tx.vout.append(CTxOut(0, script_output)) tx.vin.append(CTxIn(COutPoint(b23.vtx[1].sha256, 0))) b23 = update_block(23, [tx]) # Make sure the math above worked out to produce a max-sized block assert_equal(len(b23.serialize()), MAX_BLOCK_BASE_SIZE) yield accepted() save_spendable_output() # Make the next block one byte bigger and check that it fails tip(15) b24 = block(24, spend=out[6]) script_length = MAX_BLOCK_BASE_SIZE - len(b24.serialize()) - 69 script_output = CScript([b'\x00' * (script_length+1)]) tx.vout = [CTxOut(0, script_output)] b24 = update_block(24, [tx]) assert_equal(len(b24.serialize()), MAX_BLOCK_BASE_SIZE+1) yield rejected(RejectResult(16, b'bad-blk-length')) block(25, spend=out[7]) yield rejected() # Create blocks with a coinbase input script size out of range # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) # \-> ... (6) -> ... (7) # \-> b3 (1) -> b4 (2) tip(15) b26 = block(26, spend=out[6]) b26.vtx[0].vin[0].scriptSig = b'\x00' b26.vtx[0].rehash() # update_block causes the merkle root to get updated, even with no new # transactions, and updates the required state. b26 = update_block(26, []) yield rejected(RejectResult(16, b'bad-cb-length')) # Extend the b26 chain to make sure bitcoind isn't accepting b26 block(27, spend=out[7]) yield rejected(False) # Now try a too-large-coinbase script tip(15) b28 = block(28, spend=out[6]) b28.vtx[0].vin[0].scriptSig = b'\x00' * 101 b28.vtx[0].rehash() b28 = update_block(28, []) yield rejected(RejectResult(16, b'bad-cb-length')) # Extend the b28 chain to make sure bitcoind isn't accepting b28 block(29, spend=out[7]) yield rejected(False) # b30 has a max-sized coinbase scriptSig. tip(23) b30 = block(30) b30.vtx[0].vin[0].scriptSig = b'\x00' * 100 b30.vtx[0].rehash() b30 = update_block(30, []) yield accepted() save_spendable_output() # b31 - b35 - check sigops of OP_CHECKMULTISIG / OP_CHECKMULTISIGVERIFY / OP_CHECKSIGVERIFY # # genesis -> ... -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) # \-> b36 (11) # \-> b34 (10) # \-> b32 (9) # # MULTISIG: each op code counts as 20 sigops. To create the edge case, pack another 19 sigops at the end. lots_of_multisigs = CScript([OP_CHECKMULTISIG] * ((MAX_BLOCK_SIGOPS-1) // 20) + [OP_CHECKSIG] * 19) b31 = block(31, spend=out[8], script=lots_of_multisigs) assert_equal(get_legacy_sigopcount_block(b31), MAX_BLOCK_SIGOPS) yield accepted() save_spendable_output() # this goes over the limit because the coinbase has one sigop too_many_multisigs = CScript([OP_CHECKMULTISIG] * (MAX_BLOCK_SIGOPS // 20)) b32 = block(32, spend=out[9], script=too_many_multisigs) assert_equal(get_legacy_sigopcount_block(b32), MAX_BLOCK_SIGOPS + 1) yield rejected(RejectResult(16, b'bad-blk-sigops')) # CHECKMULTISIGVERIFY tip(31) lots_of_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * ((MAX_BLOCK_SIGOPS-1) // 20) + [OP_CHECKSIG] * 19) block(33, spend=out[9], script=lots_of_multisigs) yield accepted() save_spendable_output() too_many_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * (MAX_BLOCK_SIGOPS // 20)) block(34, spend=out[10], script=too_many_multisigs) yield rejected(RejectResult(16, b'bad-blk-sigops')) # CHECKSIGVERIFY tip(33) lots_of_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS - 1)) b35 = block(35, spend=out[10], script=lots_of_checksigs) yield accepted() save_spendable_output() too_many_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS)) block(36, spend=out[11], script=too_many_checksigs) yield rejected(RejectResult(16, b'bad-blk-sigops')) # Check spending of a transaction in a block which failed to connect # # b6 (3) # b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) # \-> b37 (11) # \-> b38 (11/37) # # save 37's spendable output, but then double-spend out11 to invalidate the block tip(35) b37 = block(37, spend=out[11]) txout_b37 = PreviousSpendableOutput(b37.vtx[1], 0) tx = create_and_sign_tx(out[11].tx, out[11].n, 0) b37 = update_block(37, [tx]) yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) # attempt to spend b37's first non-coinbase tx, at which point b37 was still considered valid tip(35) block(38, spend=txout_b37) yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) # Check P2SH SigOp counting # # # 13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b41 (12) # \-> b40 (12) # # b39 - create some P2SH outputs that will require 6 sigops to spend: # # redeem_script = COINBASE_PUBKEY, (OP_2DUP+OP_CHECKSIGVERIFY) * 5, OP_CHECKSIG # p2sh_script = OP_HASH160, ripemd160(sha256(script)), OP_EQUAL # tip(35) b39 = block(39) b39_outputs = 0 b39_sigops_per_output = 6 # Build the redeem script, hash it, use hash to create the p2sh script redeem_script = CScript([self.coinbase_pubkey] + [OP_2DUP, OP_CHECKSIGVERIFY]*5 + [OP_CHECKSIG]) redeem_script_hash = hash160(redeem_script) p2sh_script = CScript([OP_HASH160, redeem_script_hash, OP_EQUAL]) # Create a transaction that spends one satoshi to the p2sh_script, the rest to OP_TRUE # This must be signed because it is spending a coinbase spend = out[11] tx = create_tx(spend.tx, spend.n, 1, p2sh_script) tx.vout.append(CTxOut(spend.tx.vout[spend.n].nValue - 1, CScript([OP_TRUE]))) self.sign_tx(tx, spend.tx, spend.n) tx.rehash() b39 = update_block(39, [tx]) b39_outputs += 1 # Until block is full, add tx's with 1 satoshi to p2sh_script, the rest to OP_TRUE tx_new = None tx_last = tx total_size=len(b39.serialize()) while(total_size < MAX_BLOCK_BASE_SIZE): tx_new = create_tx(tx_last, 1, 1, p2sh_script) tx_new.vout.append(CTxOut(tx_last.vout[1].nValue - 1, CScript([OP_TRUE]))) tx_new.rehash() total_size += len(tx_new.serialize()) if total_size >= MAX_BLOCK_BASE_SIZE: break b39.vtx.append(tx_new) # add tx to block tx_last = tx_new b39_outputs += 1 b39 = update_block(39, []) yield accepted() save_spendable_output() # Test sigops in P2SH redeem scripts # # b40 creates 3333 tx's spending the 6-sigop P2SH outputs from b39 for a total of 19998 sigops. # The first tx has one sigop and then at the end we add 2 more to put us just over the max. # # b41 does the same, less one, so it has the maximum sigops permitted. # tip(39) b40 = block(40, spend=out[12]) sigops = get_legacy_sigopcount_block(b40) numTxes = (MAX_BLOCK_SIGOPS - sigops) // b39_sigops_per_output assert_equal(numTxes <= b39_outputs, True) lastOutpoint = COutPoint(b40.vtx[1].sha256, 0) new_txs = [] for i in range(1, numTxes+1): tx = CTransaction() tx.vout.append(CTxOut(1, CScript([OP_TRUE]))) tx.vin.append(CTxIn(lastOutpoint, b'')) # second input is corresponding P2SH output from b39 tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b'')) # Note: must pass the redeem_script (not p2sh_script) to the signature hash function (sighash, err) = SignatureHash(redeem_script, tx, 1, SIGHASH_ALL) sig = self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL])) scriptSig = CScript([sig, redeem_script]) tx.vin[1].scriptSig = scriptSig tx.rehash() new_txs.append(tx) lastOutpoint = COutPoint(tx.sha256, 0) b40_sigops_to_fill = MAX_BLOCK_SIGOPS - (numTxes * b39_sigops_per_output + sigops) + 1 tx = CTransaction() tx.vin.append(CTxIn(lastOutpoint, b'')) tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b40_sigops_to_fill))) tx.rehash() new_txs.append(tx) update_block(40, new_txs) yield rejected(RejectResult(16, b'bad-blk-sigops')) # same as b40, but one less sigop tip(39) block(41, spend=None) update_block(41, b40.vtx[1:-1]) b41_sigops_to_fill = b40_sigops_to_fill - 1 tx = CTransaction() tx.vin.append(CTxIn(lastOutpoint, b'')) tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b41_sigops_to_fill))) tx.rehash() update_block(41, [tx]) yield accepted() # Fork off of b39 to create a constant base again # # b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) # \-> b41 (12) # tip(39) block(42, spend=out[12]) yield rejected() save_spendable_output() block(43, spend=out[13]) yield accepted() save_spendable_output() # Test a number of really invalid scenarios # # -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b44 (14) # \-> ??? (15) # The next few blocks are going to be created "by hand" since they'll do funky things, such as having # the first transaction be non-coinbase, etc. The purpose of b44 is to make sure this works. height = self.block_heights[self.tip.sha256] + 1 coinbase = create_coinbase(height, self.coinbase_pubkey) b44 = CBlock() b44.nTime = self.tip.nTime + 1 b44.hashPrevBlock = self.tip.sha256 b44.nBits = 0x207fffff b44.vtx.append(coinbase) b44.hashMerkleRoot = b44.calc_merkle_root() b44.solve() self.tip = b44 self.block_heights[b44.sha256] = height self.blocks[44] = b44 yield accepted() # A block with a non-coinbase as the first tx non_coinbase = create_tx(out[15].tx, out[15].n, 1) b45 = CBlock() b45.nTime = self.tip.nTime + 1 b45.hashPrevBlock = self.tip.sha256 b45.nBits = 0x207fffff b45.vtx.append(non_coinbase) b45.hashMerkleRoot = b45.calc_merkle_root() b45.calc_sha256() b45.solve() self.block_heights[b45.sha256] = self.block_heights[self.tip.sha256]+1 self.tip = b45 self.blocks[45] = b45 yield rejected(RejectResult(16, b'bad-cb-missing')) # A block with no txns tip(44) b46 = CBlock() b46.nTime = b44.nTime+1 b46.hashPrevBlock = b44.sha256 b46.nBits = 0x207fffff b46.vtx = [] b46.hashMerkleRoot = 0 b46.solve() self.block_heights[b46.sha256] = self.block_heights[b44.sha256]+1 self.tip = b46 assert 46 not in self.blocks self.blocks[46] = b46 s = ser_uint256(b46.hashMerkleRoot) yield rejected(RejectResult(16, b'bad-blk-length')) # A block with invalid work tip(44) b47 = block(47, solve=False) target = uint256_from_compact(b47.nBits) while b47.sha256 < target: #changed > to < b47.nNonce += 1 b47.rehash() yield rejected(RejectResult(16, b'high-hash')) # A block with timestamp > 2 hrs in the future tip(44) b48 = block(48, solve=False) b48.nTime = int(time.time()) + 60 * 60 * 3 b48.solve() yield rejected(RejectResult(16, b'time-too-new')) # A block with an invalid merkle hash tip(44) b49 = block(49) b49.hashMerkleRoot += 1 b49.solve() yield rejected(RejectResult(16, b'bad-txnmrklroot')) # A block with an incorrect POW limit tip(44) b50 = block(50) b50.nBits = b50.nBits - 1 b50.solve() yield rejected(RejectResult(16, b'bad-diffbits')) # A block with two coinbase txns tip(44) b51 = block(51) cb2 = create_coinbase(51, self.coinbase_pubkey) b51 = update_block(51, [cb2]) yield rejected(RejectResult(16, b'bad-cb-multiple')) # A block w/ duplicate txns # Note: txns have to be in the right position in the merkle tree to trigger this error tip(44) b52 = block(52, spend=out[15]) tx = create_tx(b52.vtx[1], 0, 1) b52 = update_block(52, [tx, tx]) yield rejected(RejectResult(16, b'bad-txns-duplicate')) # Test block timestamps # -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) # \-> b54 (15) # tip(43) block(53, spend=out[14]) yield rejected() # rejected since b44 is at same height save_spendable_output() # invalid timestamp (b35 is 5 blocks back, so its time is MedianTimePast) b54 = block(54, spend=out[15]) b54.nTime = b35.nTime - 1 b54.solve() yield rejected(RejectResult(16, b'time-too-old')) # valid timestamp tip(53) b55 = block(55, spend=out[15]) b55.nTime = b35.nTime update_block(55, []) yield accepted() save_spendable_output() # Test CVE-2012-2459 # # -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57p2 (16) # \-> b57 (16) # \-> b56p2 (16) # \-> b56 (16) # # Merkle tree malleability (CVE-2012-2459): repeating sequences of transactions in a block without # affecting the merkle root of a block, while still invalidating it. # See: src/consensus/merkle.h # # b57 has three txns: coinbase, tx, tx1. The merkle root computation will duplicate tx. # Result: OK # # b56 copies b57 but duplicates tx1 and does not recalculate the block hash. So it has a valid merkle # root but duplicate transactions. # Result: Fails # # b57p2 has six transactions in its merkle tree: # - coinbase, tx, tx1, tx2, tx3, tx4 # Merkle root calculation will duplicate as necessary. # Result: OK. # # b56p2 copies b57p2 but adds both tx3 and tx4. The purpose of the test is to make sure the code catches # duplicate txns that are not next to one another with the "bad-txns-duplicate" error (which indicates # that the error was caught early, avoiding a DOS vulnerability.) # b57 - a good block with 2 txs, don't submit until end tip(55) b57 = block(57) tx = create_and_sign_tx(out[16].tx, out[16].n, 1) tx1 = create_tx(tx, 0, 1) b57 = update_block(57, [tx, tx1]) # b56 - copy b57, add a duplicate tx tip(55) b56 = copy.deepcopy(b57) self.blocks[56] = b56 assert_equal(len(b56.vtx),3) b56 = update_block(56, [tx1]) assert_equal(b56.hash, b57.hash) yield rejected(RejectResult(16, b'bad-txns-duplicate')) # b57p2 - a good block with 6 tx'es, don't submit until end tip(55) b57p2 = block("57p2") tx = create_and_sign_tx(out[16].tx, out[16].n, 1) tx1 = create_tx(tx, 0, 1) tx2 = create_tx(tx1, 0, 1) tx3 = create_tx(tx2, 0, 1) tx4 = create_tx(tx3, 0, 1) b57p2 = update_block("57p2", [tx, tx1, tx2, tx3, tx4]) # b56p2 - copy b57p2, duplicate two non-consecutive tx's tip(55) b56p2 = copy.deepcopy(b57p2) self.blocks["b56p2"] = b56p2 assert_equal(b56p2.hash, b57p2.hash) assert_equal(len(b56p2.vtx),6) b56p2 = update_block("b56p2", [tx3, tx4]) yield rejected(RejectResult(16, b'bad-txns-duplicate')) tip("57p2") yield accepted() tip(57) yield rejected() #rejected because 57p2 seen first save_spendable_output() # Test a few invalid tx types # # -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) # \-> ??? (17) # # tx with prevout.n out of range tip(57) b58 = block(58, spend=out[17]) tx = CTransaction() assert(len(out[17].tx.vout) < 42) tx.vin.append(CTxIn(COutPoint(out[17].tx.sha256, 42), CScript([OP_TRUE]), 0xffffffff)) tx.vout.append(CTxOut(0, b"")) tx.calc_sha256() b58 = update_block(58, [tx]) yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) # tx with output value > input value out of range tip(57) b59 = block(59) tx = create_and_sign_tx(out[17].tx, out[17].n, 51*COIN) b59 = update_block(59, [tx]) yield rejected(RejectResult(16, b'bad-txns-in-belowout')) # reset to good chain tip(57) b60 = block(60, spend=out[17]) yield accepted() save_spendable_output() # Test BIP30 # # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) # \-> b61 (18) # # Blocks are not allowed to contain a transaction whose id matches that of an earlier, # not-fully-spent transaction in the same chain. To test, make identical coinbases; # the second one should be rejected. # tip(60) b61 = block(61, spend=out[18]) b61.vtx[0].vin[0].scriptSig = b60.vtx[0].vin[0].scriptSig #equalize the coinbases b61.vtx[0].rehash() b61 = update_block(61, []) assert_equal(b60.vtx[0].serialize(), b61.vtx[0].serialize()) yield rejected(RejectResult(16, b'bad-txns-BIP30')) # Test tx.isFinal is properly rejected (not an exhaustive tx.isFinal test, that should be in data-driven transaction tests) # # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) # \-> b62 (18) # tip(60) b62 = block(62) tx = CTransaction() tx.nLockTime = 0xffffffff #this locktime is non-final assert(out[18].n < len(out[18].tx.vout)) tx.vin.append(CTxIn(COutPoint(out[18].tx.sha256, out[18].n))) # don't set nSequence tx.vout.append(CTxOut(0, CScript([OP_TRUE]))) assert(tx.vin[0].nSequence < 0xffffffff) tx.calc_sha256() b62 = update_block(62, [tx]) yield rejected(RejectResult(16, b'bad-txns-nonfinal')) # Test a non-final coinbase is also rejected # # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) # \-> b63 (-) # tip(60) b63 = block(63) b63.vtx[0].nLockTime = 0xffffffff b63.vtx[0].vin[0].nSequence = 0xDEADBEEF b63.vtx[0].rehash() b63 = update_block(63, []) yield rejected(RejectResult(16, b'bad-txns-nonfinal')) # This checks that a block with a bloated VARINT between the block_header and the array of tx such that # the block is > MAX_BLOCK_BASE_SIZE with the bloated varint, but <= MAX_BLOCK_BASE_SIZE without the bloated varint, # does not cause a subsequent, identical block with canonical encoding to be rejected. The test does not # care whether the bloated block is accepted or rejected; it only cares that the second block is accepted. # # What matters is that the receiving node should not reject the bloated block, and then reject the canonical # block on the basis that it's the same as an already-rejected block (which would be a consensus failure.) # # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) # \ # b64a (18) # b64a is a bloated block (non-canonical varint) # b64 is a good block (same as b64 but w/ canonical varint) # tip(60) regular_block = block("64a", spend=out[18]) # make it a "broken_block," with non-canonical serialization b64a = CBrokenBlock(regular_block) b64a.initialize(regular_block) self.blocks["64a"] = b64a self.tip = b64a tx = CTransaction() # use canonical serialization to calculate size script_length = MAX_BLOCK_BASE_SIZE - len(b64a.normal_serialize()) - 69 script_output = CScript([b'\x00' * script_length]) tx.vout.append(CTxOut(0, script_output)) tx.vin.append(CTxIn(COutPoint(b64a.vtx[1].sha256, 0))) b64a = update_block("64a", [tx]) assert_equal(len(b64a.serialize()), MAX_BLOCK_BASE_SIZE + 8) yield TestInstance([[self.tip, None]]) # comptool workaround: to make sure b64 is delivered, manually erase b64a from blockstore self.test.block_store.erase(b64a.sha256) tip(60) b64 = CBlock(b64a) b64.vtx = copy.deepcopy(b64a.vtx) assert_equal(b64.hash, b64a.hash) assert_equal(len(b64.serialize()), MAX_BLOCK_BASE_SIZE) self.blocks[64] = b64 update_block(64, []) yield accepted() save_spendable_output() # Spend an output created in the block itself # # -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) # tip(64) block(65) tx1 = create_and_sign_tx(out[19].tx, out[19].n, out[19].tx.vout[0].nValue) tx2 = create_and_sign_tx(tx1, 0, 0) update_block(65, [tx1, tx2]) yield accepted() save_spendable_output() # Attempt to spend an output created later in the same block # # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) # \-> b66 (20) tip(65) block(66) tx1 = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue) tx2 = create_and_sign_tx(tx1, 0, 1) update_block(66, [tx2, tx1]) yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) # Attempt to double-spend a transaction created in a block # # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) # \-> b67 (20) # # tip(65) block(67) tx1 = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue) tx2 = create_and_sign_tx(tx1, 0, 1) tx3 = create_and_sign_tx(tx1, 0, 2) update_block(67, [tx1, tx2, tx3]) yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) # More tests of block subsidy # # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) # \-> b68 (20) # # b68 - coinbase with an extra 10 satoshis, # creates a tx that has 9 satoshis from out[20] go to fees # this fails because the coinbase is trying to claim 1 satoshi too much in fees # # b69 - coinbase with extra 10 satoshis, and a tx that gives a 10 satoshi fee # this succeeds # tip(65) block(68, additional_coinbase_value=10) tx = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue-9) update_block(68, [tx]) yield rejected(RejectResult(16, b'bad-cb-amount')) tip(65) b69 = block(69, additional_coinbase_value=10) tx = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue-10) update_block(69, [tx]) yield accepted() save_spendable_output() # Test spending the outpoint of a non-existent transaction # # -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) # \-> b70 (21) # tip(69) block(70, spend=out[21]) bogus_tx = CTransaction() bogus_tx.sha256 = uint256_from_str(b"23c70ed7c0506e9178fc1a987f40a33946d4ad4c962b5ae3a52546da53af0c5c") tx = CTransaction() tx.vin.append(CTxIn(COutPoint(bogus_tx.sha256, 0), b"", 0xffffffff)) tx.vout.append(CTxOut(1, b"")) update_block(70, [tx]) yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) # Test accepting an invalid block which has the same hash as a valid one (via merkle tree tricks) # # -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21) # \-> b71 (21) # # b72 is a good block. # b71 is a copy of 72, but re-adds one of its transactions. However, it has the same hash as b71. # tip(69) b72 = block(72) tx1 = create_and_sign_tx(out[21].tx, out[21].n, 2) tx2 = create_and_sign_tx(tx1, 0, 1) b72 = update_block(72, [tx1, tx2]) # now tip is 72 b71 = copy.deepcopy(b72) b71.vtx.append(tx2) # add duplicate tx2 self.block_heights[b71.sha256] = self.block_heights[b69.sha256] + 1 # b71 builds off b69 self.blocks[71] = b71 assert_equal(len(b71.vtx), 4) assert_equal(len(b72.vtx), 3) assert_equal(b72.sha256, b71.sha256) tip(71) yield rejected(RejectResult(16, b'bad-txns-duplicate')) tip(72) yield accepted() save_spendable_output() # Test some invalid scripts and MAX_BLOCK_SIGOPS # # -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21) # \-> b** (22) # # b73 - tx with excessive sigops that are placed after an excessively large script element. # The purpose of the test is to make sure those sigops are counted. # # script is a bytearray of size 20,526 # # bytearray[0-19,998] : OP_CHECKSIG # bytearray[19,999] : OP_PUSHDATA4 # bytearray[20,000-20,003]: 521 (max_script_element_size+1, in little-endian format) # bytearray[20,004-20,525]: unread data (script_element) # bytearray[20,526] : OP_CHECKSIG (this puts us over the limit) # tip(72) b73 = block(73) size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 + 1 a = bytearray([OP_CHECKSIG] * size) a[MAX_BLOCK_SIGOPS - 1] = int("4e",16) # OP_PUSHDATA4 element_size = MAX_SCRIPT_ELEMENT_SIZE + 1 a[MAX_BLOCK_SIGOPS] = element_size % 256 a[MAX_BLOCK_SIGOPS+1] = element_size // 256 a[MAX_BLOCK_SIGOPS+2] = 0 a[MAX_BLOCK_SIGOPS+3] = 0 tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a)) b73 = update_block(73, [tx]) assert_equal(get_legacy_sigopcount_block(b73), MAX_BLOCK_SIGOPS+1) yield rejected(RejectResult(16, b'bad-blk-sigops')) # b74/75 - if we push an invalid script element, all prevous sigops are counted, # but sigops after the element are not counted. # # The invalid script element is that the push_data indicates that # there will be a large amount of data (0xffffff bytes), but we only # provide a much smaller number. These bytes are CHECKSIGS so they would # cause b75 to fail for excessive sigops, if those bytes were counted. # # b74 fails because we put MAX_BLOCK_SIGOPS+1 before the element # b75 succeeds because we put MAX_BLOCK_SIGOPS before the element # # tip(72) b74 = block(74) size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42 # total = 20,561 a = bytearray([OP_CHECKSIG] * size) a[MAX_BLOCK_SIGOPS] = 0x4e a[MAX_BLOCK_SIGOPS+1] = 0xfe a[MAX_BLOCK_SIGOPS+2] = 0xff a[MAX_BLOCK_SIGOPS+3] = 0xff a[MAX_BLOCK_SIGOPS+4] = 0xff tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a)) b74 = update_block(74, [tx]) yield rejected(RejectResult(16, b'bad-blk-sigops')) tip(72) b75 = block(75) size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42 a = bytearray([OP_CHECKSIG] * size) a[MAX_BLOCK_SIGOPS-1] = 0x4e a[MAX_BLOCK_SIGOPS] = 0xff a[MAX_BLOCK_SIGOPS+1] = 0xff a[MAX_BLOCK_SIGOPS+2] = 0xff a[MAX_BLOCK_SIGOPS+3] = 0xff tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a)) b75 = update_block(75, [tx]) yield accepted() save_spendable_output() # Check that if we push an element filled with CHECKSIGs, they are not counted tip(75) b76 = block(76) size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 a = bytearray([OP_CHECKSIG] * size) a[MAX_BLOCK_SIGOPS-1] = 0x4e # PUSHDATA4, but leave the following bytes as just checksigs tx = create_and_sign_tx(out[23].tx, 0, 1, CScript(a)) b76 = update_block(76, [tx]) yield accepted() save_spendable_output() # Test transaction resurrection # # -> b77 (24) -> b78 (25) -> b79 (26) # \-> b80 (25) -> b81 (26) -> b82 (27) # # b78 creates a tx, which is spent in b79. After b82, both should be in mempool # # The tx'es must be unsigned and pass the node's mempool policy. It is unsigned for the # rather obscure reason that the Python signature code does not distinguish between # Low-S and High-S values (whereas the bitcoin code has custom code which does so); # as a result of which, the odds are 50% that the python code will use the right # value and the transaction will be accepted into the mempool. Until we modify the # test framework to support low-S signing, we are out of luck. # # To get around this issue, we construct transactions which are not signed and which # spend to OP_TRUE. If the standard-ness rules change, this test would need to be # updated. (Perhaps to spend to a P2SH OP_TRUE script) # tip(76) block(77) tx77 = create_and_sign_tx(out[24].tx, out[24].n, 10*COIN) update_block(77, [tx77]) yield accepted() save_spendable_output() block(78) tx78 = create_tx(tx77, 0, 9*COIN) update_block(78, [tx78]) yield accepted() block(79) tx79 = create_tx(tx78, 0, 8*COIN) update_block(79, [tx79]) yield accepted() # mempool should be empty assert_equal(len(self.nodes[0].getrawmempool()), 0) tip(77) block(80, spend=out[25]) yield rejected() save_spendable_output() block(81, spend=out[26]) yield rejected() # other chain is same length save_spendable_output() block(82, spend=out[27]) yield accepted() # now this chain is longer, triggers re-org save_spendable_output() # now check that tx78 and tx79 have been put back into the peer's mempool mempool = self.nodes[0].getrawmempool() assert_equal(len(mempool), 2) assert(tx78.hash in mempool) assert(tx79.hash in mempool) # Test invalid opcodes in dead execution paths. # # -> b81 (26) -> b82 (27) -> b83 (28) # block(83) op_codes = [OP_IF, OP_INVALIDOPCODE, OP_ELSE, OP_TRUE, OP_ENDIF] script = CScript(op_codes) tx1 = create_and_sign_tx(out[28].tx, out[28].n, out[28].tx.vout[0].nValue, script) tx2 = create_and_sign_tx(tx1, 0, 0, CScript([OP_TRUE])) tx2.vin[0].scriptSig = CScript([OP_FALSE]) tx2.rehash() update_block(83, [tx1, tx2]) yield accepted() save_spendable_output() # Reorg on/off blocks that have OP_RETURN in them (and try to spend them) # # -> b81 (26) -> b82 (27) -> b83 (28) -> b84 (29) -> b87 (30) -> b88 (31) # \-> b85 (29) -> b86 (30) \-> b89a (32) # # block(84) tx1 = create_tx(out[29].tx, out[29].n, 0, CScript([OP_RETURN])) tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) tx1.calc_sha256() self.sign_tx(tx1, out[29].tx, out[29].n) tx1.rehash() tx2 = create_tx(tx1, 1, 0, CScript([OP_RETURN])) tx2.vout.append(CTxOut(0, CScript([OP_RETURN]))) tx3 = create_tx(tx1, 2, 0, CScript([OP_RETURN])) tx3.vout.append(CTxOut(0, CScript([OP_TRUE]))) tx4 = create_tx(tx1, 3, 0, CScript([OP_TRUE])) tx4.vout.append(CTxOut(0, CScript([OP_RETURN]))) tx5 = create_tx(tx1, 4, 0, CScript([OP_RETURN])) update_block(84, [tx1,tx2,tx3,tx4,tx5]) yield accepted() save_spendable_output() tip(83) block(85, spend=out[29]) yield rejected() block(86, spend=out[30]) yield accepted() tip(84) block(87, spend=out[30]) yield rejected() save_spendable_output() block(88, spend=out[31]) yield accepted() save_spendable_output() # trying to spend the OP_RETURN output is rejected block("89a", spend=out[32]) tx = create_tx(tx1, 0, 0, CScript([OP_TRUE])) update_block("89a", [tx]) yield rejected() # Test re-org of a week's worth of blocks (1088 blocks) # This test takes a minute or two and can be accomplished in memory # if self.options.runbarelyexpensive: tip(88) LARGE_REORG_SIZE = 1088 test1 = TestInstance(sync_every_block=False) spend=out[32] for i in range(89, LARGE_REORG_SIZE + 89): b = block(i, spend) tx = CTransaction() script_length = MAX_BLOCK_BASE_SIZE - len(b.serialize()) - 69 script_output = CScript([b'\x00' * script_length]) tx.vout.append(CTxOut(0, script_output)) tx.vin.append(CTxIn(COutPoint(b.vtx[1].sha256, 0))) b = update_block(i, [tx]) assert_equal(len(b.serialize()), MAX_BLOCK_BASE_SIZE) test1.blocks_and_transactions.append([self.tip, True]) save_spendable_output() spend = get_spendable_output() yield test1 chain1_tip = i # now create alt chain of same length tip(88) test2 = TestInstance(sync_every_block=False) for i in range(89, LARGE_REORG_SIZE + 89): block("alt"+str(i)) test2.blocks_and_transactions.append([self.tip, False]) yield test2 # extend alt chain to trigger re-org block("alt" + str(chain1_tip + 1)) yield accepted() # ... and re-org back to the first chain tip(chain1_tip) block(chain1_tip + 1) yield rejected() block(chain1_tip + 2) yield accepted() chain1_tip += 2 if __name__ == '__main__': FullBlockTest().main()