// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2012 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_MAIN_H #define BITCOIN_MAIN_H #include "bignum.h" #include "sync.h" #include "net.h" #include "script.h" #include class CWallet; class CBlock; class CBlockIndex; class CKeyItem; class CReserveKey; class CAddress; class CInv; class CNode; struct CBlockIndexWorkComparator; /** The maximum allowed size for a serialized block, in bytes (network rule) */ static const unsigned int MAX_BLOCK_SIZE = 1000000; /** The maximum size for mined blocks */ static const unsigned int MAX_BLOCK_SIZE_GEN = MAX_BLOCK_SIZE/2; /** The maximum size for transactions we're willing to relay/mine */ static const unsigned int MAX_STANDARD_TX_SIZE = MAX_BLOCK_SIZE_GEN/5; /** The maximum allowed number of signature check operations in a block (network rule) */ static const unsigned int MAX_BLOCK_SIGOPS = MAX_BLOCK_SIZE/50; /** The maximum number of orphan transactions kept in memory */ static const unsigned int MAX_ORPHAN_TRANSACTIONS = MAX_BLOCK_SIZE/100; /** The maximum number of entries in an 'inv' protocol message */ static const unsigned int MAX_INV_SZ = 50000; /** The maximum size of a blk?????.dat file (since 0.8) */ static const unsigned int MAX_BLOCKFILE_SIZE = 0x8000000; // 128 MiB /** The pre-allocation chunk size for blk?????.dat files (since 0.8) */ static const unsigned int BLOCKFILE_CHUNK_SIZE = 0x1000000; // 16 MiB /** The pre-allocation chunk size for rev?????.dat files (since 0.8) */ static const unsigned int UNDOFILE_CHUNK_SIZE = 0x100000; // 1 MiB /** Fake height value used in CCoins to signify they are only in the memory pool (since 0.8) */ static const unsigned int MEMPOOL_HEIGHT = 0x7FFFFFFF; /** Fees smaller than this (in satoshi) are considered zero fee (for transaction creation) */ static const int64 MIN_TX_FEE = 50000; /** Fees smaller than this (in satoshi) are considered zero fee (for relaying) */ static const int64 MIN_RELAY_TX_FEE = 10000; /** No amount larger than this (in satoshi) is valid */ static const int64 MAX_MONEY = 21000000 * COIN; inline bool MoneyRange(int64 nValue) { return (nValue >= 0 && nValue <= MAX_MONEY); } /** Coinbase transaction outputs can only be spent after this number of new blocks (network rule) */ static const int COINBASE_MATURITY = 100; /** Threshold for nLockTime: below this value it is interpreted as block number, otherwise as UNIX timestamp. */ static const unsigned int LOCKTIME_THRESHOLD = 500000000; // Tue Nov 5 00:53:20 1985 UTC /** Maximum number of script-checking threads allowed */ static const int MAX_SCRIPTCHECK_THREADS = 16; #ifdef USE_UPNP static const int fHaveUPnP = true; #else static const int fHaveUPnP = false; #endif extern CScript COINBASE_FLAGS; extern CCriticalSection cs_main; extern std::map mapBlockIndex; extern std::set setBlockIndexValid; extern uint256 hashGenesisBlock; extern CBlockIndex* pindexGenesisBlock; extern int nBestHeight; extern CBigNum bnBestChainWork; extern CBigNum bnBestInvalidWork; extern uint256 hashBestChain; extern CBlockIndex* pindexBest; extern unsigned int nTransactionsUpdated; extern uint64 nLastBlockTx; extern uint64 nLastBlockSize; extern const std::string strMessageMagic; extern double dHashesPerSec; extern int64 nHPSTimerStart; extern int64 nTimeBestReceived; extern CCriticalSection cs_setpwalletRegistered; extern std::set setpwalletRegistered; extern unsigned char pchMessageStart[4]; extern bool fImporting; extern bool fReindex; extern bool fBenchmark; extern int nScriptCheckThreads; extern bool fTxIndex; extern unsigned int nCoinCacheSize; // Settings extern int64 nTransactionFee; // Minimum disk space required - used in CheckDiskSpace() static const uint64 nMinDiskSpace = 52428800; class CReserveKey; class CCoinsDB; class CBlockTreeDB; struct CDiskBlockPos; class CCoins; class CTxUndo; class CCoinsView; class CCoinsViewCache; class CScriptCheck; class CValidationState; struct CBlockTemplate; /** Register a wallet to receive updates from core */ void RegisterWallet(CWallet* pwalletIn); /** Unregister a wallet from core */ void UnregisterWallet(CWallet* pwalletIn); /** Push an updated transaction to all registered wallets */ void SyncWithWallets(const uint256 &hash, const CTransaction& tx, const CBlock* pblock = NULL, bool fUpdate = false); /** Process an incoming block */ bool ProcessBlock(CValidationState &state, CNode* pfrom, CBlock* pblock, CDiskBlockPos *dbp = NULL); /** Check whether enough disk space is available for an incoming block */ bool CheckDiskSpace(uint64 nAdditionalBytes = 0); /** Open a block file (blk?????.dat) */ FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly = false); /** Open an undo file (rev?????.dat) */ FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly = false); /** Import blocks from an external file */ bool LoadExternalBlockFile(FILE* fileIn, CDiskBlockPos *dbp = NULL); /** Initialize a new block tree database + block data on disk */ bool InitBlockIndex(); /** Load the block tree and coins database from disk */ bool LoadBlockIndex(); /** Unload database information */ void UnloadBlockIndex(); /** Verify consistency of the block and coin databases */ bool VerifyDB(); /** Print the loaded block tree */ void PrintBlockTree(); /** Find a block by height in the currently-connected chain */ CBlockIndex* FindBlockByHeight(int nHeight); /** Process protocol messages received from a given node */ bool ProcessMessages(CNode* pfrom); /** Send queued protocol messages to be sent to a give node */ bool SendMessages(CNode* pto, bool fSendTrickle); /** Run an instance of the script checking thread */ void ThreadScriptCheck(); /** Run the miner threads */ void GenerateBitcoins(bool fGenerate, CWallet* pwallet); /** Generate a new block, without valid proof-of-work */ CBlockTemplate* CreateNewBlock(CReserveKey& reservekey); /** Modify the extranonce in a block */ void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce); /** Do mining precalculation */ void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1); /** Check mined block */ bool CheckWork(CBlock* pblock, CWallet& wallet, CReserveKey& reservekey); /** Check whether a block hash satisfies the proof-of-work requirement specified by nBits */ bool CheckProofOfWork(uint256 hash, unsigned int nBits); /** Calculate the minimum amount of work a received block needs, without knowing its direct parent */ unsigned int ComputeMinWork(unsigned int nBase, int64 nTime); /** Get the number of active peers */ int GetNumBlocksOfPeers(); /** Check whether we are doing an initial block download (synchronizing from disk or network) */ bool IsInitialBlockDownload(); /** Format a string that describes several potential problems detected by the core */ std::string GetWarnings(std::string strFor); /** Retrieve a transaction (from memory pool, or from disk, if possible) */ bool GetTransaction(const uint256 &hash, CTransaction &tx, uint256 &hashBlock, bool fAllowSlow = false); /** Connect/disconnect blocks until pindexNew is the new tip of the active block chain */ bool SetBestChain(CValidationState &state, CBlockIndex* pindexNew); /** Find the best known block, and make it the tip of the block chain */ bool ConnectBestBlock(CValidationState &state); /** Create a new block index entry for a given block hash */ CBlockIndex * InsertBlockIndex(uint256 hash); /** Verify a signature */ bool VerifySignature(const CCoins& txFrom, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType); /** Abort with a message */ bool AbortNode(const std::string &msg); bool GetWalletFile(CWallet* pwallet, std::string &strWalletFileOut); struct CDiskBlockPos { int nFile; unsigned int nPos; IMPLEMENT_SERIALIZE( READWRITE(VARINT(nFile)); READWRITE(VARINT(nPos)); ) CDiskBlockPos() { SetNull(); } CDiskBlockPos(int nFileIn, unsigned int nPosIn) { nFile = nFileIn; nPos = nPosIn; } friend bool operator==(const CDiskBlockPos &a, const CDiskBlockPos &b) { return (a.nFile == b.nFile && a.nPos == b.nPos); } friend bool operator!=(const CDiskBlockPos &a, const CDiskBlockPos &b) { return !(a == b); } void SetNull() { nFile = -1; nPos = 0; } bool IsNull() const { return (nFile == -1); } }; struct CDiskTxPos : public CDiskBlockPos { unsigned int nTxOffset; // after header IMPLEMENT_SERIALIZE( READWRITE(*(CDiskBlockPos*)this); READWRITE(VARINT(nTxOffset)); ) CDiskTxPos(const CDiskBlockPos &blockIn, unsigned int nTxOffsetIn) : CDiskBlockPos(blockIn.nFile, blockIn.nPos), nTxOffset(nTxOffsetIn) { } CDiskTxPos() { SetNull(); } void SetNull() { CDiskBlockPos::SetNull(); nTxOffset = 0; } }; /** An inpoint - a combination of a transaction and an index n into its vin */ class CInPoint { public: CTransaction* ptx; unsigned int n; CInPoint() { SetNull(); } CInPoint(CTransaction* ptxIn, unsigned int nIn) { ptx = ptxIn; n = nIn; } void SetNull() { ptx = NULL; n = (unsigned int) -1; } bool IsNull() const { return (ptx == NULL && n == (unsigned int) -1); } }; /** An outpoint - a combination of a transaction hash and an index n into its vout */ class COutPoint { public: uint256 hash; unsigned int n; COutPoint() { SetNull(); } COutPoint(uint256 hashIn, unsigned int nIn) { hash = hashIn; n = nIn; } IMPLEMENT_SERIALIZE( READWRITE(FLATDATA(*this)); ) void SetNull() { hash = 0; n = (unsigned int) -1; } bool IsNull() const { return (hash == 0 && n == (unsigned int) -1); } friend bool operator<(const COutPoint& a, const COutPoint& b) { return (a.hash < b.hash || (a.hash == b.hash && a.n < b.n)); } friend bool operator==(const COutPoint& a, const COutPoint& b) { return (a.hash == b.hash && a.n == b.n); } friend bool operator!=(const COutPoint& a, const COutPoint& b) { return !(a == b); } std::string ToString() const { return strprintf("COutPoint(%s, %u)", hash.ToString().c_str(), n); } void print() const { printf("%s\n", ToString().c_str()); } }; /** An input of a transaction. It contains the location of the previous * transaction's output that it claims and a signature that matches the * output's public key. */ class CTxIn { public: COutPoint prevout; CScript scriptSig; unsigned int nSequence; CTxIn() { nSequence = std::numeric_limits::max(); } explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), unsigned int nSequenceIn=std::numeric_limits::max()) { prevout = prevoutIn; scriptSig = scriptSigIn; nSequence = nSequenceIn; } CTxIn(uint256 hashPrevTx, unsigned int nOut, CScript scriptSigIn=CScript(), unsigned int nSequenceIn=std::numeric_limits::max()) { prevout = COutPoint(hashPrevTx, nOut); scriptSig = scriptSigIn; nSequence = nSequenceIn; } IMPLEMENT_SERIALIZE ( READWRITE(prevout); READWRITE(scriptSig); READWRITE(nSequence); ) bool IsFinal() const { return (nSequence == std::numeric_limits::max()); } friend bool operator==(const CTxIn& a, const CTxIn& b) { return (a.prevout == b.prevout && a.scriptSig == b.scriptSig && a.nSequence == b.nSequence); } friend bool operator!=(const CTxIn& a, const CTxIn& b) { return !(a == b); } std::string ToString() const { std::string str; str += "CTxIn("; str += prevout.ToString(); if (prevout.IsNull()) str += strprintf(", coinbase %s", HexStr(scriptSig).c_str()); else str += strprintf(", scriptSig=%s", scriptSig.ToString().substr(0,24).c_str()); if (nSequence != std::numeric_limits::max()) str += strprintf(", nSequence=%u", nSequence); str += ")"; return str; } void print() const { printf("%s\n", ToString().c_str()); } }; /** An output of a transaction. It contains the public key that the next input * must be able to sign with to claim it. */ class CTxOut { public: int64 nValue; CScript scriptPubKey; CTxOut() { SetNull(); } CTxOut(int64 nValueIn, CScript scriptPubKeyIn) { nValue = nValueIn; scriptPubKey = scriptPubKeyIn; } IMPLEMENT_SERIALIZE ( READWRITE(nValue); READWRITE(scriptPubKey); ) void SetNull() { nValue = -1; scriptPubKey.clear(); } bool IsNull() const { return (nValue == -1); } uint256 GetHash() const { return SerializeHash(*this); } friend bool operator==(const CTxOut& a, const CTxOut& b) { return (a.nValue == b.nValue && a.scriptPubKey == b.scriptPubKey); } friend bool operator!=(const CTxOut& a, const CTxOut& b) { return !(a == b); } std::string ToString() const { if (scriptPubKey.size() < 6) return "CTxOut(error)"; return strprintf("CTxOut(nValue=%"PRI64d".%08"PRI64d", scriptPubKey=%s)", nValue / COIN, nValue % COIN, scriptPubKey.ToString().substr(0,30).c_str()); } void print() const { printf("%s\n", ToString().c_str()); } }; enum GetMinFee_mode { GMF_BLOCK, GMF_RELAY, GMF_SEND, }; /** The basic transaction that is broadcasted on the network and contained in * blocks. A transaction can contain multiple inputs and outputs. */ class CTransaction { public: static const int CURRENT_VERSION=1; int nVersion; std::vector vin; std::vector vout; unsigned int nLockTime; CTransaction() { SetNull(); } IMPLEMENT_SERIALIZE ( READWRITE(this->nVersion); nVersion = this->nVersion; READWRITE(vin); READWRITE(vout); READWRITE(nLockTime); ) void SetNull() { nVersion = CTransaction::CURRENT_VERSION; vin.clear(); vout.clear(); nLockTime = 0; } bool IsNull() const { return (vin.empty() && vout.empty()); } uint256 GetHash() const { return SerializeHash(*this); } bool IsFinal(int nBlockHeight=0, int64 nBlockTime=0) const { // Time based nLockTime implemented in 0.1.6 if (nLockTime == 0) return true; if (nBlockHeight == 0) nBlockHeight = nBestHeight; if (nBlockTime == 0) nBlockTime = GetAdjustedTime(); if ((int64)nLockTime < ((int64)nLockTime < LOCKTIME_THRESHOLD ? (int64)nBlockHeight : nBlockTime)) return true; BOOST_FOREACH(const CTxIn& txin, vin) if (!txin.IsFinal()) return false; return true; } bool IsNewerThan(const CTransaction& old) const { if (vin.size() != old.vin.size()) return false; for (unsigned int i = 0; i < vin.size(); i++) if (vin[i].prevout != old.vin[i].prevout) return false; bool fNewer = false; unsigned int nLowest = std::numeric_limits::max(); for (unsigned int i = 0; i < vin.size(); i++) { if (vin[i].nSequence != old.vin[i].nSequence) { if (vin[i].nSequence <= nLowest) { fNewer = false; nLowest = vin[i].nSequence; } if (old.vin[i].nSequence < nLowest) { fNewer = true; nLowest = old.vin[i].nSequence; } } } return fNewer; } bool IsCoinBase() const { return (vin.size() == 1 && vin[0].prevout.IsNull()); } /** Check for standard transaction types @return True if all outputs (scriptPubKeys) use only standard transaction forms */ bool IsStandard() const; /** Check for standard transaction types @param[in] mapInputs Map of previous transactions that have outputs we're spending @return True if all inputs (scriptSigs) use only standard transaction forms */ bool AreInputsStandard(CCoinsViewCache& mapInputs) const; /** Count ECDSA signature operations the old-fashioned (pre-0.6) way @return number of sigops this transaction's outputs will produce when spent */ unsigned int GetLegacySigOpCount() const; /** Count ECDSA signature operations in pay-to-script-hash inputs. @param[in] mapInputs Map of previous transactions that have outputs we're spending @return maximum number of sigops required to validate this transaction's inputs */ unsigned int GetP2SHSigOpCount(CCoinsViewCache& mapInputs) const; /** Amount of bitcoins spent by this transaction. @return sum of all outputs (note: does not include fees) */ int64 GetValueOut() const { int64 nValueOut = 0; BOOST_FOREACH(const CTxOut& txout, vout) { nValueOut += txout.nValue; if (!MoneyRange(txout.nValue) || !MoneyRange(nValueOut)) throw std::runtime_error("CTransaction::GetValueOut() : value out of range"); } return nValueOut; } /** Amount of bitcoins coming in to this transaction Note that lightweight clients may not know anything besides the hash of previous transactions, so may not be able to calculate this. @param[in] mapInputs Map of previous transactions that have outputs we're spending @return Sum of value of all inputs (scriptSigs) */ int64 GetValueIn(CCoinsViewCache& mapInputs) const; static bool AllowFree(double dPriority) { // Large (in bytes) low-priority (new, small-coin) transactions // need a fee. return dPriority > COIN * 144 / 250; } int64 GetMinFee(unsigned int nBlockSize=1, bool fAllowFree=true, enum GetMinFee_mode mode=GMF_BLOCK) const; friend bool operator==(const CTransaction& a, const CTransaction& b) { return (a.nVersion == b.nVersion && a.vin == b.vin && a.vout == b.vout && a.nLockTime == b.nLockTime); } friend bool operator!=(const CTransaction& a, const CTransaction& b) { return !(a == b); } std::string ToString() const { std::string str; str += strprintf("CTransaction(hash=%s, ver=%d, vin.size=%"PRIszu", vout.size=%"PRIszu", nLockTime=%u)\n", GetHash().ToString().c_str(), nVersion, vin.size(), vout.size(), nLockTime); for (unsigned int i = 0; i < vin.size(); i++) str += " " + vin[i].ToString() + "\n"; for (unsigned int i = 0; i < vout.size(); i++) str += " " + vout[i].ToString() + "\n"; return str; } void print() const { printf("%s", ToString().c_str()); } // Check whether all prevouts of this transaction are present in the UTXO set represented by view bool HaveInputs(CCoinsViewCache &view) const; // Check whether all inputs of this transaction are valid (no double spends, scripts & sigs, amounts) // This does not modify the UTXO set. If pvChecks is not NULL, script checks are pushed onto it // instead of being performed inline. bool CheckInputs(CValidationState &state, CCoinsViewCache &view, bool fScriptChecks = true, unsigned int flags = SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC, std::vector *pvChecks = NULL) const; // Apply the effects of this transaction on the UTXO set represented by view bool UpdateCoins(CValidationState &state, CCoinsViewCache &view, CTxUndo &txundo, int nHeight, const uint256 &txhash) const; // Context-independent validity checks bool CheckTransaction(CValidationState &state) const; // Try to accept this transaction into the memory pool bool AcceptToMemoryPool(CValidationState &state, bool fCheckInputs=true, bool fLimitFree = true, bool* pfMissingInputs=NULL); protected: static const CTxOut &GetOutputFor(const CTxIn& input, CCoinsViewCache& mapInputs); }; /** wrapper for CTxOut that provides a more compact serialization */ class CTxOutCompressor { private: CTxOut &txout; public: static uint64 CompressAmount(uint64 nAmount); static uint64 DecompressAmount(uint64 nAmount); CTxOutCompressor(CTxOut &txoutIn) : txout(txoutIn) { } IMPLEMENT_SERIALIZE(({ if (!fRead) { uint64 nVal = CompressAmount(txout.nValue); READWRITE(VARINT(nVal)); } else { uint64 nVal = 0; READWRITE(VARINT(nVal)); txout.nValue = DecompressAmount(nVal); } CScriptCompressor cscript(REF(txout.scriptPubKey)); READWRITE(cscript); });) }; /** Undo information for a CTxIn * * Contains the prevout's CTxOut being spent, and if this was the * last output of the affected transaction, its metadata as well * (coinbase or not, height, transaction version) */ class CTxInUndo { public: CTxOut txout; // the txout data before being spent bool fCoinBase; // if the outpoint was the last unspent: whether it belonged to a coinbase unsigned int nHeight; // if the outpoint was the last unspent: its height int nVersion; // if the outpoint was the last unspent: its version CTxInUndo() : txout(), fCoinBase(false), nHeight(0), nVersion(0) {} CTxInUndo(const CTxOut &txoutIn, bool fCoinBaseIn = false, unsigned int nHeightIn = 0, int nVersionIn = 0) : txout(txoutIn), fCoinBase(fCoinBaseIn), nHeight(nHeightIn), nVersion(nVersionIn) { } unsigned int GetSerializeSize(int nType, int nVersion) const { return ::GetSerializeSize(VARINT(nHeight*2+(fCoinBase ? 1 : 0)), nType, nVersion) + (nHeight > 0 ? ::GetSerializeSize(VARINT(this->nVersion), nType, nVersion) : 0) + ::GetSerializeSize(CTxOutCompressor(REF(txout)), nType, nVersion); } template void Serialize(Stream &s, int nType, int nVersion) const { ::Serialize(s, VARINT(nHeight*2+(fCoinBase ? 1 : 0)), nType, nVersion); if (nHeight > 0) ::Serialize(s, VARINT(this->nVersion), nType, nVersion); ::Serialize(s, CTxOutCompressor(REF(txout)), nType, nVersion); } template void Unserialize(Stream &s, int nType, int nVersion) { unsigned int nCode = 0; ::Unserialize(s, VARINT(nCode), nType, nVersion); nHeight = nCode / 2; fCoinBase = nCode & 1; if (nHeight > 0) ::Unserialize(s, VARINT(this->nVersion), nType, nVersion); ::Unserialize(s, REF(CTxOutCompressor(REF(txout))), nType, nVersion); } }; /** Undo information for a CTransaction */ class CTxUndo { public: // undo information for all txins std::vector vprevout; IMPLEMENT_SERIALIZE( READWRITE(vprevout); ) }; /** Undo information for a CBlock */ class CBlockUndo { public: std::vector vtxundo; // for all but the coinbase IMPLEMENT_SERIALIZE( READWRITE(vtxundo); ) bool WriteToDisk(CDiskBlockPos &pos, const uint256 &hashBlock) { // Open history file to append CAutoFile fileout = CAutoFile(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION); if (!fileout) return error("CBlockUndo::WriteToDisk() : OpenUndoFile failed"); // Write index header unsigned int nSize = fileout.GetSerializeSize(*this); fileout << FLATDATA(pchMessageStart) << nSize; // Write undo data long fileOutPos = ftell(fileout); if (fileOutPos < 0) return error("CBlockUndo::WriteToDisk() : ftell failed"); pos.nPos = (unsigned int)fileOutPos; fileout << *this; // calculate & write checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << *this; fileout << hasher.GetHash(); // Flush stdio buffers and commit to disk before returning fflush(fileout); if (!IsInitialBlockDownload()) FileCommit(fileout); return true; } bool ReadFromDisk(const CDiskBlockPos &pos, const uint256 &hashBlock) { // Open history file to read CAutoFile filein = CAutoFile(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION); if (!filein) return error("CBlockUndo::ReadFromDisk() : OpenBlockFile failed"); // Read block uint256 hashChecksum; try { filein >> *this; filein >> hashChecksum; } catch (std::exception &e) { return error("%s() : deserialize or I/O error", __PRETTY_FUNCTION__); } // Verify checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << *this; if (hashChecksum != hasher.GetHash()) return error("CBlockUndo::ReadFromDisk() : checksum mismatch"); return true; } }; /** pruned version of CTransaction: only retains metadata and unspent transaction outputs * * Serialized format: * - VARINT(nVersion) * - VARINT(nCode) * - unspentness bitvector, for vout[2] and further; least significant byte first * - the non-spent CTxOuts (via CTxOutCompressor) * - VARINT(nHeight) * * The nCode value consists of: * - bit 1: IsCoinBase() * - bit 2: vout[0] is not spent * - bit 4: vout[1] is not spent * - The higher bits encode N, the number of non-zero bytes in the following bitvector. * - In case both bit 2 and bit 4 are unset, they encode N-1, as there must be at * least one non-spent output). * * Example: 0104835800816115944e077fe7c803cfa57f29b36bf87c1d358bb85e * <><><--------------------------------------------><----> * | \ | / * version code vout[1] height * * - version = 1 * - code = 4 (vout[1] is not spent, and 0 non-zero bytes of bitvector follow) * - unspentness bitvector: as 0 non-zero bytes follow, it has length 0 * - vout[1]: 835800816115944e077fe7c803cfa57f29b36bf87c1d35 * * 8358: compact amount representation for 60000000000 (600 BTC) * * 00: special txout type pay-to-pubkey-hash * * 816115944e077fe7c803cfa57f29b36bf87c1d35: address uint160 * - height = 203998 * * * Example: 0109044086ef97d5790061b01caab50f1b8e9c50a5057eb43c2d9563a4eebbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa486af3b * <><><--><--------------------------------------------------><----------------------------------------------><----> * / \ \ | | / * version code unspentness vout[4] vout[16] height * * - version = 1 * - code = 9 (coinbase, neither vout[0] or vout[1] are unspent, * 2 (1, +1 because both bit 2 and bit 4 are unset) non-zero bitvector bytes follow) * - unspentness bitvector: bits 2 (0x04) and 14 (0x4000) are set, so vout[2+2] and vout[14+2] are unspent * - vout[4]: 86ef97d5790061b01caab50f1b8e9c50a5057eb43c2d9563a4ee * * 86ef97d579: compact amount representation for 234925952 (2.35 BTC) * * 00: special txout type pay-to-pubkey-hash * * 61b01caab50f1b8e9c50a5057eb43c2d9563a4ee: address uint160 * - vout[16]: bbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa4 * * bbd123: compact amount representation for 110397 (0.001 BTC) * * 00: special txout type pay-to-pubkey-hash * * 8c988f1a4a4de2161e0f50aac7f17e7f9555caa4: address uint160 * - height = 120891 */ class CCoins { public: // whether transaction is a coinbase bool fCoinBase; // unspent transaction outputs; spent outputs are .IsNull(); spent outputs at the end of the array are dropped std::vector vout; // at which height this transaction was included in the active block chain int nHeight; // version of the CTransaction; accesses to this value should probably check for nHeight as well, // as new tx version will probably only be introduced at certain heights int nVersion; // construct a CCoins from a CTransaction, at a given height CCoins(const CTransaction &tx, int nHeightIn) : fCoinBase(tx.IsCoinBase()), vout(tx.vout), nHeight(nHeightIn), nVersion(tx.nVersion) { } // empty constructor CCoins() : fCoinBase(false), vout(0), nHeight(0), nVersion(0) { } // remove spent outputs at the end of vout void Cleanup() { while (vout.size() > 0 && vout.back().IsNull()) vout.pop_back(); if (vout.empty()) std::vector().swap(vout); } void swap(CCoins &to) { std::swap(to.fCoinBase, fCoinBase); to.vout.swap(vout); std::swap(to.nHeight, nHeight); std::swap(to.nVersion, nVersion); } // equality test friend bool operator==(const CCoins &a, const CCoins &b) { return a.fCoinBase == b.fCoinBase && a.nHeight == b.nHeight && a.nVersion == b.nVersion && a.vout == b.vout; } friend bool operator!=(const CCoins &a, const CCoins &b) { return !(a == b); } // calculate number of bytes for the bitmask, and its number of non-zero bytes // each bit in the bitmask represents the availability of one output, but the // availabilities of the first two outputs are encoded separately void CalcMaskSize(unsigned int &nBytes, unsigned int &nNonzeroBytes) const { unsigned int nLastUsedByte = 0; for (unsigned int b = 0; 2+b*8 < vout.size(); b++) { bool fZero = true; for (unsigned int i = 0; i < 8 && 2+b*8+i < vout.size(); i++) { if (!vout[2+b*8+i].IsNull()) { fZero = false; continue; } } if (!fZero) { nLastUsedByte = b + 1; nNonzeroBytes++; } } nBytes += nLastUsedByte; } bool IsCoinBase() const { return fCoinBase; } unsigned int GetSerializeSize(int nType, int nVersion) const { unsigned int nSize = 0; unsigned int nMaskSize = 0, nMaskCode = 0; CalcMaskSize(nMaskSize, nMaskCode); bool fFirst = vout.size() > 0 && !vout[0].IsNull(); bool fSecond = vout.size() > 1 && !vout[1].IsNull(); assert(fFirst || fSecond || nMaskCode); unsigned int nCode = 8*(nMaskCode - (fFirst || fSecond ? 0 : 1)) + (fCoinBase ? 1 : 0) + (fFirst ? 2 : 0) + (fSecond ? 4 : 0); // version nSize += ::GetSerializeSize(VARINT(this->nVersion), nType, nVersion); // size of header code nSize += ::GetSerializeSize(VARINT(nCode), nType, nVersion); // spentness bitmask nSize += nMaskSize; // txouts themself for (unsigned int i = 0; i < vout.size(); i++) if (!vout[i].IsNull()) nSize += ::GetSerializeSize(CTxOutCompressor(REF(vout[i])), nType, nVersion); // height nSize += ::GetSerializeSize(VARINT(nHeight), nType, nVersion); return nSize; } template void Serialize(Stream &s, int nType, int nVersion) const { unsigned int nMaskSize = 0, nMaskCode = 0; CalcMaskSize(nMaskSize, nMaskCode); bool fFirst = vout.size() > 0 && !vout[0].IsNull(); bool fSecond = vout.size() > 1 && !vout[1].IsNull(); assert(fFirst || fSecond || nMaskCode); unsigned int nCode = 8*(nMaskCode - (fFirst || fSecond ? 0 : 1)) + (fCoinBase ? 1 : 0) + (fFirst ? 2 : 0) + (fSecond ? 4 : 0); // version ::Serialize(s, VARINT(this->nVersion), nType, nVersion); // header code ::Serialize(s, VARINT(nCode), nType, nVersion); // spentness bitmask for (unsigned int b = 0; b void Unserialize(Stream &s, int nType, int nVersion) { unsigned int nCode = 0; // version ::Unserialize(s, VARINT(this->nVersion), nType, nVersion); // header code ::Unserialize(s, VARINT(nCode), nType, nVersion); fCoinBase = nCode & 1; std::vector vAvail(2, false); vAvail[0] = nCode & 2; vAvail[1] = nCode & 4; unsigned int nMaskCode = (nCode / 8) + ((nCode & 6) != 0 ? 0 : 1); // spentness bitmask while (nMaskCode > 0) { unsigned char chAvail = 0; ::Unserialize(s, chAvail, nType, nVersion); for (unsigned int p = 0; p < 8; p++) { bool f = (chAvail & (1 << p)) != 0; vAvail.push_back(f); } if (chAvail != 0) nMaskCode--; } // txouts themself vout.assign(vAvail.size(), CTxOut()); for (unsigned int i = 0; i < vAvail.size(); i++) { if (vAvail[i]) ::Unserialize(s, REF(CTxOutCompressor(vout[i])), nType, nVersion); } // coinbase height ::Unserialize(s, VARINT(nHeight), nType, nVersion); Cleanup(); } // mark an outpoint spent, and construct undo information bool Spend(const COutPoint &out, CTxInUndo &undo) { if (out.n >= vout.size()) return false; if (vout[out.n].IsNull()) return false; undo = CTxInUndo(vout[out.n]); vout[out.n].SetNull(); Cleanup(); if (vout.size() == 0) { undo.nHeight = nHeight; undo.fCoinBase = fCoinBase; undo.nVersion = this->nVersion; } return true; } // mark a vout spent bool Spend(int nPos) { CTxInUndo undo; COutPoint out(0, nPos); return Spend(out, undo); } // check whether a particular output is still available bool IsAvailable(unsigned int nPos) const { return (nPos < vout.size() && !vout[nPos].IsNull()); } // check whether the entire CCoins is spent // note that only !IsPruned() CCoins can be serialized bool IsPruned() const { BOOST_FOREACH(const CTxOut &out, vout) if (!out.IsNull()) return false; return true; } }; /** Closure representing one script verification * Note that this stores references to the spending transaction */ class CScriptCheck { private: CScript scriptPubKey; const CTransaction *ptxTo; unsigned int nIn; unsigned int nFlags; int nHashType; public: CScriptCheck() {} CScriptCheck(const CCoins& txFromIn, const CTransaction& txToIn, unsigned int nInIn, unsigned int nFlagsIn, int nHashTypeIn) : scriptPubKey(txFromIn.vout[txToIn.vin[nInIn].prevout.n].scriptPubKey), ptxTo(&txToIn), nIn(nInIn), nFlags(nFlagsIn), nHashType(nHashTypeIn) { } bool operator()() const; void swap(CScriptCheck &check) { scriptPubKey.swap(check.scriptPubKey); std::swap(ptxTo, check.ptxTo); std::swap(nIn, check.nIn); std::swap(nFlags, check.nFlags); std::swap(nHashType, check.nHashType); } }; /** A transaction with a merkle branch linking it to the block chain. */ class CMerkleTx : public CTransaction { public: uint256 hashBlock; std::vector vMerkleBranch; int nIndex; // memory only mutable bool fMerkleVerified; CMerkleTx() { Init(); } CMerkleTx(const CTransaction& txIn) : CTransaction(txIn) { Init(); } void Init() { hashBlock = 0; nIndex = -1; fMerkleVerified = false; } IMPLEMENT_SERIALIZE ( nSerSize += SerReadWrite(s, *(CTransaction*)this, nType, nVersion, ser_action); nVersion = this->nVersion; READWRITE(hashBlock); READWRITE(vMerkleBranch); READWRITE(nIndex); ) int SetMerkleBranch(const CBlock* pblock=NULL); int GetDepthInMainChain(CBlockIndex* &pindexRet) const; int GetDepthInMainChain() const { CBlockIndex *pindexRet; return GetDepthInMainChain(pindexRet); } bool IsInMainChain() const { return GetDepthInMainChain() > 0; } int GetBlocksToMaturity() const; bool AcceptToMemoryPool(bool fCheckInputs=true, bool fLimitFree=true); }; /** Data structure that represents a partial merkle tree. * * It respresents a subset of the txid's of a known block, in a way that * allows recovery of the list of txid's and the merkle root, in an * authenticated way. * * The encoding works as follows: we traverse the tree in depth-first order, * storing a bit for each traversed node, signifying whether the node is the * parent of at least one matched leaf txid (or a matched txid itself). In * case we are at the leaf level, or this bit is 0, its merkle node hash is * stored, and its children are not explorer further. Otherwise, no hash is * stored, but we recurse into both (or the only) child branch. During * decoding, the same depth-first traversal is performed, consuming bits and * hashes as they written during encoding. * * The serialization is fixed and provides a hard guarantee about the * encoded size: * * SIZE <= 10 + ceil(32.25*N) * * Where N represents the number of leaf nodes of the partial tree. N itself * is bounded by: * * N <= total_transactions * N <= 1 + matched_transactions*tree_height * * The serialization format: * - uint32 total_transactions (4 bytes) * - varint number of hashes (1-3 bytes) * - uint256[] hashes in depth-first order (<= 32*N bytes) * - varint number of bytes of flag bits (1-3 bytes) * - byte[] flag bits, packed per 8 in a byte, least significant bit first (<= 2*N-1 bits) * The size constraints follow from this. */ class CPartialMerkleTree { protected: // the total number of transactions in the block unsigned int nTransactions; // node-is-parent-of-matched-txid bits std::vector vBits; // txids and internal hashes std::vector vHash; // flag set when encountering invalid data bool fBad; // helper function to efficiently calculate the number of nodes at given height in the merkle tree unsigned int CalcTreeWidth(int height) { return (nTransactions+(1 << height)-1) >> height; } // calculate the hash of a node in the merkle tree (at leaf level: the txid's themself) uint256 CalcHash(int height, unsigned int pos, const std::vector &vTxid); // recursive function that traverses tree nodes, storing the data as bits and hashes void TraverseAndBuild(int height, unsigned int pos, const std::vector &vTxid, const std::vector &vMatch); // recursive function that traverses tree nodes, consuming the bits and hashes produced by TraverseAndBuild. // it returns the hash of the respective node. uint256 TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector &vMatch); public: // serialization implementation IMPLEMENT_SERIALIZE( READWRITE(nTransactions); READWRITE(vHash); std::vector vBytes; if (fRead) { READWRITE(vBytes); CPartialMerkleTree &us = *(const_cast(this)); us.vBits.resize(vBytes.size() * 8); for (unsigned int p = 0; p < us.vBits.size(); p++) us.vBits[p] = (vBytes[p / 8] & (1 << (p % 8))) != 0; us.fBad = false; } else { vBytes.resize((vBits.size()+7)/8); for (unsigned int p = 0; p < vBits.size(); p++) vBytes[p / 8] |= vBits[p] << (p % 8); READWRITE(vBytes); } ) // Construct a partial merkle tree from a list of transaction id's, and a mask that selects a subset of them CPartialMerkleTree(const std::vector &vTxid, const std::vector &vMatch); CPartialMerkleTree(); // extract the matching txid's represented by this partial merkle tree. // returns the merkle root, or 0 in case of failure uint256 ExtractMatches(std::vector &vMatch); }; /** Nodes collect new transactions into a block, hash them into a hash tree, * and scan through nonce values to make the block's hash satisfy proof-of-work * requirements. When they solve the proof-of-work, they broadcast the block * to everyone and the block is added to the block chain. The first transaction * in the block is a special one that creates a new coin owned by the creator * of the block. */ class CBlockHeader { public: // header static const int CURRENT_VERSION=2; int nVersion; uint256 hashPrevBlock; uint256 hashMerkleRoot; unsigned int nTime; unsigned int nBits; unsigned int nNonce; CBlockHeader() { SetNull(); } IMPLEMENT_SERIALIZE ( READWRITE(this->nVersion); nVersion = this->nVersion; READWRITE(hashPrevBlock); READWRITE(hashMerkleRoot); READWRITE(nTime); READWRITE(nBits); READWRITE(nNonce); ) void SetNull() { nVersion = CBlockHeader::CURRENT_VERSION; hashPrevBlock = 0; hashMerkleRoot = 0; nTime = 0; nBits = 0; nNonce = 0; } bool IsNull() const { return (nBits == 0); } uint256 GetHash() const { return Hash(BEGIN(nVersion), END(nNonce)); } int64 GetBlockTime() const { return (int64)nTime; } void UpdateTime(const CBlockIndex* pindexPrev); }; class CBlock : public CBlockHeader { public: // network and disk std::vector vtx; // memory only mutable std::vector vMerkleTree; CBlock() { SetNull(); } CBlock(const CBlockHeader &header) { SetNull(); *((CBlockHeader*)this) = header; } IMPLEMENT_SERIALIZE ( READWRITE(*(CBlockHeader*)this); READWRITE(vtx); ) void SetNull() { CBlockHeader::SetNull(); vtx.clear(); vMerkleTree.clear(); } CBlockHeader GetBlockHeader() const { CBlockHeader block; block.nVersion = nVersion; block.hashPrevBlock = hashPrevBlock; block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block; } uint256 BuildMerkleTree() const { vMerkleTree.clear(); BOOST_FOREACH(const CTransaction& tx, vtx) vMerkleTree.push_back(tx.GetHash()); int j = 0; for (int nSize = vtx.size(); nSize > 1; nSize = (nSize + 1) / 2) { for (int i = 0; i < nSize; i += 2) { int i2 = std::min(i+1, nSize-1); vMerkleTree.push_back(Hash(BEGIN(vMerkleTree[j+i]), END(vMerkleTree[j+i]), BEGIN(vMerkleTree[j+i2]), END(vMerkleTree[j+i2]))); } j += nSize; } return (vMerkleTree.empty() ? 0 : vMerkleTree.back()); } const uint256 &GetTxHash(unsigned int nIndex) const { assert(vMerkleTree.size() > 0); // BuildMerkleTree must have been called first assert(nIndex < vtx.size()); return vMerkleTree[nIndex]; } std::vector GetMerkleBranch(int nIndex) const { if (vMerkleTree.empty()) BuildMerkleTree(); std::vector vMerkleBranch; int j = 0; for (int nSize = vtx.size(); nSize > 1; nSize = (nSize + 1) / 2) { int i = std::min(nIndex^1, nSize-1); vMerkleBranch.push_back(vMerkleTree[j+i]); nIndex >>= 1; j += nSize; } return vMerkleBranch; } static uint256 CheckMerkleBranch(uint256 hash, const std::vector& vMerkleBranch, int nIndex) { if (nIndex == -1) return 0; BOOST_FOREACH(const uint256& otherside, vMerkleBranch) { if (nIndex & 1) hash = Hash(BEGIN(otherside), END(otherside), BEGIN(hash), END(hash)); else hash = Hash(BEGIN(hash), END(hash), BEGIN(otherside), END(otherside)); nIndex >>= 1; } return hash; } bool WriteToDisk(CDiskBlockPos &pos) { // Open history file to append CAutoFile fileout = CAutoFile(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION); if (!fileout) return error("CBlock::WriteToDisk() : OpenBlockFile failed"); // Write index header unsigned int nSize = fileout.GetSerializeSize(*this); fileout << FLATDATA(pchMessageStart) << nSize; // Write block long fileOutPos = ftell(fileout); if (fileOutPos < 0) return error("CBlock::WriteToDisk() : ftell failed"); pos.nPos = (unsigned int)fileOutPos; fileout << *this; // Flush stdio buffers and commit to disk before returning fflush(fileout); if (!IsInitialBlockDownload()) FileCommit(fileout); return true; } bool ReadFromDisk(const CDiskBlockPos &pos) { SetNull(); // Open history file to read CAutoFile filein = CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION); if (!filein) return error("CBlock::ReadFromDisk() : OpenBlockFile failed"); // Read block try { filein >> *this; } catch (std::exception &e) { return error("%s() : deserialize or I/O error", __PRETTY_FUNCTION__); } // Check the header if (!CheckProofOfWork(GetHash(), nBits)) return error("CBlock::ReadFromDisk() : errors in block header"); return true; } void print() const { printf("CBlock(hash=%s, ver=%d, hashPrevBlock=%s, hashMerkleRoot=%s, nTime=%u, nBits=%08x, nNonce=%u, vtx=%"PRIszu")\n", GetHash().ToString().c_str(), nVersion, hashPrevBlock.ToString().c_str(), hashMerkleRoot.ToString().c_str(), nTime, nBits, nNonce, vtx.size()); for (unsigned int i = 0; i < vtx.size(); i++) { printf(" "); vtx[i].print(); } printf(" vMerkleTree: "); for (unsigned int i = 0; i < vMerkleTree.size(); i++) printf("%s ", vMerkleTree[i].ToString().c_str()); printf("\n"); } /** Undo the effects of this block (with given index) on the UTXO set represented by coins. * In case pfClean is provided, operation will try to be tolerant about errors, and *pfClean * will be true if no problems were found. Otherwise, the return value will be false in case * of problems. Note that in any case, coins may be modified. */ bool DisconnectBlock(CValidationState &state, CBlockIndex *pindex, CCoinsViewCache &coins, bool *pfClean = NULL); // Apply the effects of this block (with given index) on the UTXO set represented by coins bool ConnectBlock(CValidationState &state, CBlockIndex *pindex, CCoinsViewCache &coins, bool fJustCheck=false); // Read a block from disk bool ReadFromDisk(const CBlockIndex* pindex); // Add this block to the block index, and if necessary, switch the active block chain to this bool AddToBlockIndex(CValidationState &state, const CDiskBlockPos &pos); // Context-independent validity checks bool CheckBlock(CValidationState &state, bool fCheckPOW=true, bool fCheckMerkleRoot=true) const; // Store block on disk // if dbp is provided, the file is known to already reside on disk bool AcceptBlock(CValidationState &state, CDiskBlockPos *dbp = NULL); }; class CBlockFileInfo { public: unsigned int nBlocks; // number of blocks stored in file unsigned int nSize; // number of used bytes of block file unsigned int nUndoSize; // number of used bytes in the undo file unsigned int nHeightFirst; // lowest height of block in file unsigned int nHeightLast; // highest height of block in file uint64 nTimeFirst; // earliest time of block in file uint64 nTimeLast; // latest time of block in file IMPLEMENT_SERIALIZE( READWRITE(VARINT(nBlocks)); READWRITE(VARINT(nSize)); READWRITE(VARINT(nUndoSize)); READWRITE(VARINT(nHeightFirst)); READWRITE(VARINT(nHeightLast)); READWRITE(VARINT(nTimeFirst)); READWRITE(VARINT(nTimeLast)); ) void SetNull() { nBlocks = 0; nSize = 0; nUndoSize = 0; nHeightFirst = 0; nHeightLast = 0; nTimeFirst = 0; nTimeLast = 0; } CBlockFileInfo() { SetNull(); } std::string ToString() const { return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, DateTimeStrFormat("%Y-%m-%d", nTimeFirst).c_str(), DateTimeStrFormat("%Y-%m-%d", nTimeLast).c_str()); } // update statistics (does not update nSize) void AddBlock(unsigned int nHeightIn, uint64 nTimeIn) { if (nBlocks==0 || nHeightFirst > nHeightIn) nHeightFirst = nHeightIn; if (nBlocks==0 || nTimeFirst > nTimeIn) nTimeFirst = nTimeIn; nBlocks++; if (nHeightIn > nHeightFirst) nHeightLast = nHeightIn; if (nTimeIn > nTimeLast) nTimeLast = nTimeIn; } }; extern CCriticalSection cs_LastBlockFile; extern CBlockFileInfo infoLastBlockFile; extern int nLastBlockFile; enum BlockStatus { BLOCK_VALID_UNKNOWN = 0, BLOCK_VALID_HEADER = 1, // parsed, version ok, hash satisfies claimed PoW, 1 <= vtx count <= max, timestamp not in future BLOCK_VALID_TREE = 2, // parent found, difficulty matches, timestamp >= median previous, checkpoint BLOCK_VALID_TRANSACTIONS = 3, // only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid, no duplicate txids, sigops, size, merkle root BLOCK_VALID_CHAIN = 4, // outputs do not overspend inputs, no double spends, coinbase output ok, immature coinbase spends, BIP30 BLOCK_VALID_SCRIPTS = 5, // scripts/signatures ok BLOCK_VALID_MASK = 7, BLOCK_HAVE_DATA = 8, // full block available in blk*.dat BLOCK_HAVE_UNDO = 16, // undo data available in rev*.dat BLOCK_HAVE_MASK = 24, BLOCK_FAILED_VALID = 32, // stage after last reached validness failed BLOCK_FAILED_CHILD = 64, // descends from failed block BLOCK_FAILED_MASK = 96 }; /** The block chain is a tree shaped structure starting with the * genesis block at the root, with each block potentially having multiple * candidates to be the next block. pprev and pnext link a path through the * main/longest chain. A blockindex may have multiple pprev pointing back * to it, but pnext will only point forward to the longest branch, or will * be null if the block is not part of the longest chain. */ class CBlockIndex { public: // pointer to the hash of the block, if any. memory is owned by this CBlockIndex const uint256* phashBlock; // pointer to the index of the predecessor of this block CBlockIndex* pprev; // (memory only) pointer to the index of the *active* successor of this block CBlockIndex* pnext; // height of the entry in the chain. The genesis block has height 0 int nHeight; // Which # file this block is stored in (blk?????.dat) int nFile; // Byte offset within blk?????.dat where this block's data is stored unsigned int nDataPos; // Byte offset within rev?????.dat where this block's undo data is stored unsigned int nUndoPos; // (memory only) Total amount of work (expected number of hashes) in the chain up to and including this block CBigNum bnChainWork; // Number of transactions in this block. // Note: in a potential headers-first mode, this number cannot be relied upon unsigned int nTx; // (memory only) Number of transactions in the chain up to and including this block unsigned int nChainTx; // change to 64-bit type when necessary; won't happen before 2030 // Verification status of this block. See enum BlockStatus unsigned int nStatus; // block header int nVersion; uint256 hashMerkleRoot; unsigned int nTime; unsigned int nBits; unsigned int nNonce; CBlockIndex() { phashBlock = NULL; pprev = NULL; pnext = NULL; nHeight = 0; nFile = 0; nDataPos = 0; nUndoPos = 0; bnChainWork = 0; nTx = 0; nChainTx = 0; nStatus = 0; nVersion = 0; hashMerkleRoot = 0; nTime = 0; nBits = 0; nNonce = 0; } CBlockIndex(CBlockHeader& block) { phashBlock = NULL; pprev = NULL; pnext = NULL; nHeight = 0; nFile = 0; nDataPos = 0; nUndoPos = 0; bnChainWork = 0; nTx = 0; nChainTx = 0; nStatus = 0; nVersion = block.nVersion; hashMerkleRoot = block.hashMerkleRoot; nTime = block.nTime; nBits = block.nBits; nNonce = block.nNonce; } CDiskBlockPos GetBlockPos() const { CDiskBlockPos ret; if (nStatus & BLOCK_HAVE_DATA) { ret.nFile = nFile; ret.nPos = nDataPos; } return ret; } CDiskBlockPos GetUndoPos() const { CDiskBlockPos ret; if (nStatus & BLOCK_HAVE_UNDO) { ret.nFile = nFile; ret.nPos = nUndoPos; } return ret; } CBlockHeader GetBlockHeader() const { CBlockHeader block; block.nVersion = nVersion; if (pprev) block.hashPrevBlock = pprev->GetBlockHash(); block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block; } uint256 GetBlockHash() const { return *phashBlock; } int64 GetBlockTime() const { return (int64)nTime; } CBigNum GetBlockWork() const { CBigNum bnTarget; bnTarget.SetCompact(nBits); if (bnTarget <= 0) return 0; return (CBigNum(1)<<256) / (bnTarget+1); } bool IsInMainChain() const { return (pnext || this == pindexBest); } bool CheckIndex() const { return CheckProofOfWork(GetBlockHash(), nBits); } enum { nMedianTimeSpan=11 }; int64 GetMedianTimePast() const { int64 pmedian[nMedianTimeSpan]; int64* pbegin = &pmedian[nMedianTimeSpan]; int64* pend = &pmedian[nMedianTimeSpan]; const CBlockIndex* pindex = this; for (int i = 0; i < nMedianTimeSpan && pindex; i++, pindex = pindex->pprev) *(--pbegin) = pindex->GetBlockTime(); std::sort(pbegin, pend); return pbegin[(pend - pbegin)/2]; } int64 GetMedianTime() const { const CBlockIndex* pindex = this; for (int i = 0; i < nMedianTimeSpan/2; i++) { if (!pindex->pnext) return GetBlockTime(); pindex = pindex->pnext; } return pindex->GetMedianTimePast(); } /** * Returns true if there are nRequired or more blocks of minVersion or above * in the last nToCheck blocks, starting at pstart and going backwards. */ static bool IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck); std::string ToString() const { return strprintf("CBlockIndex(pprev=%p, pnext=%p, nHeight=%d, merkle=%s, hashBlock=%s)", pprev, pnext, nHeight, hashMerkleRoot.ToString().c_str(), GetBlockHash().ToString().c_str()); } void print() const { printf("%s\n", ToString().c_str()); } }; struct CBlockIndexWorkComparator { bool operator()(CBlockIndex *pa, CBlockIndex *pb) { if (pa->bnChainWork > pb->bnChainWork) return false; if (pa->bnChainWork < pb->bnChainWork) return true; if (pa->GetBlockHash() < pb->GetBlockHash()) return false; if (pa->GetBlockHash() > pb->GetBlockHash()) return true; return false; // identical blocks } }; /** Used to marshal pointers into hashes for db storage. */ class CDiskBlockIndex : public CBlockIndex { public: uint256 hashPrev; CDiskBlockIndex() { hashPrev = 0; } explicit CDiskBlockIndex(CBlockIndex* pindex) : CBlockIndex(*pindex) { hashPrev = (pprev ? pprev->GetBlockHash() : 0); } IMPLEMENT_SERIALIZE ( if (!(nType & SER_GETHASH)) READWRITE(VARINT(nVersion)); READWRITE(VARINT(nHeight)); READWRITE(VARINT(nStatus)); READWRITE(VARINT(nTx)); if (nStatus & (BLOCK_HAVE_DATA | BLOCK_HAVE_UNDO)) READWRITE(VARINT(nFile)); if (nStatus & BLOCK_HAVE_DATA) READWRITE(VARINT(nDataPos)); if (nStatus & BLOCK_HAVE_UNDO) READWRITE(VARINT(nUndoPos)); // block header READWRITE(this->nVersion); READWRITE(hashPrev); READWRITE(hashMerkleRoot); READWRITE(nTime); READWRITE(nBits); READWRITE(nNonce); ) uint256 GetBlockHash() const { CBlockHeader block; block.nVersion = nVersion; block.hashPrevBlock = hashPrev; block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block.GetHash(); } std::string ToString() const { std::string str = "CDiskBlockIndex("; str += CBlockIndex::ToString(); str += strprintf("\n hashBlock=%s, hashPrev=%s)", GetBlockHash().ToString().c_str(), hashPrev.ToString().c_str()); return str; } void print() const { printf("%s\n", ToString().c_str()); } }; /** Capture information about block/transaction validation */ class CValidationState { private: enum mode_state { MODE_VALID, // everything ok MODE_INVALID, // network rule violation (DoS value may be set) MODE_ERROR, // run-time error } mode; int nDoS; public: CValidationState() : mode(MODE_VALID), nDoS(0) {} bool DoS(int level, bool ret = false) { if (mode == MODE_ERROR) return ret; nDoS += level; mode = MODE_INVALID; return ret; } bool Invalid(bool ret = false) { return DoS(0, ret); } bool Error() { mode = MODE_ERROR; return false; } bool Abort(const std::string &msg) { AbortNode(msg); return Error(); } bool IsValid() { return mode == MODE_VALID; } bool IsInvalid() { return mode == MODE_INVALID; } bool IsError() { return mode == MODE_ERROR; } bool IsInvalid(int &nDoSOut) { if (IsInvalid()) { nDoSOut = nDoS; return true; } return false; } }; /** Describes a place in the block chain to another node such that if the * other node doesn't have the same branch, it can find a recent common trunk. * The further back it is, the further before the fork it may be. */ class CBlockLocator { protected: std::vector vHave; public: CBlockLocator() { } explicit CBlockLocator(const CBlockIndex* pindex) { Set(pindex); } explicit CBlockLocator(uint256 hashBlock) { std::map::iterator mi = mapBlockIndex.find(hashBlock); if (mi != mapBlockIndex.end()) Set((*mi).second); } CBlockLocator(const std::vector& vHaveIn) { vHave = vHaveIn; } IMPLEMENT_SERIALIZE ( if (!(nType & SER_GETHASH)) READWRITE(nVersion); READWRITE(vHave); ) void SetNull() { vHave.clear(); } bool IsNull() { return vHave.empty(); } void Set(const CBlockIndex* pindex) { vHave.clear(); int nStep = 1; while (pindex) { vHave.push_back(pindex->GetBlockHash()); // Exponentially larger steps back for (int i = 0; pindex && i < nStep; i++) pindex = pindex->pprev; if (vHave.size() > 10) nStep *= 2; } vHave.push_back(hashGenesisBlock); } int GetDistanceBack() { // Retrace how far back it was in the sender's branch int nDistance = 0; int nStep = 1; BOOST_FOREACH(const uint256& hash, vHave) { std::map::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) { CBlockIndex* pindex = (*mi).second; if (pindex->IsInMainChain()) return nDistance; } nDistance += nStep; if (nDistance > 10) nStep *= 2; } return nDistance; } CBlockIndex* GetBlockIndex() { // Find the first block the caller has in the main chain BOOST_FOREACH(const uint256& hash, vHave) { std::map::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) { CBlockIndex* pindex = (*mi).second; if (pindex->IsInMainChain()) return pindex; } } return pindexGenesisBlock; } uint256 GetBlockHash() { // Find the first block the caller has in the main chain BOOST_FOREACH(const uint256& hash, vHave) { std::map::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) { CBlockIndex* pindex = (*mi).second; if (pindex->IsInMainChain()) return hash; } } return hashGenesisBlock; } int GetHeight() { CBlockIndex* pindex = GetBlockIndex(); if (!pindex) return 0; return pindex->nHeight; } }; class CTxMemPool { public: mutable CCriticalSection cs; std::map mapTx; std::map mapNextTx; bool accept(CValidationState &state, CTransaction &tx, bool fCheckInputs, bool fLimitFree, bool* pfMissingInputs); bool addUnchecked(const uint256& hash, CTransaction &tx); bool remove(const CTransaction &tx, bool fRecursive = false); bool removeConflicts(const CTransaction &tx); void clear(); void queryHashes(std::vector& vtxid); void pruneSpent(const uint256& hash, CCoins &coins); unsigned long size() { LOCK(cs); return mapTx.size(); } bool exists(uint256 hash) { return (mapTx.count(hash) != 0); } CTransaction& lookup(uint256 hash) { return mapTx[hash]; } }; extern CTxMemPool mempool; struct CCoinsStats { int nHeight; uint64 nTransactions; uint64 nTransactionOutputs; uint64 nSerializedSize; CCoinsStats() : nHeight(0), nTransactions(0), nTransactionOutputs(0), nSerializedSize(0) {} }; /** Abstract view on the open txout dataset. */ class CCoinsView { public: // Retrieve the CCoins (unspent transaction outputs) for a given txid virtual bool GetCoins(const uint256 &txid, CCoins &coins); // Modify the CCoins for a given txid virtual bool SetCoins(const uint256 &txid, const CCoins &coins); // Just check whether we have data for a given txid. // This may (but cannot always) return true for fully spent transactions virtual bool HaveCoins(const uint256 &txid); // Retrieve the block index whose state this CCoinsView currently represents virtual CBlockIndex *GetBestBlock(); // Modify the currently active block index virtual bool SetBestBlock(CBlockIndex *pindex); // Do a bulk modification (multiple SetCoins + one SetBestBlock) virtual bool BatchWrite(const std::map &mapCoins, CBlockIndex *pindex); // Calculate statistics about the unspent transaction output set virtual bool GetStats(CCoinsStats &stats); // As we use CCoinsViews polymorphically, have a virtual destructor virtual ~CCoinsView() {} }; /** CCoinsView backed by another CCoinsView */ class CCoinsViewBacked : public CCoinsView { protected: CCoinsView *base; public: CCoinsViewBacked(CCoinsView &viewIn); bool GetCoins(const uint256 &txid, CCoins &coins); bool SetCoins(const uint256 &txid, const CCoins &coins); bool HaveCoins(const uint256 &txid); CBlockIndex *GetBestBlock(); bool SetBestBlock(CBlockIndex *pindex); void SetBackend(CCoinsView &viewIn); bool BatchWrite(const std::map &mapCoins, CBlockIndex *pindex); bool GetStats(CCoinsStats &stats); }; /** CCoinsView that adds a memory cache for transactions to another CCoinsView */ class CCoinsViewCache : public CCoinsViewBacked { protected: CBlockIndex *pindexTip; std::map cacheCoins; public: CCoinsViewCache(CCoinsView &baseIn, bool fDummy = false); // Standard CCoinsView methods bool GetCoins(const uint256 &txid, CCoins &coins); bool SetCoins(const uint256 &txid, const CCoins &coins); bool HaveCoins(const uint256 &txid); CBlockIndex *GetBestBlock(); bool SetBestBlock(CBlockIndex *pindex); bool BatchWrite(const std::map &mapCoins, CBlockIndex *pindex); // Return a modifiable reference to a CCoins. Check HaveCoins first. // Many methods explicitly require a CCoinsViewCache because of this method, to reduce // copying. CCoins &GetCoins(const uint256 &txid); // Push the modifications applied to this cache to its base. // Failure to call this method before destruction will cause the changes to be forgotten. bool Flush(); // Calculate the size of the cache (in number of transactions) unsigned int GetCacheSize(); private: std::map::iterator FetchCoins(const uint256 &txid); }; /** CCoinsView that brings transactions from a memorypool into view. It does not check for spendings by memory pool transactions. */ class CCoinsViewMemPool : public CCoinsViewBacked { protected: CTxMemPool &mempool; public: CCoinsViewMemPool(CCoinsView &baseIn, CTxMemPool &mempoolIn); bool GetCoins(const uint256 &txid, CCoins &coins); bool HaveCoins(const uint256 &txid); }; /** Global variable that points to the active CCoinsView (protected by cs_main) */ extern CCoinsViewCache *pcoinsTip; /** Global variable that points to the active block tree (protected by cs_main) */ extern CBlockTreeDB *pblocktree; struct CBlockTemplate { CBlock block; std::vector vTxFees; std::vector vTxSigOps; }; /** Used to relay blocks as header + vector * to filtered nodes. */ class CMerkleBlock { public: // Public only for unit testing CBlockHeader header; CPartialMerkleTree txn; public: // Public only for unit testing and relay testing // (not relayed) std::vector > vMatchedTxn; // Create from a CBlock, filtering transactions according to filter // Note that this will call IsRelevantAndUpdate on the filter for each transaction, // thus the filter will likely be modified. CMerkleBlock(const CBlock& block, CBloomFilter& filter); IMPLEMENT_SERIALIZE ( READWRITE(header); READWRITE(txn); ) }; #endif