#!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Kevacoin P2P network half-a-node. This python code was modified from ArtForz' public domain half-a-node, as found in the mini-node branch of http://github.com/jgarzik/pynode. P2PConnection: A low-level connection object to a node's P2P interface P2PInterface: A high-level interface object for communicating to a node over P2P""" import asyncore from collections import defaultdict from io import BytesIO import logging import socket import struct import sys import threading from test_framework.messages import * from test_framework.util import wait_until logger = logging.getLogger("TestFramework.mininode") MESSAGEMAP = { b"addr": msg_addr, b"block": msg_block, b"blocktxn": msg_blocktxn, b"cmpctblock": msg_cmpctblock, b"feefilter": msg_feefilter, b"getaddr": msg_getaddr, b"getblocks": msg_getblocks, b"getblocktxn": msg_getblocktxn, b"getdata": msg_getdata, b"getheaders": msg_getheaders, b"headers": msg_headers, b"inv": msg_inv, b"mempool": msg_mempool, b"ping": msg_ping, b"pong": msg_pong, b"reject": msg_reject, b"sendcmpct": msg_sendcmpct, b"sendheaders": msg_sendheaders, b"tx": msg_tx, b"verack": msg_verack, b"version": msg_version, } MAGIC_BYTES = { "mainnet": b"\xfb\xc0\xb6\xdb", # mainnet "testnet4": b"\xfd\xd2\xc8\xf1", # testnet3 "regtest": b"\xfa\xbf\xb5\xda", # regtest } class P2PConnection(asyncore.dispatcher): """A low-level connection object to a node's P2P interface. This class is responsible for: - opening and closing the TCP connection to the node - reading bytes from and writing bytes to the socket - deserializing and serializing the P2P message header - logging messages as they are sent and received This class contains no logic for handing the P2P message payloads. It must be sub-classed and the on_message() callback overridden.""" def __init__(self): # All P2PConnections must be created before starting the NetworkThread. # assert that the network thread is not running. assert not network_thread_running() super().__init__(map=mininode_socket_map) def peer_connect(self, dstaddr, dstport, net="regtest"): self.dstaddr = dstaddr self.dstport = dstport self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) self.sendbuf = b"" self.recvbuf = b"" self.state = "connecting" self.network = net self.disconnect = False logger.info('Connecting to Kevacoin Node: %s:%d' % (self.dstaddr, self.dstport)) try: self.connect((dstaddr, dstport)) except: self.handle_close() def peer_disconnect(self): # Connection could have already been closed by other end. if self.state == "connected": self.disconnect_node() # Connection and disconnection methods def handle_connect(self): """asyncore callback when a connection is opened.""" if self.state != "connected": logger.debug("Connected & Listening: %s:%d" % (self.dstaddr, self.dstport)) self.state = "connected" self.on_open() def handle_close(self): """asyncore callback when a connection is closed.""" logger.debug("Closing connection to: %s:%d" % (self.dstaddr, self.dstport)) self.state = "closed" self.recvbuf = b"" self.sendbuf = b"" try: self.close() except: pass self.on_close() def disconnect_node(self): """Disconnect the p2p connection. Called by the test logic thread. Causes the p2p connection to be disconnected on the next iteration of the asyncore loop.""" self.disconnect = True # Socket read methods def handle_read(self): """asyncore callback when data is read from the socket.""" t = self.recv(8192) if len(t) > 0: self.recvbuf += t self._on_data() def _on_data(self): """Try to read P2P messages from the recv buffer. This method reads data from the buffer in a loop. It deserializes, parses and verifies the P2P header, then passes the P2P payload to the on_message callback for processing.""" try: while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != MAGIC_BYTES[self.network]: raise ValueError("got garbage %s" % repr(self.recvbuf)) if len(self.recvbuf) < 4 + 12 + 4 + 4: return command = self.recvbuf[4:4+12].split(b"\x00", 1)[0] msglen = struct.unpack(" 0 or pre_connection) def handle_write(self): """asyncore callback when data should be written to the socket.""" with mininode_lock: # asyncore does not expose socket connection, only the first read/write # event, thus we must check connection manually here to know when we # actually connect if self.state == "connecting": self.handle_connect() if not self.writable(): return try: sent = self.send(self.sendbuf) except: self.handle_close() return self.sendbuf = self.sendbuf[sent:] def send_message(self, message, pushbuf=False): """Send a P2P message over the socket. This method takes a P2P payload, builds the P2P header and adds the message to the send buffer to be sent over the socket.""" if self.state != "connected" and not pushbuf: raise IOError('Not connected, no pushbuf') self._log_message("send", message) command = message.command data = message.serialize() tmsg = MAGIC_BYTES[self.network] tmsg += command tmsg += b"\x00" * (12 - len(command)) tmsg += struct.pack(" 500: log_message += "... (msg truncated)" logger.debug(log_message) class P2PInterface(P2PConnection): """A high-level P2P interface class for communicating with a Kevacoin node. This class provides high-level callbacks for processing P2P message payloads, as well as convenience methods for interacting with the node over P2P. Individual testcases should subclass this and override the on_* methods if they want to alter message handling behaviour.""" def __init__(self): super().__init__() # Track number of messages of each type received and the most recent # message of each type self.message_count = defaultdict(int) self.last_message = {} # A count of the number of ping messages we've sent to the node self.ping_counter = 1 # The network services received from the peer self.nServices = 0 def peer_connect(self, *args, services=NODE_NETWORK|NODE_WITNESS, send_version=True, **kwargs): super().peer_connect(*args, **kwargs) if send_version: # Send a version msg vt = msg_version() vt.nServices = services vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.send_message(vt, True) # Message receiving methods def on_message(self, message): """Receive message and dispatch message to appropriate callback. We keep a count of how many of each message type has been received and the most recent message of each type.""" with mininode_lock: try: command = message.command.decode('ascii') self.message_count[command] += 1 self.last_message[command] = message getattr(self, 'on_' + command)(message) except: print("ERROR delivering %s (%s)" % (repr(message), sys.exc_info()[0])) raise # Callback methods. Can be overridden by subclasses in individual test # cases to provide custom message handling behaviour. def on_open(self): pass def on_close(self): pass def on_addr(self, message): pass def on_block(self, message): pass def on_blocktxn(self, message): pass def on_cmpctblock(self, message): pass def on_feefilter(self, message): pass def on_getaddr(self, message): pass def on_getblocks(self, message): pass def on_getblocktxn(self, message): pass def on_getdata(self, message): pass def on_getheaders(self, message): pass def on_headers(self, message): pass def on_mempool(self, message): pass def on_pong(self, message): pass def on_reject(self, message): pass def on_sendcmpct(self, message): pass def on_sendheaders(self, message): pass def on_tx(self, message): pass def on_inv(self, message): want = msg_getdata() for i in message.inv: if i.type != 0: want.inv.append(i) if len(want.inv): self.send_message(want) def on_ping(self, message): self.send_message(msg_pong(message.nonce)) def on_verack(self, message): self.verack_received = True def on_version(self, message): assert message.nVersion >= MIN_VERSION_SUPPORTED, "Version {} received. Test framework only supports versions greater than {}".format(message.nVersion, MIN_VERSION_SUPPORTED) self.send_message(msg_verack()) self.nServices = message.nServices # Connection helper methods def wait_for_disconnect(self, timeout=60): test_function = lambda: self.state != "connected" wait_until(test_function, timeout=timeout, lock=mininode_lock) # Message receiving helper methods def wait_for_block(self, blockhash, timeout=60): test_function = lambda: self.last_message.get("block") and self.last_message["block"].block.rehash() == blockhash wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_getdata(self, timeout=60): test_function = lambda: self.last_message.get("getdata") wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_getheaders(self, timeout=60): test_function = lambda: self.last_message.get("getheaders") wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_inv(self, expected_inv, timeout=60): """Waits for an INV message and checks that the first inv object in the message was as expected.""" if len(expected_inv) > 1: raise NotImplementedError("wait_for_inv() will only verify the first inv object") test_function = lambda: self.last_message.get("inv") and \ self.last_message["inv"].inv[0].type == expected_inv[0].type and \ self.last_message["inv"].inv[0].hash == expected_inv[0].hash wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_verack(self, timeout=60): test_function = lambda: self.message_count["verack"] wait_until(test_function, timeout=timeout, lock=mininode_lock) # Message sending helper functions def send_and_ping(self, message): self.send_message(message) self.sync_with_ping() # Sync up with the node def sync_with_ping(self, timeout=60): self.send_message(msg_ping(nonce=self.ping_counter)) test_function = lambda: self.last_message.get("pong") and self.last_message["pong"].nonce == self.ping_counter wait_until(test_function, timeout=timeout, lock=mininode_lock) self.ping_counter += 1 # Keep our own socket map for asyncore, so that we can track disconnects # ourselves (to workaround an issue with closing an asyncore socket when # using select) mininode_socket_map = dict() # One lock for synchronizing all data access between the networking thread (see # NetworkThread below) and the thread running the test logic. For simplicity, # P2PConnection acquires this lock whenever delivering a message to a P2PInterface, # and whenever adding anything to the send buffer (in send_message()). This # lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the P2PInterface or P2PConnection. mininode_lock = threading.RLock() class NetworkThread(threading.Thread): def __init__(self): super().__init__(name="NetworkThread") def run(self): while mininode_socket_map: # We check for whether to disconnect outside of the asyncore # loop to workaround the behavior of asyncore when using # select disconnected = [] for fd, obj in mininode_socket_map.items(): if obj.disconnect: disconnected.append(obj) [obj.handle_close() for obj in disconnected] asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1) logger.debug("Network thread closing") def network_thread_start(): """Start the network thread.""" # Only one network thread may run at a time assert not network_thread_running() NetworkThread().start() def network_thread_running(): """Return whether the network thread is running.""" return any([thread.name == "NetworkThread" for thread in threading.enumerate()]) def network_thread_join(timeout=10): """Wait timeout seconds for the network thread to terminate. Throw if the network thread doesn't terminate in timeout seconds.""" network_threads = [thread for thread in threading.enumerate() if thread.name == "NetworkThread"] assert len(network_threads) <= 1 for thread in network_threads: thread.join(timeout) assert not thread.is_alive()