Adds a regression test for the wallet's ResendWalletTransactions function, which uses a new, hidden RPC command "resendwallettransactions."
I refactored main's Broadcast signal so it is passed the best-block time, which let me remove a global variable shared between main.cpp and the wallet (nTimeBestReceived).
I also manually tested the "rebroadcast unconfirmed every half hour or so" functionality by:
1. Running bitcoind -connect=0.0.0.0:8333
2. Creating a couple of send-to-self transactions
3. Connect to a peer using -addnode
4. Waited a while, monitoring debug.log, until I see:
```2015-03-23 18:48:10 ResendWalletTransactions: rebroadcast 2 unconfirmed transactions```
One last change: don't bother putting ResendWalletTransactions messages in debug.log unless unconfirmed transactions were actually rebroadcast.
During startup, when adding pending wallet transactions, which spend outputs of
other pending wallet transactions, back to the memory pool, and when they are
added out of order, it appears as if they are orphans with missing inputs.
Those transactions are then rejected and flagged as "conflicting" (= not in the
memory pool, not in the block chain).
To prevent this, transactions are explicitly sorted.
Note that this will also require translation changes in Transifex for the key
"A fee higher than %1 is considered an insanely high fee." which is now
"A fee higher than %1 is considered an absurdly high fee."
Signed-off-by: Daira Hopwood <daira@jacaranda.org>
Previously the minRelayTxFee was only enforced on user specified values.
It was possible for smartfee to produce a fee below minRelayTxFee which
would just result in the transaction getting stuck because it can't be
relayed.
This also introduces a maxtxfee option which sets an absolute maximum
for any fee created by the wallet, with an intention of increasing
user confidence that the automatic fees won't burn them. This was
frequently a concern even before smartfees.
If the configured fee policy won't even allow the wallet to meet the relay
fee the transaction creation may be aborted.
Add a sanity check to prevent cosmic rays from flipping a bit in the
generated public key, or bugs in the elliptic curve code. This is
simply done by signing a (randomized) message, and verifying the
result.
We're using GetRandomBytes in several contexts where it's either
unwieldy to return an error, or an error would mean a fatal exception
anyhow.
@gmaxwell checked OpenSSL a while ago and discovered that it never
actually fails, but it can't hurt to be a bit paranoid here.
Make the CBlockIndex* (optionally) returned by GetDepthInMainChain
const. This prevents accidental modification. The result is for
reading its properties rather than modifying it.
This allows for a reversal of the current behavior.
This:
CScript foo;
CScriptID bar(foo.GetID());
Becomes:
CScript foo;
CScriptID bar(foo);
This way, CScript is no longer dependent on CScriptID or Hash();
- add missing deletes for pwalletdbEncryption
- add an assert before trying to reserve memory for pwalletdbEncryption
- add a destructor to CWallet, which ensures deletion of
pwalletdbEncryption on object destruction
The case SetMerkleBranch(NULL) was never actually used, and thus the
involved code (loading the block from disk) can be removed and the
implementation simplified.
Split up util.cpp/h into:
- string utilities (hex, base32, base64): no internal dependencies, no dependency on boost (apart from foreach)
- money utilities (parsesmoney, formatmoney)
- time utilities (gettime*, sleep, format date):
- and the rest (logging, argument parsing, config file parsing)
The latter is basically the environment and OS handling,
and is stripped of all utility functions, so we may want to
rename it to something else than util.cpp/h for clarity (Matt suggested
osinterface).
Breaks dependency of sha256.cpp on all the things pulled in by util.