CTransAction::IsEquivalentTo was introduced in #5881.
This functionality is only useful to the wallet, and should never have
been added to the primitive transaction type.
Previously due to an off-by-one error the wallet ignored
nLockTime-by-height transactions that would be valid in the next block
even though they are accepted into the mempool. The transactions
wouldn't show up until confirmed, nor would they be included in the
unconfirmed balance. Similar to the mempool behavior fix in 665bdd3b,
the wallet code was calling IsFinalTx() directly without taking into
account the fact that doing so tells you if the transaction could have
been mined in the *current* block, rather than the next block.
To fix this we strip IsFinalTx() of non-consensus-critical
functionality, removing the default arguments, and add CheckFinalTx() to
check if a transaction will be final in the next block.
It's reasonable that automatic coin selection will not pick a zero
value txout, but they're actually spendable; and you should know
if you have them. Listing also makes them available to tools like
dust-b-gone.
Define CTransaction::IsEquivalentTo(const CTransaction& tx)
True if only scriptSigs are different. In other words, true if
the two transactions are malleability clones. In other words,
true if the two transactions have the same effect on the
outside universe.
In the wallet, only SyncMetaData for equivalent transactions.
This is an advanced feature which will disable any kind of automatic
transaction broadcasting in the wallet. This gives the user full control
of how the transaction is sent.
For example they can broadcast new transactions through some other
mechanism themselves, after getting the transaction hex through `gettransaction`.
This just adds the option `-walletbroadcast=<0,1>`. Right now these
transactions will get the status
Status: conflicted, has not been successfully broadcast yet
They shouldn't be shown as conflicted at all (`walletconflicts` is empty). This status
will go away when the transaction is received through the network.
Adds a regression test for the wallet's ResendWalletTransactions function, which uses a new, hidden RPC command "resendwallettransactions."
I refactored main's Broadcast signal so it is passed the best-block time, which let me remove a global variable shared between main.cpp and the wallet (nTimeBestReceived).
I also manually tested the "rebroadcast unconfirmed every half hour or so" functionality by:
1. Running bitcoind -connect=0.0.0.0:8333
2. Creating a couple of send-to-self transactions
3. Connect to a peer using -addnode
4. Waited a while, monitoring debug.log, until I see:
```2015-03-23 18:48:10 ResendWalletTransactions: rebroadcast 2 unconfirmed transactions```
One last change: don't bother putting ResendWalletTransactions messages in debug.log unless unconfirmed transactions were actually rebroadcast.
During startup, when adding pending wallet transactions, which spend outputs of
other pending wallet transactions, back to the memory pool, and when they are
added out of order, it appears as if they are orphans with missing inputs.
Those transactions are then rejected and flagged as "conflicting" (= not in the
memory pool, not in the block chain).
To prevent this, transactions are explicitly sorted.
Note that this will also require translation changes in Transifex for the key
"A fee higher than %1 is considered an insanely high fee." which is now
"A fee higher than %1 is considered an absurdly high fee."
Signed-off-by: Daira Hopwood <daira@jacaranda.org>
Previously the minRelayTxFee was only enforced on user specified values.
It was possible for smartfee to produce a fee below minRelayTxFee which
would just result in the transaction getting stuck because it can't be
relayed.
This also introduces a maxtxfee option which sets an absolute maximum
for any fee created by the wallet, with an intention of increasing
user confidence that the automatic fees won't burn them. This was
frequently a concern even before smartfees.
If the configured fee policy won't even allow the wallet to meet the relay
fee the transaction creation may be aborted.
Add a sanity check to prevent cosmic rays from flipping a bit in the
generated public key, or bugs in the elliptic curve code. This is
simply done by signing a (randomized) message, and verifying the
result.
We're using GetRandomBytes in several contexts where it's either
unwieldy to return an error, or an error would mean a fatal exception
anyhow.
@gmaxwell checked OpenSSL a while ago and discovered that it never
actually fails, but it can't hurt to be a bit paranoid here.
Make the CBlockIndex* (optionally) returned by GetDepthInMainChain
const. This prevents accidental modification. The result is for
reading its properties rather than modifying it.