But keep translating them in the GUI.
This - necessarily - requires duplication of a few messages.
Alternative take on #7134, that keeps the translations from being wiped.
Also document GetWarnings() input argument.
Fixes#5895.
Make RPC tests have a default block priority size of 50000 (the old default) so we can still use free transactions in RPC tests. When priority is eliminated, we will have to make a different change if we want to continue allowing free txs.
Mruset setInventoryKnown was reduced to a remarkably small 1000
entries as a side effect of sendbuffer size reductions in 2012.
This removes setInventoryKnown filtering from merkleBlock responses
because false positives there are especially unattractive and
also because I'm not sure if there aren't race conditions around
the relay pool that would cause some transactions there to
be suppressed. (Also, ProcessGetData was accessing
setInventoryKnown without taking the required lock.)
This replaces using inv messages to announce new blocks, when a peer requests
(via the new "sendheaders" message) that blocks be announced with headers
instead of inv's.
Since headers-first was introduced, peers send getheaders messages in response
to an inv, which requires generating a block locator that is large compared to
the size of the header being requested, and requires an extra round-trip before
a reorg can be relayed. Save time by tracking headers that a peer is likely to
know about, and send a headers chain that would connect to a peer's known
headers, unless the chain would be too big, in which case we revert to sending
an inv instead.
Based off of @sipa's commit to announce all blocks in a reorg via inv,
which has been squashed into this commit.
Rebased-by: Pieter Wuille
This allows for much finer control of the transaction fees per kilobyte
as it prevent small transactions using a fee that is more appropriate
for one that is of a kilobyte.
This also allows controlling the fee per kilobyte over rpc such that:
bitcoin-cli settxfee `bitcoin-cli estimatefee 2`
would make sense, while currently it grossly fails often by a factor of x3
For each 'bit' in the filter we really maintain 2 bits, which store either:
0: not set
1-3: set in generation N
After (nElements / 2) insertions, we switch to a new generation, and wipe
entries which already had the new generation number, effectively switching
from the last 1.5 * nElements set to the last 1.0 * nElements set.
This is 25% more space efficient than the previous implementation, and can
(at peak) store 1.5 times the requested amount of history (though only
1.0 times the requested history is guaranteed).
The existing unit tests should be sufficient.
This switches the Merkle tree logic for blocks to one that runs in constant (small) space.
The old code is moved to tests, and a new test is added that for various combinations of
block sizes, transaction positions to compute a branch for, and mutations:
* Verifies that the old code and new code agree for the Merkle root.
* Verifies that the old code and new code agree for the Merkle branch.
* Verifies that the computed Merkle branch is valid.
* Verifies that mutations don't change the Merkle root.
* Verifies that mutations are correctly detected.