Extremely large transactions with lots of inputs can cost the network
almost as much to process as they cost the sender in fees.
We would never create transactions larger than 100K big; this change
makes transactions larger than 100K non-standard, so they are not
relayed/mined by default. This is most important for miners that might
create blocks larger than 250K big, who could be vulnerable to a
make-your-blocks-so-expensive-to-verify-they-get-orphaned attack.
By specifying -txindex when initializing the database, a txid-to-diskpos
index is maintained in the blktree database. This database is used to
help answering getrawtransaction() RPC queries, when enabled.
Changing the -txindex value requires a -reindex; the client will abort
at startup if the database and the specified -txindex mismatch.
Fixes issue #2178 : attacker could penny-flood with invalid-signature
transactions to deduce which addresses belonged to your node.
I'm committing this early for code review; I still need to write up
a test plan.
Executive summary of fix: check all transactions received from the network
for penny-flood rate-limiting before adding to the memory pool. But do NOT
ratelimit transactions added to the memory pool:
- because of blockchain reorgs
- stored in the wallet and added at startup
- sent from the GUI or one of the send* RPC commands (CWallet::CommitTransaction)
The limit-free-transactions code really should be a method on CNode, with
counters per-peer. But that is a bigger change for another day.
* During block verification (when parallelism is requested), script
check actions are stored instead of being executed immediately.
* After every processed transactions, its signature actions are
pushed to a CScriptCheckQueue, which maintains a queue and some
synchronization mechanism.
* Two or more threads (if enabled) start processing elements from
this queue,
* When the block connection code is finished processing transactions,
it joins the worker pool until the queue is empty.
As cs_main is held the entire time, and all verification must be
finished before the block continues processing, this does not reach
the best possible performance. It is a less drastic change than
some more advanced mechanisms (like doing verification out-of-band
entirely, and rolling back blocks when a failure is detected).
The -par=N flag controls the number of threads (1-16). 0 means auto,
and is the default.
-checklevel gets a new meaning:
0: verify blocks can be read from disk (like before)
1: verify (contextless) block validity (like before)
2: verify undo files can be read and have good checksums
3: verify coin database is consistent with the last few blocks
(close to level 6 before)
4: verify all validity rules of the last few blocks
Level 3 is the new default, as it's reasonably fast. As level 3 and
4 are implemented using an in-memory rollback of the database, they
are limited to as many blocks as possible without exceeding the
limits set by -dbcache. The default of -dbcache=25 allows for some
150-200 blocks to be rolled back.
In case an error is found, the application quits with a message
instructing the user to restart with -reindex. Better instructions,
and automatic recovery (when possible) or automatic reindexing are
left as future work.
When a transaction A is in the memory pool, while a transaction B
(which shares an input with A) gets accepted into a block, A was
kept forever in the memory pool.
This commit adds a CTxMemPool::removeConflicts method, which
removes transactions that conflict with a given transaction, and
all their children.
This results in less transactions in the memory pool, and faster
construction of new blocks.
These flags select features to be enabled/disabled during script
evaluation/checking, instead of several booleans passed along.
Currently these flags are defined:
* SCRIPT_VERIFY_P2SH: enable BIP16-style subscript evaluation
* SCRIPT_VERIFY_STRICTENC: enforce strict adherence to pubkey/sig encoding standards.
- remove an unwanted ";" at the end of the ~CCoinsView() destructor
- in FindBlockPos() and FindUndoPos() only call fclose(), is file is open
- fix an error string in the CBlockUndo class
Flushes the blktree/ and coins/ databases, and reindexes the
block chain files, as if their contents was loaded via -loadblock.
Based on earlier work by Jeff Garzik.
Split off CBlockTreeDB and CCoinsViewDB into txdb-*.{cpp,h} files,
implemented by either LevelDB or BDB.
Based on code from earlier commits by Mike Hearn in his leveldb
branch.
To prevent excessive copying of CCoins in and out of the CCoinsView
implementations, introduce a GetCoins() function in CCoinsViewCache
with returns a direct reference. The block validation and connection
logic is updated to require caching CCoinsViews, and exploits the
GetCoins() function heavily.
Use CBlock's vMerkleTree to cache transaction hashes, and pass them
along as argument in more function calls. During initial block download,
this results in every transaction's hash to be only computed once.
During the initial block download (or -loadblock), delay connection
of new blocks a bit, and perform them in a single action. This reduces
the load on the database engine, as subsequent blocks often update an
earlier block's transaction already.
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
Introduce a AllocateFileRange() function in util, which wipes or
at least allocates a given range of a file. It can be overriden
by more efficient OS-dependent versions if necessary.
Block and undo files are now allocated in chunks of 16 and 1 MiB,
respectively.