Create a monitoring task that counts how many blocks have been found in the last four hours.
If very few or too many have been found, an alert is triggered.
"Very few" and "too many" are set based on a false positive rate of once every fifty years of constant running with constant hashing power, which works out to getting 5 or fewer or 48 or more blocks in four hours (instead of the average of 24).
Only one alert per day is triggered, so if you get disconnected from the network (or are being Sybil'ed) -alertnotify will be triggered after 3.5 hours but you won't get another -alertnotify for 24 hours.
Tested with a new unit test and by running on the main network with -debug=partitioncheck
Run test/test_bitcoin --log_level=message to see the alert messages:
WARNING: check your network connection, 3 blocks received in the last 4 hours (24 expected)
WARNING: abnormally high number of blocks generated, 60 blocks received in the last 4 hours (24 expected)
The -debug=partitioncheck debug.log messages look like:
ThreadPartitionCheck : Found 22 blocks in the last 4 hours
ThreadPartitionCheck : likelihood: 0.0777702
Instead of only checking height to decide whether to disable script checks,
actually check whether a block is an ancestor of a checkpoint, up to which
headers have been validated. This means that we don't have to prevent
accepting a side branch anymore - it will be safe, just less fast to
do.
We still need to prevent being fed a multitude of low-difficulty headers
filling up our memory. The mechanism for that is unchanged for now: once
a checkpoint is reached with headers, no headers chain branching off before
that point are allowed anymore.
This class groups transactions that have been confirmed in blocks into buckets, based on either their fee or their priority. Then for each bucket, the class calculates what percentage of the transactions were confirmed within various numbers of blocks. It does this by keeping an exponentially decaying moving history for each bucket and confirm block count of the percentage of transactions in that bucket that were confirmed within that number of blocks.
-Eliminate txs which didn't have all inputs available at entry from fee/pri calcs
-Add dynamic breakpoints and tracking of confirmation delays in mempool transactions
-Remove old CMinerPolicyEstimator and CBlockAverage code
-New smartfees.py
-Pass a flag to the estimation code, using IsInitialBlockDownload as a proxy for when we are still catching up and we shouldn't be counting how many blocks it takes for transactions to be included.
-Add a policyestimator unit test
We don't want to erase orphans that still have missing inputs, they should still be tracked as orphans. Also, the transaction thats being accepted can't be an orphan otherwise it would have previously been accepted, so doesn't need to be added to the erase queue.
When the internal miner is enabled at the start of a new node, there
is an near instant assert in TestBlockValidity because its attempting
to mine a block before the top checkpoint.
Also avoids a data race around vNodes.
If there are any script verification errors, when using "signrawtransaction", they are shown in the RPC result:
```
// ...
Result:
{
"hex" : "value", (string) The hex-encoded raw transaction with signature(s)
"complete" : true|false, (boolean) If the transaction has a complete set of signatures
"errors" : [ (json array of objects) Script verification errors (if there are any)
{
"txid" : "hash", (string) The hash of the referenced, previous transaction
"vout" : n, (numeric) The index of the output to spent and used as input
"scriptSig" : "hex", (string) The hex-encoded signature script
"sequence" : n, (numeric) Script sequence number
"error" : "text" (string) Verification or signing error related to the input
}
,...
]
}
```
Connecting the chain can take quite a while.
All the while it is still showing `Loading wallet...`.
Add an init message to inform the user what is happening.
libsecp256k1's API changed, so update key.cpp to use it.
Libsecp256k1 now has explicit context objects, which makes it completely thread-safe.
In turn, keep an explicit context object in key.cpp, which is explicitly initialized
destroyed. This is not really pretty now, but it's more efficient than the static
initialized object in key.cpp (which made for example bitcoin-tx slow, as for most of
its calls, libsecp256k1 wasn't actually needed).
This also brings in the new blinding support in libsecp256k1. By passing in a random
seed, temporary variables during the elliptic curve computations are altered, in such
a way that if an attacker does not know the blind, observing the internal operations
leaks less information about the keys used. This was implemented by Greg Maxwell.
Compute the change directly as difference between the "requested" and
the actual value returned by SelectCoins. This removes a duplication of
the fee logic code.