There are a few too many edge-cases here to make this a scripted diff.
The following commits will move a few functions into PeerLogicValidation, where
the local connman instance can be used. This change prepares for that usage.
352d582ba Add vConnect to CConnman::Options (Marko Bencun)
Pull request description:
Split the "-connect" argument parsing out of CConnman and put it into
AppInitMain().
Tree-SHA512: f2d3efc4e2c5808ff98696ea20dd96df599bc472ed5afc9c3eea305d94c36a6ab50c632aa05396c7c34d1917d91b1e7ccd725656ff2631e2a36d9eac477455dc
When running test_bitcoin under Valgrind I found the following issue:
```
$ valgrind src/test/test_bitcoin
...
==10465== Use of uninitialised value of size 8
==10465== at 0x6D09B61: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==10465== by 0x6D0B1BB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<unsigned long>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==10465== by 0x6D0B36C: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==10465== by 0x6D17699: std::ostream& std::ostream::_M_insert<unsigned long>(unsigned long) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==10465== by 0x4CAAD7: operator<< (ostream:171)
==10465== by 0x4CAAD7: formatValue<ServiceFlags> (tinyformat.h:345)
==10465== by 0x4CAAD7: void tinyformat::detail::FormatArg::formatImpl<ServiceFlags>(std::ostream&, char const*, char const*, int, void const*) (tinyformat.h:523)
==10465== by 0x1924D4: format (tinyformat.h:510)
==10465== by 0x1924D4: tinyformat::detail::formatImpl(std::ostream&, char const*, tinyformat::detail::FormatArg const*, int) (tinyformat.h:803)
==10465== by 0x553A55: vformat (tinyformat.h:947)
==10465== by 0x553A55: format<ServiceFlags> (tinyformat.h:957)
==10465== by 0x553A55: std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > tinyformat::format<ServiceFlags>(char const*, ServiceFlags const&) (tinyformat.h:966)
==10465== by 0x54C952: getnetworkinfo(JSONRPCRequest const&) (net.cpp:462)
==10465== by 0x28EDB5: CallRPC(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) (rpc_tests.cpp:31)
==10465== by 0x293947: rpc_tests::rpc_togglenetwork::test_method() (rpc_tests.cpp:88)
==10465== by 0x2950E5: rpc_tests::rpc_togglenetwork_invoker() (rpc_tests.cpp:84)
==10465== by 0x182496: invoke<void (*)()> (callback.hpp:56)
==10465== by 0x182496: boost::unit_test::ut_detail::callback0_impl_t<boost::unit_test::ut_detail::unused, void (*)()>::invoke() (callback.hpp:89)
...
```
The read of the uninitialized variable nLocalServices is triggered by g_connman->GetLocalServices()
in getnetworkinfo(const JSONRPCRequest& request) (net.cpp:462):
```c++
UniValue getnetworkinfo(const JSONRPCRequest& request)
{
...
if(g_connman)
obj.push_back(Pair("localservices", strprintf("%016x", g_connman->GetLocalServices())));
...
}
```
The reason for the uninitialized nLocalServices is that CConnman::Start(...) is not called
by the tests, and hence the initialization normally performed by CConnman::Start(...) is
not done.
This commit adds a method Init(const Options& connOptions) which is called by both the
constructor and CConnman::Start(...). This method initializes nLocalServices and the other
relevant values from the supplied Options object.
Identified with `cppcheck --enable=unusedFunction .`.
- GetSendBufferSize()'s last use removed in
991955ee81
- SetPort()'s last use removed in
7e195e8459
- GetfLargeWorkInvalidChainFound() was introduced in
e3ba0ef956 and never used
Part of a series of changes to clean up the instantiation of connman
by decoupling the command line arguments.
We also now abort with an error when explicit binds are set with
-listen=0.
This adds the listening address on which incoming connections were received to the
CNode and CNodeStats structures.
The address is reported in `getpeerinfo`.
This can be useful for distinguishing connections received on different listening ports
(e.g. when using a different listening port for Tor hidden service connections)
or different networks.
381a46e Consensus: Policy: MOVEONLY: Move CFeeRate out of the consensus module (Jorge Timón)
330bb5a Consensus: Minimal way to move dust out of consensus (Jorge Timón)
Tree-SHA512: 19a2ea8169afd5a9d3f940d8974e34cfaead153e3ff3068ac82fccdb8694d19d9b45938904ec9e8cd095bd5ca3a0080364da29372f6aaf56b11a6c2ccd6c7a4d
These are (afaik) all long-standing races or concurrent accesses. Going
forward, we can clean these up so that they're not all individual atomic
accesses.
- Reintroduce cs_vRecv to guard receive-specific vars
- Lock vRecv/vSend for CNodeStats
- Make some vars atomic.
- Only set the connection time in CNode's constructor so that it doesn't change
0729102 Net: pass interruptMsgProc as const where possible (Jorge Timón)
fc7f2ff Net: Make CNetMsgMaker more const (Jorge Timón)
d45955f Net: CConnman: Make some methods const (Jorge Timón)
Since ForEach* are can be used to send messages to all nodes, the caller may
end up sending a message before the version handshake is complete. To limit
this, filter out these nodes. While we're at it, may as well filter out
disconnected nodes as well.
Delete unused methods rather than updating them.
This avoids having some vars set if the version negotiation fails.
Also copy it all into CNode at the same site. nVersion and
fSuccessfullyConnected are set last, as they are the gates for the other vars.
Make them atomic for that reason.
376b3c2 Make the cs_sendProcessing a LOCK instead of a TRY_LOCK (Matt Corallo)
d7c58ad Split CNode::cs_vSend: message processing and message sending (Matt Corallo)
cs_vSend is used for two purposes - to lock the datastructures used
to queue messages to place on the wire and to only call
SendMessages once at a time per-node. I believe SendMessages used
to access some of the vSendMsg stuff, but it doesn't anymore, so
these locks do not need to be on the same mutex, and also make
deadlocking much more likely.
e60360e net: remove cs_vRecvMsg (Cory Fields)
991955e net: add a flag to indicate when a node's send buffer is full (Cory Fields)
c6e8a9b net: add a flag to indicate when a node's process queue is full (Cory Fields)
4d712e3 net: add a new message queue for the message processor (Cory Fields)
c5a8b1b net: rework the way that the messagehandler sleeps (Cory Fields)
c72cc88 net: remove useless comments (Cory Fields)
ef7b5ec net: Add a simple function for waking the message handler (Cory Fields)
f5c36d1 net: record bytes written before notifying the message processor (Cory Fields)
60befa3 net: handle message accounting in ReceiveMsgBytes (Cory Fields)
56212e2 net: set message deserialization version when it's actually time to deserialize (Cory Fields)
0e973d9 net: remove redundant max sendbuffer size check (Cory Fields)
6042587 net: wait until the node is destroyed to delete its recv buffer (Cory Fields)
f6315e0 net: only disconnect if fDisconnect has been set (Cory Fields)
5b4a8ac net: make GetReceiveFloodSize public (Cory Fields)
e5bcd9c net: make vRecvMsg a list so that we can use splice() (Cory Fields)
53ad9a1 net: fix typo causing the wrong receive buffer size (Cory Fields)
vRecvMsg is now only touched by the socket handler thread.
The accounting vars (nRecvBytes/nLastRecv/mapRecvBytesPerMsgCmd) are also
only used by the socket handler thread, with the exception of queries from
rpc/gui. These accesses are not threadsafe, but they never were. This needs to
be addressed separately.
Also, update comment describing data flow
Similar to the recv flag, but this one indicates whether or not the net's send
buffer is full.
The socket handler checks the send queue when a new message is added and pauses
if necessary, and possibly unpauses after each message is drained from its buffer.
Messages are dumped very quickly from the socket handler to the processor, so
it's the depth of the processing queue that's interesting.
The socket handler checks the process queue's size during the brief message
hand-off and pauses if necessary, and the processor possibly unpauses each time
a message is popped off of its queue.