Pieter Wuille
9 years ago
3 changed files with 171 additions and 0 deletions
@ -0,0 +1,152 @@
@@ -0,0 +1,152 @@
|
||||
#include "merkle.h" |
||||
#include "hash.h" |
||||
#include "utilstrencodings.h" |
||||
|
||||
/* WARNING! If you're reading this because you're learning about crypto
|
||||
and/or designing a new system that will use merkle trees, keep in mind |
||||
that the following merkle tree algorithm has a serious flaw related to |
||||
duplicate txids, resulting in a vulnerability (CVE-2012-2459). |
||||
|
||||
The reason is that if the number of hashes in the list at a given time |
||||
is odd, the last one is duplicated before computing the next level (which |
||||
is unusual in Merkle trees). This results in certain sequences of |
||||
transactions leading to the same merkle root. For example, these two |
||||
trees: |
||||
|
||||
A A |
||||
/ \ / \ |
||||
B C B C |
||||
/ \ | / \ / \ |
||||
D E F D E F F |
||||
/ \ / \ / \ / \ / \ / \ / \ |
||||
1 2 3 4 5 6 1 2 3 4 5 6 5 6 |
||||
|
||||
for transaction lists [1,2,3,4,5,6] and [1,2,3,4,5,6,5,6] (where 5 and |
||||
6 are repeated) result in the same root hash A (because the hash of both |
||||
of (F) and (F,F) is C). |
||||
|
||||
The vulnerability results from being able to send a block with such a |
||||
transaction list, with the same merkle root, and the same block hash as |
||||
the original without duplication, resulting in failed validation. If the |
||||
receiving node proceeds to mark that block as permanently invalid |
||||
however, it will fail to accept further unmodified (and thus potentially |
||||
valid) versions of the same block. We defend against this by detecting |
||||
the case where we would hash two identical hashes at the end of the list |
||||
together, and treating that identically to the block having an invalid |
||||
merkle root. Assuming no double-SHA256 collisions, this will detect all |
||||
known ways of changing the transactions without affecting the merkle |
||||
root. |
||||
*/ |
||||
|
||||
/* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */ |
||||
static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) { |
||||
if (pbranch) pbranch->clear(); |
||||
if (leaves.size() == 0) { |
||||
if (pmutated) *pmutated = false; |
||||
if (proot) *proot = uint256(); |
||||
return; |
||||
} |
||||
bool mutated = false; |
||||
// count is the number of leaves processed so far.
|
||||
uint32_t count = 0; |
||||
// inner is an array of eagerly computed subtree hashes, indexed by tree
|
||||
// level (0 being the leaves).
|
||||
// For example, when count is 25 (11001 in binary), inner[4] is the hash of
|
||||
// the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
|
||||
// the last leaf. The other inner entries are undefined.
|
||||
uint256 inner[32]; |
||||
// Which position in inner is a hash that depends on the matching leaf.
|
||||
int matchlevel = -1; |
||||
// First process all leaves into 'inner' values.
|
||||
while (count < leaves.size()) { |
||||
uint256 h = leaves[count]; |
||||
bool matchh = count == branchpos; |
||||
count++; |
||||
int level; |
||||
// For each of the lower bits in count that are 0, do 1 step. Each
|
||||
// corresponds to an inner value that existed before processing the
|
||||
// current leaf, and each needs a hash to combine it.
|
||||
for (level = 0; !(count & (((uint32_t)1) << level)); level++) { |
||||
if (pbranch) { |
||||
if (matchh) { |
||||
pbranch->push_back(inner[level]); |
||||
} else if (matchlevel == level) { |
||||
pbranch->push_back(h); |
||||
matchh = true; |
||||
} |
||||
} |
||||
mutated |= (inner[level] == h); |
||||
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin()); |
||||
} |
||||
// Store the resulting hash at inner position level.
|
||||
inner[level] = h; |
||||
if (matchh) { |
||||
matchlevel = level; |
||||
} |
||||
} |
||||
// Do a final 'sweep' over the rightmost branch of the tree to process
|
||||
// odd levels, and reduce everything to a single top value.
|
||||
// Level is the level (counted from the bottom) up to which we've sweeped.
|
||||
int level = 0; |
||||
// As long as bit number level in count is zero, skip it. It means there
|
||||
// is nothing left at this level.
|
||||
while (!(count & (((uint32_t)1) << level))) { |
||||
level++; |
||||
} |
||||
uint256 h = inner[level]; |
||||
bool matchh = matchlevel == level; |
||||
while (count != (((uint32_t)1) << level)) { |
||||
// If we reach this point, h is an inner value that is not the top.
|
||||
// We combine it with itself (Bitcoin's special rule for odd levels in
|
||||
// the tree) to produce a higher level one.
|
||||
if (pbranch && matchh) { |
||||
pbranch->push_back(h); |
||||
} |
||||
CHash256().Write(h.begin(), 32).Write(h.begin(), 32).Finalize(h.begin()); |
||||
// Increment count to the value it would have if two entries at this
|
||||
// level had existed.
|
||||
count += (((uint32_t)1) << level); |
||||
level++; |
||||
// And propagate the result upwards accordingly.
|
||||
while (!(count & (((uint32_t)1) << level))) { |
||||
if (pbranch) { |
||||
if (matchh) { |
||||
pbranch->push_back(inner[level]); |
||||
} else if (matchlevel == level) { |
||||
pbranch->push_back(h); |
||||
matchh = true; |
||||
} |
||||
} |
||||
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin()); |
||||
level++; |
||||
} |
||||
} |
||||
// Return result.
|
||||
if (pmutated) *pmutated = mutated; |
||||
if (proot) *proot = h; |
||||
} |
||||
|
||||
uint256 ComputeMerkleRoot(const std::vector<uint256>& leaves, bool* mutated) { |
||||
uint256 hash; |
||||
MerkleComputation(leaves, &hash, mutated, -1, NULL); |
||||
return hash; |
||||
} |
||||
|
||||
std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) { |
||||
std::vector<uint256> ret; |
||||
MerkleComputation(leaves, NULL, NULL, position, &ret); |
||||
return ret; |
||||
} |
||||
|
||||
uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& vMerkleBranch, uint32_t nIndex) { |
||||
uint256 hash = leaf; |
||||
for (std::vector<uint256>::const_iterator it = vMerkleBranch.begin(); it != vMerkleBranch.end(); ++it) { |
||||
if (nIndex & 1) { |
||||
hash = Hash(BEGIN(*it), END(*it), BEGIN(hash), END(hash)); |
||||
} else { |
||||
hash = Hash(BEGIN(hash), END(hash), BEGIN(*it), END(*it)); |
||||
} |
||||
nIndex >>= 1; |
||||
} |
||||
return hash; |
||||
} |
@ -0,0 +1,17 @@
@@ -0,0 +1,17 @@
|
||||
// Copyright (c) 2015 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_MERKLE |
||||
#define BITCOIN_MERKLE |
||||
|
||||
#include <stdint.h> |
||||
#include <vector> |
||||
|
||||
#include "uint256.h" |
||||
|
||||
uint256 ComputeMerkleRoot(const std::vector<uint256>& leaves, bool* mutated = NULL); |
||||
std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position); |
||||
uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& branch, uint32_t position); |
||||
|
||||
#endif |
Loading…
Reference in new issue