Browse Source

Make the rand tests determinstic. (fixes #2714)

This avoids spurious errors with the old tests but still tests
 enough that if the rng is replaced with a totally broken one
 it should still fail.
0.10
Gregory Maxwell 12 years ago
parent
commit
e5c4dfdfc0
  1. 34
      src/test/util_tests.cpp

34
src/test/util_tests.cpp

@ -263,28 +263,10 @@ BOOST_AUTO_TEST_CASE(util_IsHex)
BOOST_AUTO_TEST_CASE(util_seed_insecure_rand) BOOST_AUTO_TEST_CASE(util_seed_insecure_rand)
{ {
// Expected results for the determinstic seed.
const uint32_t exp_vals[11] = { 91632771U,1889679809U,3842137544U,3256031132U,
1761911779U, 489223532U,2692793790U,2737472863U,
2796262275U,1309899767U,840571781U};
// Expected 0s in rand()%(idx+2) for the determinstic seed.
const int exp_count[9] = {5013,3346,2415,1972,1644,1386,1176,1096,1009};
int i; int i;
int count=0; int count=0;
seed_insecure_rand(); seed_insecure_rand(true);
//Does the non-determistic rand give us results that look too like the determinstic one?
for (i=0;i<10;i++)
{
int match = 0;
uint32_t rval = insecure_rand();
for (int j=0;j<11;j++)match |= rval==exp_vals[j];
count += match;
}
// sum(binomial(10,i)*(11/(2^32))^i*(1-(11/(2^32)))^(10-i),i,0,4) ~= 1-1/2^134.73
// So _very_ unlikely to throw a false failure here.
BOOST_CHECK(count<=4);
for (int mod=2;mod<11;mod++) for (int mod=2;mod<11;mod++)
{ {
@ -307,20 +289,6 @@ BOOST_AUTO_TEST_CASE(util_seed_insecure_rand)
BOOST_CHECK(count<=10000/mod+err); BOOST_CHECK(count<=10000/mod+err);
BOOST_CHECK(count>=10000/mod-err); BOOST_CHECK(count>=10000/mod-err);
} }
seed_insecure_rand(true);
for (i=0;i<11;i++)
{
BOOST_CHECK_EQUAL(insecure_rand(),exp_vals[i]);
}
for (int mod=2;mod<11;mod++)
{
count = 0;
for (i=0;i<10000;i++) count += insecure_rand()%mod==0;
BOOST_CHECK_EQUAL(count,exp_count[mod-2]);
}
} }
BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END()

Loading…
Cancel
Save