Move non-trivial uint256.h methods to uint256.cpp

This commit is contained in:
Pieter Wuille 2014-06-28 17:35:22 +02:00
parent 236ae8665e
commit de79aaa7a9
5 changed files with 316 additions and 245 deletions

View File

@ -192,6 +192,7 @@ libbitcoin_util_a_SOURCES = \
chainparamsbase.cpp \ chainparamsbase.cpp \
rpcprotocol.cpp \ rpcprotocol.cpp \
sync.cpp \ sync.cpp \
uint256.cpp \
util.cpp \ util.cpp \
version.cpp \ version.cpp \
compat/glibc_sanity.cpp \ compat/glibc_sanity.cpp \

292
src/uint256.cpp Normal file
View File

@ -0,0 +1,292 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "uint256.h"
#include "util.h"
#include <stdio.h>
#include <string.h>
template<unsigned int BITS>
base_uint<BITS>::base_uint(const std::string& str)
{
SetHex(str);
}
template<unsigned int BITS>
base_uint<BITS>::base_uint(const std::vector<unsigned char>& vch)
{
if (vch.size() != sizeof(pn))
throw uint_error("Converting vector of wrong size to base_uint");
memcpy(pn, &vch[0], sizeof(pn));
}
template<unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
{
base_uint<BITS> a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++) {
if (i+k+1 < WIDTH && shift != 0)
pn[i+k+1] |= (a.pn[i] >> (32-shift));
if (i+k < WIDTH)
pn[i+k] |= (a.pn[i] << shift);
}
return *this;
}
template<unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
{
base_uint<BITS> a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++) {
if (i-k-1 >= 0 && shift != 0)
pn[i-k-1] |= (a.pn[i] << (32-shift));
if (i-k >= 0)
pn[i-k] |= (a.pn[i] >> shift);
}
return *this;
}
template<unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
{
uint64_t carry = 0;
for (int i = 0; i < WIDTH; i++) {
uint64_t n = carry + (uint64_t)b32 * pn[i];
pn[i] = n & 0xffffffff;
carry = n >> 32;
}
return *this;
}
template<unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
{
base_uint<BITS> a = *this;
*this = 0;
for (int j = 0; j < WIDTH; j++) {
uint64_t carry = 0;
for (int i = 0; i + j < WIDTH; i++) {
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
pn[i + j] = n & 0xffffffff;
carry = n >> 32;
}
}
return *this;
}
template<unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
{
base_uint<BITS> div = b; // make a copy, so we can shift.
base_uint<BITS> num = *this; // make a copy, so we can subtract.
*this = 0; // the quotient.
int num_bits = num.bits();
int div_bits = div.bits();
if (div_bits == 0)
throw uint_error("Division by zero");
if (div_bits > num_bits) // the result is certainly 0.
return *this;
int shift = num_bits - div_bits;
div <<= shift; // shift so that div and nun align.
while (shift >= 0) {
if (num >= div) {
num -= div;
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
}
div >>= 1; // shift back.
shift--;
}
// num now contains the remainder of the division.
return *this;
}
template<unsigned int BITS>
int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const {
for (int i = WIDTH-1; i >= 0; i--) {
if (pn[i] < b.pn[i])
return -1;
if (pn[i] > b.pn[i])
return 1;
}
return 0;
}
template<unsigned int BITS>
bool base_uint<BITS>::EqualTo(uint64_t b) const {
for (int i = WIDTH-1; i >= 2; i--) {
if (pn[i])
return false;
}
if (pn[1] != (b >> 32))
return false;
if (pn[0] != (b & 0xfffffffful))
return false;
return true;
}
template<unsigned int BITS>
double base_uint<BITS>::getdouble() const
{
double ret = 0.0;
double fact = 1.0;
for (int i = 0; i < WIDTH; i++) {
ret += fact * pn[i];
fact *= 4294967296.0;
}
return ret;
}
template<unsigned int BITS>
std::string base_uint<BITS>::GetHex() const
{
char psz[sizeof(pn)*2 + 1];
for (unsigned int i = 0; i < sizeof(pn); i++)
sprintf(psz + i*2, "%02x", ((unsigned char*)pn)[sizeof(pn) - i - 1]);
return std::string(psz, psz + sizeof(pn)*2);
}
template<unsigned int BITS>
void base_uint<BITS>::SetHex(const char* psz)
{
memset(pn,0,sizeof(pn));
// skip leading spaces
while (isspace(*psz))
psz++;
// skip 0x
if (psz[0] == '0' && tolower(psz[1]) == 'x')
psz += 2;
// hex string to uint
const char* pbegin = psz;
while (::HexDigit(*psz) != -1)
psz++;
psz--;
unsigned char* p1 = (unsigned char*)pn;
unsigned char* pend = p1 + WIDTH * 4;
while (psz >= pbegin && p1 < pend) {
*p1 = ::HexDigit(*psz--);
if (psz >= pbegin) {
*p1 |= ((unsigned char)::HexDigit(*psz--) << 4);
p1++;
}
}
}
template<unsigned int BITS>
void base_uint<BITS>::SetHex(const std::string& str)
{
SetHex(str.c_str());
}
template<unsigned int BITS>
std::string base_uint<BITS>::ToString() const
{
return (GetHex());
}
template<unsigned int BITS>
unsigned int base_uint<BITS>::bits() const
{
for (int pos = WIDTH-1; pos >= 0; pos--) {
if (pn[pos]) {
for (int bits = 31; bits > 0; bits--) {
if (pn[pos] & 1<<bits)
return 32*pos + bits + 1;
}
return 32*pos + 1;
}
}
return 0;
}
// Explicit instantiations for base_uint<160>
template base_uint<160>::base_uint(const std::string&);
template base_uint<160>::base_uint(const std::vector<unsigned char>&);
template base_uint<160>& base_uint<160>::operator<<=(unsigned int);
template base_uint<160>& base_uint<160>::operator>>=(unsigned int);
template base_uint<160>& base_uint<160>::operator*=(uint32_t b32);
template base_uint<160>& base_uint<160>::operator*=(const base_uint<160>& b);
template base_uint<160>& base_uint<160>::operator/=(const base_uint<160>& b);
template int base_uint<160>::CompareTo(const base_uint<160>&) const;
template bool base_uint<160>::EqualTo(uint64_t) const;
template double base_uint<160>::getdouble() const;
template std::string base_uint<160>::GetHex() const;
template std::string base_uint<160>::ToString() const;
template void base_uint<160>::SetHex(const char*);
template void base_uint<160>::SetHex(const std::string&);
template unsigned int base_uint<160>::bits() const;
// Explicit instantiations for base_uint<256>
template base_uint<256>::base_uint(const std::string&);
template base_uint<256>::base_uint(const std::vector<unsigned char>&);
template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b);
template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b);
template int base_uint<256>::CompareTo(const base_uint<256>&) const;
template bool base_uint<256>::EqualTo(uint64_t) const;
template double base_uint<256>::getdouble() const;
template std::string base_uint<256>::GetHex() const;
template std::string base_uint<256>::ToString() const;
template void base_uint<256>::SetHex(const char*);
template void base_uint<256>::SetHex(const std::string&);
template unsigned int base_uint<256>::bits() const;
// This implementation directly uses shifts instead of going
// through an intermediate MPI representation.
uint256& uint256::SetCompact(uint32_t nCompact, bool *pfNegative, bool *pfOverflow)
{
int nSize = nCompact >> 24;
uint32_t nWord = nCompact & 0x007fffff;
if (nSize <= 3) {
nWord >>= 8*(3-nSize);
*this = nWord;
} else {
*this = nWord;
*this <<= 8*(nSize-3);
}
if (pfNegative)
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
if (pfOverflow)
*pfOverflow = nWord != 0 && ((nSize > 34) ||
(nWord > 0xff && nSize > 33) ||
(nWord > 0xffff && nSize > 32));
return *this;
}
uint32_t uint256::GetCompact(bool fNegative) const
{
int nSize = (bits() + 7) / 8;
uint32_t nCompact = 0;
if (nSize <= 3) {
nCompact = GetLow64() << 8*(3-nSize);
} else {
uint256 bn = *this >> 8*(nSize-3);
nCompact = bn.GetLow64();
}
// The 0x00800000 bit denotes the sign.
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
if (nCompact & 0x00800000) {
nCompact >>= 8;
nSize++;
}
assert((nCompact & ~0x007fffff) == 0);
assert(nSize < 256);
nCompact |= nSize << 24;
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
return nCompact;
}

View File

@ -9,18 +9,9 @@
#include <assert.h> #include <assert.h>
#include <stdexcept> #include <stdexcept>
#include <stdint.h> #include <stdint.h>
#include <stdio.h>
#include <string> #include <string>
#include <string.h>
#include <vector> #include <vector>
extern const signed char p_util_hexdigit[256]; // defined in util.cpp
inline signed char HexDigit(char c)
{
return p_util_hexdigit[(unsigned char)c];
}
class uint_error : public std::runtime_error { class uint_error : public std::runtime_error {
public: public:
explicit uint_error(const std::string& str) : std::runtime_error(str) {} explicit uint_error(const std::string& str) : std::runtime_error(str) {}
@ -62,17 +53,8 @@ public:
pn[i] = 0; pn[i] = 0;
} }
explicit base_uint(const std::string& str) explicit base_uint(const std::string& str);
{ explicit base_uint(const std::vector<unsigned char>& vch);
SetHex(str);
}
explicit base_uint(const std::vector<unsigned char>& vch)
{
if (vch.size() != sizeof(pn))
throw uint_error("Converting vector of wrong size to base_uint");
memcpy(pn, &vch[0], sizeof(pn));
}
bool operator!() const bool operator!() const
{ {
@ -99,16 +81,7 @@ public:
return ret; return ret;
} }
double getdouble() const double getdouble() const;
{
double ret = 0.0;
double fact = 1.0;
for (int i = 0; i < WIDTH; i++) {
ret += fact * pn[i];
fact *= 4294967296.0;
}
return ret;
}
base_uint& operator=(uint64_t b) base_uint& operator=(uint64_t b)
{ {
@ -154,39 +127,8 @@ public:
return *this; return *this;
} }
base_uint& operator<<=(unsigned int shift) base_uint& operator<<=(unsigned int shift);
{ base_uint& operator>>=(unsigned int shift);
base_uint a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++)
{
if (i+k+1 < WIDTH && shift != 0)
pn[i+k+1] |= (a.pn[i] >> (32-shift));
if (i+k < WIDTH)
pn[i+k] |= (a.pn[i] << shift);
}
return *this;
}
base_uint& operator>>=(unsigned int shift)
{
base_uint a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++)
{
if (i-k-1 >= 0 && shift != 0)
pn[i-k-1] |= (a.pn[i] << (32-shift));
if (i-k >= 0)
pn[i-k] |= (a.pn[i] >> shift);
}
return *this;
}
base_uint& operator+=(const base_uint& b) base_uint& operator+=(const base_uint& b)
{ {
@ -222,57 +164,9 @@ public:
return *this; return *this;
} }
base_uint& operator*=(uint32_t b32) base_uint& operator*=(uint32_t b32);
{ base_uint& operator*=(const base_uint& b);
uint64_t carry = 0; base_uint& operator/=(const base_uint& b);
for (int i = 0; i < WIDTH; i++)
{
uint64_t n = carry + (uint64_t)b32 * pn[i];
pn[i] = n & 0xffffffff;
carry = n >> 32;
}
return *this;
}
base_uint& operator*=(const base_uint& b)
{
base_uint a = *this;
*this = 0;
for (int j = 0; j < WIDTH; j++) {
uint64_t carry = 0;
for (int i = 0; i + j < WIDTH; i++) {
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
pn[i + j] = n & 0xffffffff;
carry = n >> 32;
}
}
return *this;
}
base_uint& operator/=(const base_uint& b)
{
base_uint div = b; // make a copy, so we can shift.
base_uint num = *this; // make a copy, so we can subtract.
*this = 0; // the quotient.
int num_bits = num.bits();
int div_bits = div.bits();
if (div_bits == 0)
throw uint_error("Division by zero");
if (div_bits > num_bits) // the result is certainly 0.
return *this;
int shift = num_bits - div_bits;
div <<= shift; // shift so that div and nun align.
while (shift >= 0) {
if (num >= div) {
num -= div;
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
}
div >>= 1; // shift back.
shift--;
}
// num now contains the remainder of the division.
return *this;
}
base_uint& operator++() base_uint& operator++()
{ {
@ -308,27 +202,8 @@ public:
return ret; return ret;
} }
int CompareTo(const base_uint& b) const { int CompareTo(const base_uint& b) const;
for (int i = base_uint::WIDTH-1; i >= 0; i--) { bool EqualTo(uint64_t b) const;
if (pn[i] < b.pn[i])
return -1;
if (pn[i] > b.pn[i])
return 1;
}
return 0;
}
bool EqualTo(uint64_t b) const {
for (int i = base_uint::WIDTH-1; i >= 2; i--) {
if (pn[i])
return false;
}
if (pn[1] != (b >> 32))
return false;
if (pn[0] != (b & 0xfffffffful))
return false;
return true;
}
friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; } friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; } friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
@ -349,53 +224,10 @@ public:
friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); } friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); }
friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); } friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); }
std::string GetHex() const std::string GetHex() const;
{ void SetHex(const char* psz);
char psz[sizeof(pn)*2 + 1]; void SetHex(const std::string& str);
for (unsigned int i = 0; i < sizeof(pn); i++) std::string ToString() const;
sprintf(psz + i*2, "%02x", ((unsigned char*)pn)[sizeof(pn) - i - 1]);
return std::string(psz, psz + sizeof(pn)*2);
}
void SetHex(const char* psz)
{
memset(pn,0,sizeof(pn));
// skip leading spaces
while (isspace(*psz))
psz++;
// skip 0x
if (psz[0] == '0' && tolower(psz[1]) == 'x')
psz += 2;
// hex string to uint
const char* pbegin = psz;
while (::HexDigit(*psz) != -1)
psz++;
psz--;
unsigned char* p1 = (unsigned char*)pn;
unsigned char* pend = p1 + WIDTH * 4;
while (psz >= pbegin && p1 < pend)
{
*p1 = ::HexDigit(*psz--);
if (psz >= pbegin)
{
*p1 |= ((unsigned char)::HexDigit(*psz--) << 4);
p1++;
}
}
}
void SetHex(const std::string& str)
{
SetHex(str.c_str());
}
std::string ToString() const
{
return (GetHex());
}
unsigned char* begin() unsigned char* begin()
{ {
@ -424,19 +256,7 @@ public:
// Returns the position of the highest bit set plus one, or zero if the // Returns the position of the highest bit set plus one, or zero if the
// value is zero. // value is zero.
unsigned int bits() const unsigned int bits() const;
{
for (int pos = WIDTH-1; pos >= 0; pos--) {
if (pn[pos]) {
for (int bits = 31; bits > 0; bits--) {
if (pn[pos] & 1<<bits)
return 32*pos + bits + 1;
}
return 32*pos + 1;
}
}
return 0;
}
uint64_t GetLow64() const uint64_t GetLow64() const
{ {
@ -500,56 +320,8 @@ public:
// targets, which are unsigned 256bit quantities. Thus, all the // targets, which are unsigned 256bit quantities. Thus, all the
// complexities of the sign bit and using base 256 are probably an // complexities of the sign bit and using base 256 are probably an
// implementation accident. // implementation accident.
// uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL);
// This implementation directly uses shifts instead of going uint32_t GetCompact(bool fNegative = false) const;
// through an intermediate MPI representation.
uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL)
{
int nSize = nCompact >> 24;
uint32_t nWord = nCompact & 0x007fffff;
if (nSize <= 3)
{
nWord >>= 8*(3-nSize);
*this = nWord;
}
else
{
*this = nWord;
*this <<= 8*(nSize-3);
}
if (pfNegative)
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
if (pfOverflow)
*pfOverflow = nWord != 0 && ((nSize > 34) ||
(nWord > 0xff && nSize > 33) ||
(nWord > 0xffff && nSize > 32));
return *this;
}
uint32_t GetCompact(bool fNegative = false) const
{
int nSize = (bits() + 7) / 8;
uint32_t nCompact = 0;
if (nSize <= 3)
nCompact = GetLow64() << 8*(3-nSize);
else
{
uint256 bn = *this >> 8*(nSize-3);
nCompact = bn.GetLow64();
}
// The 0x00800000 bit denotes the sign.
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
if (nCompact & 0x00800000)
{
nCompact >>= 8;
nSize++;
}
assert((nCompact & ~0x007fffff) == 0);
assert(nSize < 256);
nCompact |= nSize << 24;
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
return nCompact;
}
}; };
#endif #endif

View File

@ -419,6 +419,11 @@ const signed char p_util_hexdigit[256] =
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, }; -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, };
signed char HexDigit(char c)
{
return p_util_hexdigit[(unsigned char)c];
}
bool IsHex(const string& str) bool IsHex(const string& str)
{ {
BOOST_FOREACH(char c, str) BOOST_FOREACH(char c, str)

View File

@ -156,6 +156,7 @@ bool ParseMoney(const char* pszIn, int64_t& nRet);
std::string SanitizeString(const std::string& str); std::string SanitizeString(const std::string& str);
std::vector<unsigned char> ParseHex(const char* psz); std::vector<unsigned char> ParseHex(const char* psz);
std::vector<unsigned char> ParseHex(const std::string& str); std::vector<unsigned char> ParseHex(const std::string& str);
signed char HexDigit(char c);
bool IsHex(const std::string& str); bool IsHex(const std::string& str);
std::vector<unsigned char> DecodeBase64(const char* p, bool* pfInvalid = NULL); std::vector<unsigned char> DecodeBase64(const char* p, bool* pfInvalid = NULL);
std::string DecodeBase64(const std::string& str); std::string DecodeBase64(const std::string& str);