|
|
|
@ -15,7 +15,7 @@ using namespace std;
@@ -15,7 +15,7 @@ using namespace std;
|
|
|
|
|
|
|
|
|
|
static const unsigned char bit_mask[8] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80}; |
|
|
|
|
|
|
|
|
|
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate) : |
|
|
|
|
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn) : |
|
|
|
|
// The ideal size for a bloom filter with a given number of elements and false positive rate is:
|
|
|
|
|
// - nElements * log(fp rate) / ln(2)^2
|
|
|
|
|
// We ignore filter parameters which will create a bloom filter larger than the protocol limits
|
|
|
|
@ -23,14 +23,15 @@ vData(min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM
@@ -23,14 +23,15 @@ vData(min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM
|
|
|
|
|
// The ideal number of hash functions is filter size * ln(2) / number of elements
|
|
|
|
|
// Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
|
|
|
|
|
// See http://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
|
|
|
|
|
nHashFuncs(min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)) |
|
|
|
|
nHashFuncs(min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)), |
|
|
|
|
nTweak(nTweakIn) |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const |
|
|
|
|
{ |
|
|
|
|
// 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
|
|
|
|
|
return MurmurHash3(nHashNum * 0xFBA4C795, vDataToHash) % (vData.size() * 8); |
|
|
|
|
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void CBloomFilter::insert(const vector<unsigned char>& vKey) |
|
|
|
|