Browse Source

Merge pull request #4100

a0495bb Add <Hasher>::OUTPUT_SIZE (Pieter Wuille)
4791b99 crypto: create a separate lib for crypto functions (Cory Fields)
f2647cc crypto: explicitly check for byte read/write functions (Cory Fields)
5437248 build: move bitcoin-config.h to its own directory (Cory Fields)
3820e01 Extend and move all crypto tests to crypto_tests.cpp (Pieter Wuille)
7ecd973 Move {Read,Write}{LE,BE}{32,64} to common.h and use builtins if possible (Pieter Wuille)
a5bc9c0 Add built-in RIPEMD-160 implementation (Pieter Wuille)
13b5dfe Move crypto implementations to src/crypto/ (Pieter Wuille)
1cc344c Add built-in SHA-1 implementation. (Pieter Wuille)
85aab2a Switch miner.cpp to use sha2 instead of OpenSSL. (Pieter Wuille)
cf0c47b Remove getwork() RPC call (Pieter Wuille)
7b4737c Switch script.cpp and hash.cpp to use sha2.cpp instead of OpenSSL. (Pieter Wuille)
977cdad Add a built-in SHA256/SHA512 implementation. (Pieter Wuille)
0.10
Pieter Wuille 11 years ago
parent
commit
8f59251b83
No known key found for this signature in database
GPG Key ID: 8F653255C87992E0
  1. 9
      configure.ac
  2. 20
      src/Makefile.am
  3. 2
      src/Makefile.qt.include
  4. 2
      src/Makefile.qttest.include
  5. 4
      src/Makefile.test.include
  6. 0
      src/config/.empty
  7. 93
      src/crypto/common.h
  8. 204
      src/crypto/ripemd160.cpp
  9. 27
      src/crypto/ripemd160.h
  10. 192
      src/crypto/sha1.cpp
  11. 27
      src/crypto/sha1.h
  12. 398
      src/crypto/sha2.cpp
  13. 60
      src/crypto/sha2.h
  14. 41
      src/hash.cpp
  15. 189
      src/hash.h
  16. 3
      src/init.cpp
  17. 19
      src/key.cpp
  18. 161
      src/miner.cpp
  19. 4
      src/miner.h
  20. 159
      src/rpcmining.cpp
  21. 3
      src/rpcserver.cpp
  22. 1
      src/rpcserver.h
  23. 19
      src/script.cpp
  24. 203
      src/test/crypto_tests.cpp
  25. 129
      src/test/hmac_tests.cpp
  26. 28
      src/test/miner_tests.cpp

9
configure.ac

@ -111,7 +111,7 @@ AC_ARG_WITH([protoc-bindir],[AS_HELP_STRING([--with-protoc-bindir=BIN_DIR],[spec @@ -111,7 +111,7 @@ AC_ARG_WITH([protoc-bindir],[AS_HELP_STRING([--with-protoc-bindir=BIN_DIR],[spec
AC_CONFIG_SRCDIR([src])
AC_CONFIG_HEADERS([src/bitcoin-config.h])
AC_CONFIG_HEADERS([src/config/bitcoin-config.h])
dnl Checks for programs.
AC_PROG_CXX
@ -368,7 +368,12 @@ if test x$TARGET_OS = xdarwin; then @@ -368,7 +368,12 @@ if test x$TARGET_OS = xdarwin; then
AX_CHECK_LINK_FLAG([[-Wl,-dead_strip]], [LDFLAGS="$LDFLAGS -Wl,-dead_strip"])
fi
AC_CHECK_HEADERS([stdio.h stdlib.h unistd.h strings.h sys/types.h sys/stat.h sys/select.h])
AC_CHECK_HEADERS([endian.h stdio.h stdlib.h unistd.h strings.h sys/types.h sys/stat.h sys/select.h])
AC_CHECK_DECLS([le32toh, le64toh, htole32, htole64, be32toh, be64toh, htobe32, htobe64],,,
[#if HAVE_ENDIAN_H
#include <endian.h>
#endif])
dnl Check for MSG_NOSIGNAL
AC_MSG_CHECKING(for MSG_NOSIGNAL)

20
src/Makefile.am

@ -17,12 +17,14 @@ $(LIBLEVELDB) $(LIBMEMENV): @@ -17,12 +17,14 @@ $(LIBLEVELDB) $(LIBMEMENV):
OPT="$(CXXFLAGS) $(CPPFLAGS)"
endif
BITCOIN_INCLUDES=-I$(builddir) -I$(builddir)/obj $(BOOST_CPPFLAGS) $(LEVELDB_CPPFLAGS)
BITCOIN_CONFIG_INCLUDES=-I$(builddir)/config
BITCOIN_INCLUDES=-I$(builddir) -I$(builddir)/obj $(BITCOIN_CONFIG_INCLUDES) $(BOOST_CPPFLAGS) $(LEVELDB_CPPFLAGS)
noinst_LIBRARIES = \
libbitcoin_server.a \
libbitcoin_common.a \
libbitcoin_cli.a
libbitcoin_cli.a \
crypto/libbitcoin_crypto.a
if ENABLE_WALLET
BITCOIN_INCLUDES += $(BDB_CPPFLAGS)
noinst_LIBRARIES += libbitcoin_wallet.a
@ -140,6 +142,16 @@ libbitcoin_wallet_a_SOURCES = \ @@ -140,6 +142,16 @@ libbitcoin_wallet_a_SOURCES = \
walletdb.cpp \
$(BITCOIN_CORE_H)
crypto_libbitcoin_crypto_a_CPPFLAGS = $(BITCOIN_CONFIG_INCLUDES)
crypto_libbitcoin_crypto_a_SOURCES = \
crypto/sha1.cpp \
crypto/sha2.cpp \
crypto/ripemd160.cpp \
crypto/common.h \
crypto/sha2.h \
crypto/sha1.h \
crypto/ripemd160.h
libbitcoin_common_a_CPPFLAGS = $(BITCOIN_INCLUDES)
libbitcoin_common_a_SOURCES = \
base58.cpp \
@ -175,6 +187,7 @@ nodist_libbitcoin_common_a_SOURCES = $(srcdir)/obj/build.h @@ -175,6 +187,7 @@ nodist_libbitcoin_common_a_SOURCES = $(srcdir)/obj/build.h
bitcoind_LDADD = \
libbitcoin_server.a \
libbitcoin_common.a \
crypto/libbitcoin_crypto.a \
$(LIBLEVELDB) \
$(LIBMEMENV)
if ENABLE_WALLET
@ -194,6 +207,7 @@ bitcoind_CPPFLAGS = $(BITCOIN_INCLUDES) @@ -194,6 +207,7 @@ bitcoind_CPPFLAGS = $(BITCOIN_INCLUDES)
bitcoin_cli_LDADD = \
libbitcoin_cli.a \
libbitcoin_common.a \
crypto/libbitcoin_crypto.a \
$(BOOST_LIBS)
bitcoin_cli_SOURCES = bitcoin-cli.cpp
bitcoin_cli_CPPFLAGS = $(BITCOIN_INCLUDES)
@ -212,6 +226,7 @@ EXTRA_DIST = leveldb @@ -212,6 +226,7 @@ EXTRA_DIST = leveldb
clean-local:
-$(MAKE) -C leveldb clean
rm -f leveldb/*/*.gcno leveldb/helpers/memenv/*.gcno
-rm -f config.h
.rc.o:
@test -f $(WINDRES)
@ -229,6 +244,7 @@ LIBBITCOIN_SERVER=libbitcoin_server.a @@ -229,6 +244,7 @@ LIBBITCOIN_SERVER=libbitcoin_server.a
LIBBITCOIN_WALLET=libbitcoin_wallet.a
LIBBITCOIN_COMMON=libbitcoin_common.a
LIBBITCOIN_CLI=libbitcoin_cli.a
LIBBITCOIN_CRYPTO=crypto/libbitcoin_crypto.a
LIBBITCOINQT=qt/libbitcoinqt.a
if ENABLE_TESTS

2
src/Makefile.qt.include

@ -355,7 +355,7 @@ qt_bitcoin_qt_LDADD = qt/libbitcoinqt.a $(LIBBITCOIN_SERVER) @@ -355,7 +355,7 @@ qt_bitcoin_qt_LDADD = qt/libbitcoinqt.a $(LIBBITCOIN_SERVER)
if ENABLE_WALLET
qt_bitcoin_qt_LDADD += $(LIBBITCOIN_WALLET)
endif
qt_bitcoin_qt_LDADD += $(LIBBITCOIN_CLI) $(LIBBITCOIN_COMMON) $(LIBLEVELDB) $(LIBMEMENV) \
qt_bitcoin_qt_LDADD += $(LIBBITCOIN_CLI) $(LIBBITCOIN_COMMON) $(LIBBITCOIN_CRYPTO) $(LIBLEVELDB) $(LIBMEMENV) \
$(BOOST_LIBS) $(QT_LIBS) $(QT_DBUS_LIBS) $(QR_LIBS) $(PROTOBUF_LIBS) $(BDB_LIBS)
qt_bitcoin_qt_LDFLAGS = $(QT_LDFLAGS)

2
src/Makefile.qttest.include

@ -30,7 +30,7 @@ qt_test_test_bitcoin_qt_LDADD = $(LIBBITCOINQT) $(LIBBITCOIN_SERVER) @@ -30,7 +30,7 @@ qt_test_test_bitcoin_qt_LDADD = $(LIBBITCOINQT) $(LIBBITCOIN_SERVER)
if ENABLE_WALLET
qt_test_test_bitcoin_qt_LDADD += $(LIBBITCOIN_WALLET)
endif
qt_test_test_bitcoin_qt_LDADD += $(LIBBITCOIN_CLI) $(LIBBITCOIN_COMMON) $(LIBLEVELDB) \
qt_test_test_bitcoin_qt_LDADD += $(LIBBITCOIN_CLI) $(LIBBITCOIN_COMMON) $(LIBBITCOIN_CRYPTO) $(LIBLEVELDB) \
$(LIBMEMENV) $(BOOST_LIBS) $(QT_DBUS_LIBS) $(QT_TEST_LIBS) $(QT_LIBS) \
$(QR_LIBS) $(PROTOBUF_LIBS) $(BDB_LIBS)
qt_test_test_bitcoin_qt_LDFLAGS = $(QT_LDFLAGS)

4
src/Makefile.test.include

@ -31,8 +31,10 @@ BITCOIN_TESTS =\ @@ -31,8 +31,10 @@ BITCOIN_TESTS =\
test/checkblock_tests.cpp \
test/Checkpoints_tests.cpp \
test/compress_tests.cpp \
test/crypto_tests.cpp \
test/DoS_tests.cpp \
test/getarg_tests.cpp \
test/hash_tests.cpp \
test/key_tests.cpp \
test/main_tests.cpp \
test/miner_tests.cpp \
@ -61,7 +63,7 @@ endif @@ -61,7 +63,7 @@ endif
test_test_bitcoin_SOURCES = $(BITCOIN_TESTS) $(JSON_TEST_FILES) $(RAW_TEST_FILES)
test_test_bitcoin_CPPFLAGS = $(BITCOIN_INCLUDES) -I$(builddir)/test/ $(TESTDEFS)
test_test_bitcoin_LDADD = $(LIBBITCOIN_SERVER) $(LIBBITCOIN_CLI) $(LIBBITCOIN_COMMON) $(LIBLEVELDB) $(LIBMEMENV) \
test_test_bitcoin_LDADD = $(LIBBITCOIN_SERVER) $(LIBBITCOIN_CLI) $(LIBBITCOIN_COMMON) $(LIBBITCOIN_CRYPTO) $(LIBLEVELDB) $(LIBMEMENV) \
$(BOOST_LIBS) $(BOOST_UNIT_TEST_FRAMEWORK_LIB)
if ENABLE_WALLET
test_test_bitcoin_LDADD += $(LIBBITCOIN_WALLET)

0
src/config/.empty

93
src/crypto/common.h

@ -0,0 +1,93 @@ @@ -0,0 +1,93 @@
// Copyright (c) 2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_CRYPTO_COMMON_H
#define BITCOIN_CRYPTO_COMMON_H
#if defined(HAVE_CONFIG_H)
#include "bitcoin-config.h"
#endif
#include <stdint.h>
#if defined(HAVE_ENDIAN_H)
#include <endian.h>
#endif
uint32_t static inline ReadLE32(const unsigned char *ptr) {
#if HAVE_DECL_LE32TOH == 1
return le32toh(*((uint32_t*)ptr));
#elif !defined(WORDS_BIGENDIAN)
return *((uint32_t*)ptr);
#else
return ((uint32_t)ptr[3] << 24 | (uint32_t)ptr[2] << 16 | (uint32_t)ptr[1] << 8 | (uint32_t)ptr[0]);
#endif
}
uint64_t static inline ReadLE64(const unsigned char *ptr) {
#if HAVE_DECL_LE64TOH == 1
return le64toh(*((uint64_t*)ptr));
#elif !defined(WORDS_BIGENDIAN)
return *((uint64_t*)ptr);
#else
return ((uint64_t)ptr[7] << 56 | (uint64_t)ptr[6] << 48 | (uint64_t)ptr[5] << 40 | (uint64_t)ptr[4] << 32 |
(uint64_t)ptr[3] << 24 | (uint64_t)ptr[2] << 16 | (uint64_t)ptr[1] << 8 | (uint64_t)ptr[0]);
#endif
}
void static inline WriteLE32(unsigned char *ptr, uint32_t x) {
#if HAVE_DECL_HTOLE32 == 1
*((uint32_t*)ptr) = htole32(x);
#elif !defined(WORDS_BIGENDIAN)
*((uint32_t*)ptr) = x;
#else
ptr[3] = x >> 24; ptr[2] = x >> 16; ptr[1] = x >> 8; ptr[0] = x;
#endif
}
void static inline WriteLE64(unsigned char *ptr, uint64_t x) {
#if HAVE_DECL_HTOLE64 == 1
*((uint64_t*)ptr) = htole64(x);
#elif !defined(WORDS_BIGENDIAN)
*((uint64_t*)ptr) = x;
#else
ptr[7] = x >> 56; ptr[6] = x >> 48; ptr[5] = x >> 40; ptr[4] = x >> 32;
ptr[3] = x >> 24; ptr[2] = x >> 16; ptr[1] = x >> 8; ptr[0] = x;
#endif
}
uint32_t static inline ReadBE32(const unsigned char *ptr) {
#if HAVE_DECL_BE32TOH == 1
return be32toh(*((uint32_t*)ptr));
#else
return ((uint32_t)ptr[0] << 24 | (uint32_t)ptr[1] << 16 | (uint32_t)ptr[2] << 8 | (uint32_t)ptr[3]);
#endif
}
uint64_t static inline ReadBE64(const unsigned char *ptr) {
#if HAVE_DECL_BE64TOH == 1
return be64toh(*((uint64_t*)ptr));
#else
return ((uint64_t)ptr[0] << 56 | (uint64_t)ptr[1] << 48 | (uint64_t)ptr[2] << 40 | (uint64_t)ptr[3] << 32 |
(uint64_t)ptr[4] << 24 | (uint64_t)ptr[5] << 16 | (uint64_t)ptr[6] << 8 | (uint64_t)ptr[7]);
#endif
}
void static inline WriteBE32(unsigned char *ptr, uint32_t x) {
#if HAVE_DECL_HTOBE32 == 1
*((uint32_t*)ptr) = htobe32(x);
#else
ptr[0] = x >> 24; ptr[1] = x >> 16; ptr[2] = x >> 8; ptr[3] = x;
#endif
}
void static inline WriteBE64(unsigned char *ptr, uint64_t x) {
#if HAVE_DECL_HTOBE64 == 1
*((uint64_t*)ptr) = htobe64(x);
#else
ptr[0] = x >> 56; ptr[1] = x >> 48; ptr[2] = x >> 40; ptr[3] = x >> 32;
ptr[4] = x >> 24; ptr[5] = x >> 16; ptr[6] = x >> 8; ptr[7] = x;
#endif
}
#endif

204
src/crypto/ripemd160.cpp

@ -0,0 +1,204 @@ @@ -0,0 +1,204 @@
// Copyright (c) 2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "crypto/ripemd160.h"
#include "crypto/common.h"
#include <string.h>
// Internal implementation code.
namespace {
/// Internal RIPEMD-160 implementation.
namespace ripemd160 {
uint32_t inline f1(uint32_t x, uint32_t y, uint32_t z) { return x ^ y ^ z; }
uint32_t inline f2(uint32_t x, uint32_t y, uint32_t z) { return (x & y) | (~x & z); }
uint32_t inline f3(uint32_t x, uint32_t y, uint32_t z) { return (x | ~y) ^ z; }
uint32_t inline f4(uint32_t x, uint32_t y, uint32_t z) { return (x & z) | (y & ~z); }
uint32_t inline f5(uint32_t x, uint32_t y, uint32_t z) { return x ^ (y | ~z); }
/** Initialize RIPEMD-160 state. */
void inline Initialize(uint32_t *s) {
s[0] = 0x67452301ul;
s[1] = 0xEFCDAB89ul;
s[2] = 0x98BADCFEul;
s[3] = 0x10325476ul;
s[4] = 0xC3D2E1F0ul;
}
uint32_t inline rol(uint32_t x, int i) { return (x << i) | (x >> (32-i)); }
void inline Round(uint32_t &a, uint32_t b, uint32_t &c, uint32_t d, uint32_t e, uint32_t f, uint32_t x, uint32_t k, int r) {
a = rol(a + f + x + k, r) + e;
c = rol(c, 10);
}
void inline R11(uint32_t &a, uint32_t b, uint32_t &c, uint32_t d, uint32_t e, uint32_t x, int r) { Round(a, b, c, d, e, f1(b, c, d), x, 0, r); }
void inline R21(uint32_t &a, uint32_t b, uint32_t &c, uint32_t d, uint32_t e, uint32_t x, int r) { Round(a, b, c, d, e, f2(b, c, d), x, 0x5A827999ul, r); }
void inline R31(uint32_t &a, uint32_t b, uint32_t &c, uint32_t d, uint32_t e, uint32_t x, int r) { Round(a, b, c, d, e, f3(b, c, d), x, 0x6ED9EBA1ul, r); }
void inline R41(uint32_t &a, uint32_t b, uint32_t &c, uint32_t d, uint32_t e, uint32_t x, int r) { Round(a, b, c, d, e, f4(b, c, d), x, 0x8F1BBCDCul, r); }
void inline R51(uint32_t &a, uint32_t b, uint32_t &c, uint32_t d, uint32_t e, uint32_t x, int r) { Round(a, b, c, d, e, f5(b, c, d), x, 0xA953FD4Eul, r); }
void inline R12(uint32_t &a, uint32_t b, uint32_t &c, uint32_t d, uint32_t e, uint32_t x, int r) { Round(a, b, c, d, e, f5(b, c, d), x, 0x50A28BE6ul, r); }
void inline R22(uint32_t &a, uint32_t b, uint32_t &c, uint32_t d, uint32_t e, uint32_t x, int r) { Round(a, b, c, d, e, f4(b, c, d), x, 0x5C4DD124ul, r); }
void inline R32(uint32_t &a, uint32_t b, uint32_t &c, uint32_t d, uint32_t e, uint32_t x, int r) { Round(a, b, c, d, e, f3(b, c, d), x, 0x6D703EF3ul, r); }
void inline R42(uint32_t &a, uint32_t b, uint32_t &c, uint32_t d, uint32_t e, uint32_t x, int r) { Round(a, b, c, d, e, f2(b, c, d), x, 0x7A6D76E9ul, r); }
void inline R52(uint32_t &a, uint32_t b, uint32_t &c, uint32_t d, uint32_t e, uint32_t x, int r) { Round(a, b, c, d, e, f1(b, c, d), x, 0, r); }
/** Perform a RIPEMD-160 transformation, processing a 64-byte chunk. */
void Transform(uint32_t *s, const unsigned char *chunk) {
uint32_t a1 = s[0], b1 = s[1], c1 = s[2], d1 = s[3], e1 = s[4];
uint32_t a2 = a1 , b2 = b1 , c2 = c1 , d2 = d1 , e2 = e1 ;
uint32_t w0 = ReadLE32(chunk + 0), w1 = ReadLE32(chunk + 4), w2 = ReadLE32(chunk + 8), w3 = ReadLE32(chunk + 12);
uint32_t w4 = ReadLE32(chunk + 16), w5 = ReadLE32(chunk + 20), w6 = ReadLE32(chunk + 24), w7 = ReadLE32(chunk + 28);
uint32_t w8 = ReadLE32(chunk + 32), w9 = ReadLE32(chunk + 36), w10 = ReadLE32(chunk + 40), w11 = ReadLE32(chunk + 44);
uint32_t w12 = ReadLE32(chunk + 48), w13 = ReadLE32(chunk + 52), w14 = ReadLE32(chunk + 56), w15 = ReadLE32(chunk + 60);
R11(a1, b1, c1, d1, e1, w0 , 11); R12(a2, b2, c2, d2, e2, w5 , 8);
R11(e1, a1, b1, c1, d1, w1 , 14); R12(e2, a2, b2, c2, d2, w14, 9);
R11(d1, e1, a1, b1, c1, w2 , 15); R12(d2, e2, a2, b2, c2, w7 , 9);
R11(c1, d1, e1, a1, b1, w3 , 12); R12(c2, d2, e2, a2, b2, w0 , 11);
R11(b1, c1, d1, e1, a1, w4 , 5); R12(b2, c2, d2, e2, a2, w9 , 13);
R11(a1, b1, c1, d1, e1, w5 , 8); R12(a2, b2, c2, d2, e2, w2 , 15);
R11(e1, a1, b1, c1, d1, w6 , 7); R12(e2, a2, b2, c2, d2, w11, 15);
R11(d1, e1, a1, b1, c1, w7 , 9); R12(d2, e2, a2, b2, c2, w4 , 5);
R11(c1, d1, e1, a1, b1, w8 , 11); R12(c2, d2, e2, a2, b2, w13, 7);
R11(b1, c1, d1, e1, a1, w9 , 13); R12(b2, c2, d2, e2, a2, w6 , 7);
R11(a1, b1, c1, d1, e1, w10, 14); R12(a2, b2, c2, d2, e2, w15, 8);
R11(e1, a1, b1, c1, d1, w11, 15); R12(e2, a2, b2, c2, d2, w8 , 11);
R11(d1, e1, a1, b1, c1, w12, 6); R12(d2, e2, a2, b2, c2, w1 , 14);
R11(c1, d1, e1, a1, b1, w13, 7); R12(c2, d2, e2, a2, b2, w10, 14);
R11(b1, c1, d1, e1, a1, w14, 9); R12(b2, c2, d2, e2, a2, w3 , 12);
R11(a1, b1, c1, d1, e1, w15, 8); R12(a2, b2, c2, d2, e2, w12, 6);
R21(e1, a1, b1, c1, d1, w7 , 7); R22(e2, a2, b2, c2, d2, w6 , 9);
R21(d1, e1, a1, b1, c1, w4 , 6); R22(d2, e2, a2, b2, c2, w11, 13);
R21(c1, d1, e1, a1, b1, w13, 8); R22(c2, d2, e2, a2, b2, w3 , 15);
R21(b1, c1, d1, e1, a1, w1 , 13); R22(b2, c2, d2, e2, a2, w7 , 7);
R21(a1, b1, c1, d1, e1, w10, 11); R22(a2, b2, c2, d2, e2, w0 , 12);
R21(e1, a1, b1, c1, d1, w6 , 9); R22(e2, a2, b2, c2, d2, w13, 8);
R21(d1, e1, a1, b1, c1, w15, 7); R22(d2, e2, a2, b2, c2, w5 , 9);
R21(c1, d1, e1, a1, b1, w3 , 15); R22(c2, d2, e2, a2, b2, w10, 11);
R21(b1, c1, d1, e1, a1, w12, 7); R22(b2, c2, d2, e2, a2, w14, 7);
R21(a1, b1, c1, d1, e1, w0 , 12); R22(a2, b2, c2, d2, e2, w15, 7);
R21(e1, a1, b1, c1, d1, w9 , 15); R22(e2, a2, b2, c2, d2, w8 , 12);
R21(d1, e1, a1, b1, c1, w5 , 9); R22(d2, e2, a2, b2, c2, w12, 7);
R21(c1, d1, e1, a1, b1, w2 , 11); R22(c2, d2, e2, a2, b2, w4 , 6);
R21(b1, c1, d1, e1, a1, w14, 7); R22(b2, c2, d2, e2, a2, w9 , 15);
R21(a1, b1, c1, d1, e1, w11, 13); R22(a2, b2, c2, d2, e2, w1 , 13);
R21(e1, a1, b1, c1, d1, w8 , 12); R22(e2, a2, b2, c2, d2, w2 , 11);
R31(d1, e1, a1, b1, c1, w3 , 11); R32(d2, e2, a2, b2, c2, w15, 9);
R31(c1, d1, e1, a1, b1, w10, 13); R32(c2, d2, e2, a2, b2, w5 , 7);
R31(b1, c1, d1, e1, a1, w14, 6); R32(b2, c2, d2, e2, a2, w1 , 15);
R31(a1, b1, c1, d1, e1, w4 , 7); R32(a2, b2, c2, d2, e2, w3 , 11);
R31(e1, a1, b1, c1, d1, w9 , 14); R32(e2, a2, b2, c2, d2, w7 , 8);
R31(d1, e1, a1, b1, c1, w15, 9); R32(d2, e2, a2, b2, c2, w14, 6);
R31(c1, d1, e1, a1, b1, w8 , 13); R32(c2, d2, e2, a2, b2, w6 , 6);
R31(b1, c1, d1, e1, a1, w1 , 15); R32(b2, c2, d2, e2, a2, w9 , 14);
R31(a1, b1, c1, d1, e1, w2 , 14); R32(a2, b2, c2, d2, e2, w11, 12);
R31(e1, a1, b1, c1, d1, w7 , 8); R32(e2, a2, b2, c2, d2, w8 , 13);
R31(d1, e1, a1, b1, c1, w0 , 13); R32(d2, e2, a2, b2, c2, w12, 5);
R31(c1, d1, e1, a1, b1, w6 , 6); R32(c2, d2, e2, a2, b2, w2 , 14);
R31(b1, c1, d1, e1, a1, w13, 5); R32(b2, c2, d2, e2, a2, w10, 13);
R31(a1, b1, c1, d1, e1, w11, 12); R32(a2, b2, c2, d2, e2, w0 , 13);
R31(e1, a1, b1, c1, d1, w5 , 7); R32(e2, a2, b2, c2, d2, w4 , 7);
R31(d1, e1, a1, b1, c1, w12, 5); R32(d2, e2, a2, b2, c2, w13, 5);
R41(c1, d1, e1, a1, b1, w1 , 11); R42(c2, d2, e2, a2, b2, w8 , 15);
R41(b1, c1, d1, e1, a1, w9 , 12); R42(b2, c2, d2, e2, a2, w6 , 5);
R41(a1, b1, c1, d1, e1, w11, 14); R42(a2, b2, c2, d2, e2, w4 , 8);
R41(e1, a1, b1, c1, d1, w10, 15); R42(e2, a2, b2, c2, d2, w1 , 11);
R41(d1, e1, a1, b1, c1, w0 , 14); R42(d2, e2, a2, b2, c2, w3 , 14);
R41(c1, d1, e1, a1, b1, w8 , 15); R42(c2, d2, e2, a2, b2, w11, 14);
R41(b1, c1, d1, e1, a1, w12, 9); R42(b2, c2, d2, e2, a2, w15, 6);
R41(a1, b1, c1, d1, e1, w4 , 8); R42(a2, b2, c2, d2, e2, w0 , 14);
R41(e1, a1, b1, c1, d1, w13, 9); R42(e2, a2, b2, c2, d2, w5 , 6);
R41(d1, e1, a1, b1, c1, w3 , 14); R42(d2, e2, a2, b2, c2, w12, 9);
R41(c1, d1, e1, a1, b1, w7 , 5); R42(c2, d2, e2, a2, b2, w2 , 12);
R41(b1, c1, d1, e1, a1, w15, 6); R42(b2, c2, d2, e2, a2, w13, 9);
R41(a1, b1, c1, d1, e1, w14, 8); R42(a2, b2, c2, d2, e2, w9 , 12);
R41(e1, a1, b1, c1, d1, w5 , 6); R42(e2, a2, b2, c2, d2, w7 , 5);
R41(d1, e1, a1, b1, c1, w6 , 5); R42(d2, e2, a2, b2, c2, w10, 15);
R41(c1, d1, e1, a1, b1, w2 , 12); R42(c2, d2, e2, a2, b2, w14, 8);
R51(b1, c1, d1, e1, a1, w4 , 9); R52(b2, c2, d2, e2, a2, w12, 8);
R51(a1, b1, c1, d1, e1, w0 , 15); R52(a2, b2, c2, d2, e2, w15, 5);
R51(e1, a1, b1, c1, d1, w5 , 5); R52(e2, a2, b2, c2, d2, w10, 12);
R51(d1, e1, a1, b1, c1, w9 , 11); R52(d2, e2, a2, b2, c2, w4 , 9);
R51(c1, d1, e1, a1, b1, w7 , 6); R52(c2, d2, e2, a2, b2, w1 , 12);
R51(b1, c1, d1, e1, a1, w12, 8); R52(b2, c2, d2, e2, a2, w5 , 5);
R51(a1, b1, c1, d1, e1, w2 , 13); R52(a2, b2, c2, d2, e2, w8 , 14);
R51(e1, a1, b1, c1, d1, w10, 12); R52(e2, a2, b2, c2, d2, w7 , 6);
R51(d1, e1, a1, b1, c1, w14, 5); R52(d2, e2, a2, b2, c2, w6 , 8);
R51(c1, d1, e1, a1, b1, w1 , 12); R52(c2, d2, e2, a2, b2, w2 , 13);
R51(b1, c1, d1, e1, a1, w3 , 13); R52(b2, c2, d2, e2, a2, w13, 6);
R51(a1, b1, c1, d1, e1, w8 , 14); R52(a2, b2, c2, d2, e2, w14, 5);
R51(e1, a1, b1, c1, d1, w11, 11); R52(e2, a2, b2, c2, d2, w0 , 15);
R51(d1, e1, a1, b1, c1, w6 , 8); R52(d2, e2, a2, b2, c2, w3 , 13);
R51(c1, d1, e1, a1, b1, w15, 5); R52(c2, d2, e2, a2, b2, w9 , 11);
R51(b1, c1, d1, e1, a1, w13, 6); R52(b2, c2, d2, e2, a2, w11, 11);
uint32_t t = s[0];
s[0] = s[1] + c1 + d2;
s[1] = s[2] + d1 + e2;
s[2] = s[3] + e1 + a2;
s[3] = s[4] + a1 + b2;
s[4] = t + b1 + c2;
}
} // namespace ripemd160
} // namespace
////// RIPEMD160
CRIPEMD160::CRIPEMD160() : bytes(0) {
ripemd160::Initialize(s);
}
CRIPEMD160& CRIPEMD160::Write(const unsigned char *data, size_t len) {
const unsigned char *end = data + len;
size_t bufsize = bytes % 64;
if (bufsize && bufsize + len >= 64) {
// Fill the buffer, and process it.
memcpy(buf + bufsize, data, 64 - bufsize);
bytes += 64 - bufsize;
data += 64 - bufsize;
ripemd160::Transform(s, buf);
bufsize = 0;
}
while (end >= data + 64) {
// Process full chunks directly from the source.
ripemd160::Transform(s, data);
bytes += 64;
data += 64;
}
if (end > data) {
// Fill the buffer with what remains.
memcpy(buf + bufsize, data, end - data);
bytes += end - data;
}
return *this;
}
void CRIPEMD160::Finalize(unsigned char hash[OUTPUT_SIZE]) {
static const unsigned char pad[64] = {0x80};
unsigned char sizedesc[8];
WriteLE64(sizedesc, bytes << 3);
Write(pad, 1 + ((119 - (bytes % 64)) % 64));
Write(sizedesc, 8);
WriteLE32(hash, s[0]);
WriteLE32(hash+4, s[1]);
WriteLE32(hash+8, s[2]);
WriteLE32(hash+12, s[3]);
WriteLE32(hash+16, s[4]);
}
CRIPEMD160& CRIPEMD160::Reset() {
bytes = 0;
ripemd160::Initialize(s);
return *this;
}

27
src/crypto/ripemd160.h

@ -0,0 +1,27 @@ @@ -0,0 +1,27 @@
// Copyright (c) 2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_RIPEMD160_H
#define BITCOIN_RIPEMD160_H
#include <stdint.h>
#include <stdlib.h>
/** A hasher class for RIPEMD-160. */
class CRIPEMD160 {
private:
uint32_t s[5];
unsigned char buf[64];
size_t bytes;
public:
static const size_t OUTPUT_SIZE = 20;
CRIPEMD160();
CRIPEMD160& Write(const unsigned char *data, size_t len);
void Finalize(unsigned char hash[OUTPUT_SIZE]);
CRIPEMD160& Reset();
};
#endif

192
src/crypto/sha1.cpp

@ -0,0 +1,192 @@ @@ -0,0 +1,192 @@
// Copyright (c) 2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "crypto/sha1.h"
#include "crypto/common.h"
#include <string.h>
// Internal implementation code.
namespace {
/// Internal SHA-1 implementation.
namespace sha1 {
/** One round of SHA-1. */
void inline Round(uint32_t a, uint32_t &b, uint32_t c, uint32_t d, uint32_t &e,
uint32_t f, uint32_t k, uint32_t w) {
e += ((a << 5) | (a >> 27)) + f + k + w;
b = (b << 30) | (b >> 2);
}
uint32_t inline f1(uint32_t b, uint32_t c, uint32_t d) { return d ^ (b & (c ^ d)); }
uint32_t inline f2(uint32_t b, uint32_t c, uint32_t d) { return b ^ c ^ d; }
uint32_t inline f3(uint32_t b, uint32_t c, uint32_t d) { return (b & c) | (d & (b | c)); }
uint32_t inline left(uint32_t x) { return (x << 1) | (x >> 31); }
/** Initialize SHA-1 state. */
void inline Initialize(uint32_t *s) {
s[0] = 0x67452301ul;
s[1] = 0xEFCDAB89ul;
s[2] = 0x98BADCFEul;
s[3] = 0x10325476ul;
s[4] = 0xC3D2E1F0ul;
}
const uint32_t k1 = 0x5A827999ul;
const uint32_t k2 = 0x6ED9EBA1ul;
const uint32_t k3 = 0x8F1BBCDCul;
const uint32_t k4 = 0xCA62C1D6ul;
/** Perform a SHA-1 transformation, processing a 64-byte chunk. */
void Transform(uint32_t *s, const unsigned char *chunk) {
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, d, e, f1(b, c, d), k1, w0 = ReadBE32(chunk + 0));
Round(e, a, b, c, d, f1(a, b, c), k1, w1 = ReadBE32(chunk + 4));
Round(d, e, a, b, c, f1(e, a, b), k1, w2 = ReadBE32(chunk + 8));
Round(c, d, e, a, b, f1(d, e, a), k1, w3 = ReadBE32(chunk + 12));
Round(b, c, d, e, a, f1(c, d, e), k1, w4 = ReadBE32(chunk + 16));
Round(a, b, c, d, e, f1(b, c, d), k1, w5 = ReadBE32(chunk + 20));
Round(e, a, b, c, d, f1(a, b, c), k1, w6 = ReadBE32(chunk + 24));
Round(d, e, a, b, c, f1(e, a, b), k1, w7 = ReadBE32(chunk + 28));
Round(c, d, e, a, b, f1(d, e, a), k1, w8 = ReadBE32(chunk + 32));
Round(b, c, d, e, a, f1(c, d, e), k1, w9 = ReadBE32(chunk + 36));
Round(a, b, c, d, e, f1(b, c, d), k1, w10 = ReadBE32(chunk + 40));
Round(e, a, b, c, d, f1(a, b, c), k1, w11 = ReadBE32(chunk + 44));
Round(d, e, a, b, c, f1(e, a, b), k1, w12 = ReadBE32(chunk + 48));
Round(c, d, e, a, b, f1(d, e, a), k1, w13 = ReadBE32(chunk + 52));
Round(b, c, d, e, a, f1(c, d, e), k1, w14 = ReadBE32(chunk + 56));
Round(a, b, c, d, e, f1(b, c, d), k1, w15 = ReadBE32(chunk + 60));
Round(e, a, b, c, d, f1(a, b, c), k1, w0 = left(w0 ^ w13 ^ w8 ^ w2 ));
Round(d, e, a, b, c, f1(e, a, b), k1, w1 = left(w1 ^ w14 ^ w9 ^ w3 ));
Round(c, d, e, a, b, f1(d, e, a), k1, w2 = left(w2 ^ w15 ^ w10 ^ w4 ));
Round(b, c, d, e, a, f1(c, d, e), k1, w3 = left(w3 ^ w0 ^ w11 ^ w5 ));
Round(a, b, c, d, e, f2(b, c, d), k2, w4 = left(w4 ^ w1 ^ w12 ^ w6 ));
Round(e, a, b, c, d, f2(a, b, c), k2, w5 = left(w5 ^ w2 ^ w13 ^ w7 ));
Round(d, e, a, b, c, f2(e, a, b), k2, w6 = left(w6 ^ w3 ^ w14 ^ w8 ));
Round(c, d, e, a, b, f2(d, e, a), k2, w7 = left(w7 ^ w4 ^ w15 ^ w9 ));
Round(b, c, d, e, a, f2(c, d, e), k2, w8 = left(w8 ^ w5 ^ w0 ^ w10));
Round(a, b, c, d, e, f2(b, c, d), k2, w9 = left(w9 ^ w6 ^ w1 ^ w11));
Round(e, a, b, c, d, f2(a, b, c), k2, w10 = left(w10 ^ w7 ^ w2 ^ w12));
Round(d, e, a, b, c, f2(e, a, b), k2, w11 = left(w11 ^ w8 ^ w3 ^ w13));
Round(c, d, e, a, b, f2(d, e, a), k2, w12 = left(w12 ^ w9 ^ w4 ^ w14));
Round(b, c, d, e, a, f2(c, d, e), k2, w13 = left(w13 ^ w10 ^ w5 ^ w15));
Round(a, b, c, d, e, f2(b, c, d), k2, w14 = left(w14 ^ w11 ^ w6 ^ w0 ));
Round(e, a, b, c, d, f2(a, b, c), k2, w15 = left(w15 ^ w12 ^ w7 ^ w1 ));
Round(d, e, a, b, c, f2(e, a, b), k2, w0 = left(w0 ^ w13 ^ w8 ^ w2 ));
Round(c, d, e, a, b, f2(d, e, a), k2, w1 = left(w1 ^ w14 ^ w9 ^ w3 ));
Round(b, c, d, e, a, f2(c, d, e), k2, w2 = left(w2 ^ w15 ^ w10 ^ w4 ));
Round(a, b, c, d, e, f2(b, c, d), k2, w3 = left(w3 ^ w0 ^ w11 ^ w5 ));
Round(e, a, b, c, d, f2(a, b, c), k2, w4 = left(w4 ^ w1 ^ w12 ^ w6 ));
Round(d, e, a, b, c, f2(e, a, b), k2, w5 = left(w5 ^ w2 ^ w13 ^ w7 ));
Round(c, d, e, a, b, f2(d, e, a), k2, w6 = left(w6 ^ w3 ^ w14 ^ w8 ));
Round(b, c, d, e, a, f2(c, d, e), k2, w7 = left(w7 ^ w4 ^ w15 ^ w9 ));
Round(a, b, c, d, e, f3(b, c, d), k3, w8 = left(w8 ^ w5 ^ w0 ^ w10));
Round(e, a, b, c, d, f3(a, b, c), k3, w9 = left(w9 ^ w6 ^ w1 ^ w11));
Round(d, e, a, b, c, f3(e, a, b), k3, w10 = left(w10 ^ w7 ^ w2 ^ w12));
Round(c, d, e, a, b, f3(d, e, a), k3, w11 = left(w11 ^ w8 ^ w3 ^ w13));
Round(b, c, d, e, a, f3(c, d, e), k3, w12 = left(w12 ^ w9 ^ w4 ^ w14));
Round(a, b, c, d, e, f3(b, c, d), k3, w13 = left(w13 ^ w10 ^ w5 ^ w15));
Round(e, a, b, c, d, f3(a, b, c), k3, w14 = left(w14 ^ w11 ^ w6 ^ w0 ));
Round(d, e, a, b, c, f3(e, a, b), k3, w15 = left(w15 ^ w12 ^ w7 ^ w1 ));
Round(c, d, e, a, b, f3(d, e, a), k3, w0 = left(w0 ^ w13 ^ w8 ^ w2 ));
Round(b, c, d, e, a, f3(c, d, e), k3, w1 = left(w1 ^ w14 ^ w9 ^ w3 ));
Round(a, b, c, d, e, f3(b, c, d), k3, w2 = left(w2 ^ w15 ^ w10 ^ w4 ));
Round(e, a, b, c, d, f3(a, b, c), k3, w3 = left(w3 ^ w0 ^ w11 ^ w5 ));
Round(d, e, a, b, c, f3(e, a, b), k3, w4 = left(w4 ^ w1 ^ w12 ^ w6 ));
Round(c, d, e, a, b, f3(d, e, a), k3, w5 = left(w5 ^ w2 ^ w13 ^ w7 ));
Round(b, c, d, e, a, f3(c, d, e), k3, w6 = left(w6 ^ w3 ^ w14 ^ w8 ));
Round(a, b, c, d, e, f3(b, c, d), k3, w7 = left(w7 ^ w4 ^ w15 ^ w9 ));
Round(e, a, b, c, d, f3(a, b, c), k3, w8 = left(w8 ^ w5 ^ w0 ^ w10));
Round(d, e, a, b, c, f3(e, a, b), k3, w9 = left(w9 ^ w6 ^ w1 ^ w11));
Round(c, d, e, a, b, f3(d, e, a), k3, w10 = left(w10 ^ w7 ^ w2 ^ w12));
Round(b, c, d, e, a, f3(c, d, e), k3, w11 = left(w11 ^ w8 ^ w3 ^ w13));
Round(a, b, c, d, e, f2(b, c, d), k4, w12 = left(w12 ^ w9 ^ w4 ^ w14));
Round(e, a, b, c, d, f2(a, b, c), k4, w13 = left(w13 ^ w10 ^ w5 ^ w15));
Round(d, e, a, b, c, f2(e, a, b), k4, w14 = left(w14 ^ w11 ^ w6 ^ w0 ));
Round(c, d, e, a, b, f2(d, e, a), k4, w15 = left(w15 ^ w12 ^ w7 ^ w1 ));
Round(b, c, d, e, a, f2(c, d, e), k4, w0 = left(w0 ^ w13 ^ w8 ^ w2 ));
Round(a, b, c, d, e, f2(b, c, d), k4, w1 = left(w1 ^ w14 ^ w9 ^ w3 ));
Round(e, a, b, c, d, f2(a, b, c), k4, w2 = left(w2 ^ w15 ^ w10 ^ w4 ));
Round(d, e, a, b, c, f2(e, a, b), k4, w3 = left(w3 ^ w0 ^ w11 ^ w5 ));
Round(c, d, e, a, b, f2(d, e, a), k4, w4 = left(w4 ^ w1 ^ w12 ^ w6 ));
Round(b, c, d, e, a, f2(c, d, e), k4, w5 = left(w5 ^ w2 ^ w13 ^ w7 ));
Round(a, b, c, d, e, f2(b, c, d), k4, w6 = left(w6 ^ w3 ^ w14 ^ w8 ));
Round(e, a, b, c, d, f2(a, b, c), k4, w7 = left(w7 ^ w4 ^ w15 ^ w9 ));
Round(d, e, a, b, c, f2(e, a, b), k4, w8 = left(w8 ^ w5 ^ w0 ^ w10));
Round(c, d, e, a, b, f2(d, e, a), k4, w9 = left(w9 ^ w6 ^ w1 ^ w11));
Round(b, c, d, e, a, f2(c, d, e), k4, w10 = left(w10 ^ w7 ^ w2 ^ w12));
Round(a, b, c, d, e, f2(b, c, d), k4, w11 = left(w11 ^ w8 ^ w3 ^ w13));
Round(e, a, b, c, d, f2(a, b, c), k4, w12 = left(w12 ^ w9 ^ w4 ^ w14));
Round(d, e, a, b, c, f2(e, a, b), k4, left(w13 ^ w10 ^ w5 ^ w15));
Round(c, d, e, a, b, f2(d, e, a), k4, left(w14 ^ w11 ^ w6 ^ w0 ));
Round(b, c, d, e, a, f2(c, d, e), k4, left(w15 ^ w12 ^ w7 ^ w1 ));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
}
} // namespace sha1
} // namespace
////// SHA1
CSHA1::CSHA1() : bytes(0) {
sha1::Initialize(s);
}
CSHA1& CSHA1::Write(const unsigned char *data, size_t len) {
const unsigned char *end = data + len;
size_t bufsize = bytes % 64;
if (bufsize && bufsize + len >= 64) {
// Fill the buffer, and process it.
memcpy(buf + bufsize, data, 64 - bufsize);
bytes += 64 - bufsize;
data += 64 - bufsize;
sha1::Transform(s, buf);
bufsize = 0;
}
while (end >= data + 64) {
// Process full chunks directly from the source.
sha1::Transform(s, data);
bytes += 64;
data += 64;
}
if (end > data) {
// Fill the buffer with what remains.
memcpy(buf + bufsize, data, end - data);
bytes += end - data;
}
return *this;
}
void CSHA1::Finalize(unsigned char hash[OUTPUT_SIZE]) {
static const unsigned char pad[64] = {0x80};
unsigned char sizedesc[8];
WriteBE64(sizedesc, bytes << 3);
Write(pad, 1 + ((119 - (bytes % 64)) % 64));
Write(sizedesc, 8);
WriteBE32(hash, s[0]);
WriteBE32(hash+4, s[1]);
WriteBE32(hash+8, s[2]);
WriteBE32(hash+12, s[3]);
WriteBE32(hash+16, s[4]);
}
CSHA1& CSHA1::Reset() {
bytes = 0;
sha1::Initialize(s);
return *this;
}

27
src/crypto/sha1.h

@ -0,0 +1,27 @@ @@ -0,0 +1,27 @@
// Copyright (c) 2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SHA1_H
#define BITCOIN_SHA1_H
#include <stdint.h>
#include <stdlib.h>
/** A hasher class for SHA1. */
class CSHA1 {
private:
uint32_t s[5];
unsigned char buf[64];
size_t bytes;
public:
static const size_t OUTPUT_SIZE = 20;
CSHA1();
CSHA1& Write(const unsigned char *data, size_t len);
void Finalize(unsigned char hash[OUTPUT_SIZE]);
CSHA1& Reset();
};
#endif

398
src/crypto/sha2.cpp

@ -0,0 +1,398 @@ @@ -0,0 +1,398 @@
// Copyright (c) 2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "crypto/sha2.h"
#include "crypto/common.h"
#include <string.h>
// Internal implementation code.
namespace {
/// Internal SHA-256 implementation.
namespace sha256 {
uint32_t inline Ch(uint32_t x, uint32_t y, uint32_t z) { return z ^ (x & (y ^ z)); }
uint32_t inline Maj(uint32_t x, uint32_t y, uint32_t z) { return (x & y) | (z & (x | y)); }
uint32_t inline Sigma0(uint32_t x) { return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10); }
uint32_t inline Sigma1(uint32_t x) { return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7); }
uint32_t inline sigma0(uint32_t x) { return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3); }
uint32_t inline sigma1(uint32_t x) { return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10); }
/** One round of SHA-256. */
void inline Round(uint32_t a, uint32_t b, uint32_t c, uint32_t &d,
uint32_t e, uint32_t f, uint32_t g, uint32_t &h,
uint32_t k, uint32_t w) {
uint32_t t1 = h + Sigma1(e) + Ch(e, f, g) + k + w;
uint32_t t2 = Sigma0(a) + Maj(a, b, c);
d += t1;
h = t1 + t2;
}
/** Initialize SHA-256 state. */
void inline Initialize(uint32_t *s) {
s[0] = 0x6a09e667ul;
s[1] = 0xbb67ae85ul;
s[2] = 0x3c6ef372ul;
s[3] = 0xa54ff53aul;
s[4] = 0x510e527ful;
s[5] = 0x9b05688cul;
s[6] = 0x1f83d9abul;
s[7] = 0x5be0cd19ul;
}
/** Perform one SHA-256 transformation, processing a 64-byte chunk. */
void Transform(uint32_t *s, const unsigned char *chunk) {
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = ReadBE32(chunk + 0));
Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = ReadBE32(chunk + 4));
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = ReadBE32(chunk + 8));
Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = ReadBE32(chunk + 12));
Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = ReadBE32(chunk + 16));
Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = ReadBE32(chunk + 20));
Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = ReadBE32(chunk + 24));
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = ReadBE32(chunk + 28));
Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = ReadBE32(chunk + 32));
Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = ReadBE32(chunk + 36));
Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = ReadBE32(chunk + 40));
Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = ReadBE32(chunk + 44));
Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = ReadBE32(chunk + 48));
Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = ReadBE32(chunk + 52));
Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = ReadBE32(chunk + 56));
Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = ReadBE32(chunk + 60));
Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0( w1));
Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0( w2));
Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1( w0) + w11 + sigma0( w3));
Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1( w1) + w12 + sigma0( w4));
Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1( w2) + w13 + sigma0( w5));
Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1( w3) + w14 + sigma0( w6));
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1( w4) + w15 + sigma0( w7));
Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1( w5) + w0 + sigma0( w8));
Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1( w6) + w1 + sigma0( w9));
Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1( w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1( w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1( w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0( w0));
Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0( w1));
Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0( w2));
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1( w0) + w11 + sigma0( w3));
Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1( w1) + w12 + sigma0( w4));
Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1( w2) + w13 + sigma0( w5));
Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1( w3) + w14 + sigma0( w6));
Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1( w4) + w15 + sigma0( w7));
Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1( w5) + w0 + sigma0( w8));
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1( w6) + w1 + sigma0( w9));
Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1( w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1( w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1( w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0( w0));
Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0( w1));
Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0( w2));
Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1( w0) + w11 + sigma0( w3));
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1( w1) + w12 + sigma0( w4));
Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1( w2) + w13 + sigma0( w5));
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1( w3) + w14 + sigma0( w6));
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1( w4) + w15 + sigma0( w7));
Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1( w5) + w0 + sigma0( w8));
Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1( w6) + w1 + sigma0( w9));
Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1( w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1( w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1( w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0( w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
} // namespace sha256
/// Internal SHA-512 implementation.
namespace sha512 {
uint64_t inline Ch(uint64_t x, uint64_t y, uint64_t z) { return z ^ (x & (y ^ z)); }
uint64_t inline Maj(uint64_t x, uint64_t y, uint64_t z) { return (x & y) | (z & (x | y)); }
uint64_t inline Sigma0(uint64_t x) { return (x >> 28 | x << 36) ^ (x >> 34 | x << 30) ^ (x >> 39 | x << 25); }
uint64_t inline Sigma1(uint64_t x) { return (x >> 14 | x << 50) ^ (x >> 18 | x << 46) ^ (x >> 41 | x << 23); }
uint64_t inline sigma0(uint64_t x) { return (x >> 1 | x << 63) ^ (x >> 8 | x << 56) ^ (x >> 7); }
uint64_t inline sigma1(uint64_t x) { return (x >> 19 | x << 45) ^ (x >> 61 | x << 3) ^ (x >> 6); }
/** One round of SHA-512. */
void inline Round(uint64_t a, uint64_t b, uint64_t c, uint64_t &d,
uint64_t e, uint64_t f, uint64_t g, uint64_t &h,
uint64_t k, uint64_t w) {
uint64_t t1 = h + Sigma1(e) + Ch(e, f, g) + k + w;
uint64_t t2 = Sigma0(a) + Maj(a, b, c);
d += t1;
h = t1 + t2;
}
/** Initialize SHA-256 state. */
void inline Initialize(uint64_t *s) {
s[0] = 0x6a09e667f3bcc908ull;
s[1] = 0xbb67ae8584caa73bull;
s[2] = 0x3c6ef372fe94f82bull;
s[3] = 0xa54ff53a5f1d36f1ull;
s[4] = 0x510e527fade682d1ull;
s[5] = 0x9b05688c2b3e6c1full;
s[6] = 0x1f83d9abfb41bd6bull;
s[7] = 0x5be0cd19137e2179ull;
}
/** Perform one SHA-512 transformation, processing a 128-byte chunk. */
void Transform(uint64_t *s, const unsigned char *chunk) {
uint64_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint64_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, d, e, f, g, h, 0x428a2f98d728ae22ull, w0 = ReadBE64(chunk + 0));
Round(h, a, b, c, d, e, f, g, 0x7137449123ef65cdull, w1 = ReadBE64(chunk + 8));
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcfec4d3b2full, w2 = ReadBE64(chunk + 16));
Round(f, g, h, a, b, c, d, e, 0xe9b5dba58189dbbcull, w3 = ReadBE64(chunk + 24));
Round(e, f, g, h, a, b, c, d, 0x3956c25bf348b538ull, w4 = ReadBE64(chunk + 32));
Round(d, e, f, g, h, a, b, c, 0x59f111f1b605d019ull, w5 = ReadBE64(chunk + 40));
Round(c, d, e, f, g, h, a, b, 0x923f82a4af194f9bull, w6 = ReadBE64(chunk + 48));
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5da6d8118ull, w7 = ReadBE64(chunk + 56));
Round(a, b, c, d, e, f, g, h, 0xd807aa98a3030242ull, w8 = ReadBE64(chunk + 64));
Round(h, a, b, c, d, e, f, g, 0x12835b0145706fbeull, w9 = ReadBE64(chunk + 72));
Round(g, h, a, b, c, d, e, f, 0x243185be4ee4b28cull, w10 = ReadBE64(chunk + 80));
Round(f, g, h, a, b, c, d, e, 0x550c7dc3d5ffb4e2ull, w11 = ReadBE64(chunk + 88));
Round(e, f, g, h, a, b, c, d, 0x72be5d74f27b896full, w12 = ReadBE64(chunk + 96));
Round(d, e, f, g, h, a, b, c, 0x80deb1fe3b1696b1ull, w13 = ReadBE64(chunk + 104));
Round(c, d, e, f, g, h, a, b, 0x9bdc06a725c71235ull, w14 = ReadBE64(chunk + 112));
Round(b, c, d, e, f, g, h, a, 0xc19bf174cf692694ull, w15 = ReadBE64(chunk + 120));
Round(a, b, c, d, e, f, g, h, 0xe49b69c19ef14ad2ull, w0 += sigma1(w14) + w9 + sigma0( w1));
Round(h, a, b, c, d, e, f, g, 0xefbe4786384f25e3ull, w1 += sigma1(w15) + w10 + sigma0( w2));
Round(g, h, a, b, c, d, e, f, 0x0fc19dc68b8cd5b5ull, w2 += sigma1( w0) + w11 + sigma0( w3));
Round(f, g, h, a, b, c, d, e, 0x240ca1cc77ac9c65ull, w3 += sigma1( w1) + w12 + sigma0( w4));
Round(e, f, g, h, a, b, c, d, 0x2de92c6f592b0275ull, w4 += sigma1( w2) + w13 + sigma0( w5));
Round(d, e, f, g, h, a, b, c, 0x4a7484aa6ea6e483ull, w5 += sigma1( w3) + w14 + sigma0( w6));
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dcbd41fbd4ull, w6 += sigma1( w4) + w15 + sigma0( w7));
Round(b, c, d, e, f, g, h, a, 0x76f988da831153b5ull, w7 += sigma1( w5) + w0 + sigma0( w8));
Round(a, b, c, d, e, f, g, h, 0x983e5152ee66dfabull, w8 += sigma1( w6) + w1 + sigma0( w9));
Round(h, a, b, c, d, e, f, g, 0xa831c66d2db43210ull, w9 += sigma1( w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xb00327c898fb213full, w10 += sigma1( w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xbf597fc7beef0ee4ull, w11 += sigma1( w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xc6e00bf33da88fc2ull, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd5a79147930aa725ull, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0x06ca6351e003826full, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x142929670a0e6e70ull, w15 += sigma1(w13) + w8 + sigma0( w0));
Round(a, b, c, d, e, f, g, h, 0x27b70a8546d22ffcull, w0 += sigma1(w14) + w9 + sigma0( w1));
Round(h, a, b, c, d, e, f, g, 0x2e1b21385c26c926ull, w1 += sigma1(w15) + w10 + sigma0( w2));
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc5ac42aedull, w2 += sigma1( w0) + w11 + sigma0( w3));
Round(f, g, h, a, b, c, d, e, 0x53380d139d95b3dfull, w3 += sigma1( w1) + w12 + sigma0( w4));
Round(e, f, g, h, a, b, c, d, 0x650a73548baf63deull, w4 += sigma1( w2) + w13 + sigma0( w5));
Round(d, e, f, g, h, a, b, c, 0x766a0abb3c77b2a8ull, w5 += sigma1( w3) + w14 + sigma0( w6));
Round(c, d, e, f, g, h, a, b, 0x81c2c92e47edaee6ull, w6 += sigma1( w4) + w15 + sigma0( w7));
Round(b, c, d, e, f, g, h, a, 0x92722c851482353bull, w7 += sigma1( w5) + w0 + sigma0( w8));
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a14cf10364ull, w8 += sigma1( w6) + w1 + sigma0( w9));
Round(h, a, b, c, d, e, f, g, 0xa81a664bbc423001ull, w9 += sigma1( w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xc24b8b70d0f89791ull, w10 += sigma1( w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xc76c51a30654be30ull, w11 += sigma1( w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xd192e819d6ef5218ull, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd69906245565a910ull, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xf40e35855771202aull, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x106aa07032bbd1b8ull, w15 += sigma1(w13) + w8 + sigma0( w0));
Round(a, b, c, d, e, f, g, h, 0x19a4c116b8d2d0c8ull, w0 += sigma1(w14) + w9 + sigma0( w1));
Round(h, a, b, c, d, e, f, g, 0x1e376c085141ab53ull, w1 += sigma1(w15) + w10 + sigma0( w2));
Round(g, h, a, b, c, d, e, f, 0x2748774cdf8eeb99ull, w2 += sigma1( w0) + w11 + sigma0( w3));
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5e19b48a8ull, w3 += sigma1( w1) + w12 + sigma0( w4));
Round(e, f, g, h, a, b, c, d, 0x391c0cb3c5c95a63ull, w4 += sigma1( w2) + w13 + sigma0( w5));
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4ae3418acbull, w5 += sigma1( w3) + w14 + sigma0( w6));
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f7763e373ull, w6 += sigma1( w4) + w15 + sigma0( w7));
Round(b, c, d, e, f, g, h, a, 0x682e6ff3d6b2b8a3ull, w7 += sigma1( w5) + w0 + sigma0( w8));
Round(a, b, c, d, e, f, g, h, 0x748f82ee5defb2fcull, w8 += sigma1( w6) + w1 + sigma0( w9));
Round(h, a, b, c, d, e, f, g, 0x78a5636f43172f60ull, w9 += sigma1( w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0x84c87814a1f0ab72ull, w10 += sigma1( w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0x8cc702081a6439ecull, w11 += sigma1( w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0x90befffa23631e28ull, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xa4506cebde82bde9ull, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7b2c67915ull, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0xc67178f2e372532bull, w15 += sigma1(w13) + w8 + sigma0( w0));
Round(a, b, c, d, e, f, g, h, 0xca273eceea26619cull, w0 += sigma1(w14) + w9 + sigma0( w1));
Round(h, a, b, c, d, e, f, g, 0xd186b8c721c0c207ull, w1 += sigma1(w15) + w10 + sigma0( w2));
Round(g, h, a, b, c, d, e, f, 0xeada7dd6cde0eb1eull, w2 += sigma1( w0) + w11 + sigma0( w3));
Round(f, g, h, a, b, c, d, e, 0xf57d4f7fee6ed178ull, w3 += sigma1( w1) + w12 + sigma0( w4));
Round(e, f, g, h, a, b, c, d, 0x06f067aa72176fbaull, w4 += sigma1( w2) + w13 + sigma0( w5));
Round(d, e, f, g, h, a, b, c, 0x0a637dc5a2c898a6ull, w5 += sigma1( w3) + w14 + sigma0( w6));
Round(c, d, e, f, g, h, a, b, 0x113f9804bef90daeull, w6 += sigma1( w4) + w15 + sigma0( w7));
Round(b, c, d, e, f, g, h, a, 0x1b710b35131c471bull, w7 += sigma1( w5) + w0 + sigma0( w8));
Round(a, b, c, d, e, f, g, h, 0x28db77f523047d84ull, w8 += sigma1( w6) + w1 + sigma0( w9));
Round(h, a, b, c, d, e, f, g, 0x32caab7b40c72493ull, w9 += sigma1( w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0x3c9ebe0a15c9bebcull, w10 += sigma1( w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0x431d67c49c100d4cull, w11 += sigma1( w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0x4cc5d4becb3e42b6ull, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0x597f299cfc657e2aull, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0x5fcb6fab3ad6faecull, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x6c44198c4a475817ull, w15 += sigma1(w13) + w8 + sigma0( w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
} // namespace sha512
} // namespace
////// SHA-256
CSHA256::CSHA256() : bytes(0) {
sha256::Initialize(s);
}
CSHA256& CSHA256::Write(const unsigned char *data, size_t len) {
const unsigned char *end = data + len;
size_t bufsize = bytes % 64;
if (bufsize && bufsize + len >= 64) {
// Fill the buffer, and process it.
memcpy(buf + bufsize, data, 64 - bufsize);
bytes += 64 - bufsize;
data += 64 - bufsize;
sha256::Transform(s, buf);
bufsize = 0;
}
while (end >= data + 64) {
// Process full chunks directly from the source.
sha256::Transform(s, data);
bytes += 64;
data += 64;
}
if (end > data) {
// Fill the buffer with what remains.
memcpy(buf + bufsize, data, end - data);
bytes += end - data;
}
return *this;
}
void CSHA256::Finalize(unsigned char hash[OUTPUT_SIZE]) {
static const unsigned char pad[64] = {0x80};
unsigned char sizedesc[8];
WriteBE64(sizedesc, bytes << 3);
Write(pad, 1 + ((119 - (bytes % 64)) % 64));
Write(sizedesc, 8);
WriteBE32(hash, s[0]);
WriteBE32(hash+4, s[1]);
WriteBE32(hash+8, s[2]);
WriteBE32(hash+12, s[3]);
WriteBE32(hash+16, s[4]);
WriteBE32(hash+20, s[5]);
WriteBE32(hash+24, s[6]);
WriteBE32(hash+28, s[7]);
}
CSHA256& CSHA256::Reset() {
bytes = 0;
sha256::Initialize(s);
return *this;
}
////// SHA-512
CSHA512::CSHA512() : bytes(0) {
sha512::Initialize(s);
}
CSHA512& CSHA512::Write(const unsigned char *data, size_t len) {
const unsigned char *end = data + len;
size_t bufsize = bytes % 128;
if (bufsize && bufsize + len >= 128) {
// Fill the buffer, and process it.
memcpy(buf + bufsize, data, 128 - bufsize);
bytes += 128 - bufsize;
data += 128 - bufsize;
sha512::Transform(s, buf);
bufsize = 0;
}
while (end >= data + 128) {
// Process full chunks directly from the source.
sha512::Transform(s, data);
data += 128;
bytes += 128;
}
if (end > data) {
// Fill the buffer with what remains.
memcpy(buf + bufsize, data, end - data);
bytes += end - data;
}
return *this;
}
void CSHA512::Finalize(unsigned char hash[OUTPUT_SIZE]) {
static const unsigned char pad[128] = {0x80};
unsigned char sizedesc[16] = {0x00};
WriteBE64(sizedesc+8, bytes << 3);
Write(pad, 1 + ((239 - (bytes % 128)) % 128));
Write(sizedesc, 16);
WriteBE64(hash, s[0]);
WriteBE64(hash+8, s[1]);
WriteBE64(hash+16, s[2]);
WriteBE64(hash+24, s[3]);
WriteBE64(hash+32, s[4]);
WriteBE64(hash+40, s[5]);
WriteBE64(hash+48, s[6]);
WriteBE64(hash+56, s[7]);
}
CSHA512& CSHA512::Reset() {
bytes = 0;
sha512::Initialize(s);
return *this;
}
////// HMAC-SHA-512
CHMAC_SHA512::CHMAC_SHA512(const unsigned char *key, size_t keylen) {
unsigned char rkey[128];
if (keylen <= 128) {
memcpy(rkey, key, keylen);
memset(rkey + keylen, 0, 128 - keylen);
} else {
CSHA512().Write(key, keylen).Finalize(rkey);
memset(rkey + 64, 0, 64);
}
for (int n=0; n<128; n++)
rkey[n] ^= 0x5c;
outer.Write(rkey, 128);
for (int n=0; n<128; n++)
rkey[n] ^= 0x5c ^ 0x36;
inner.Write(rkey, 128);
}
void CHMAC_SHA512::Finalize(unsigned char hash[OUTPUT_SIZE]) {
unsigned char temp[64];
inner.Finalize(temp);
outer.Write(temp, 64).Finalize(hash);
}

60
src/crypto/sha2.h

@ -0,0 +1,60 @@ @@ -0,0 +1,60 @@
// Copyright (c) 2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SHA2_H
#define BITCOIN_SHA2_H
#include <stdint.h>
#include <stdlib.h>
/** A hasher class for SHA-256. */
class CSHA256 {
private:
uint32_t s[8];
unsigned char buf[64];
size_t bytes;
public:
static const size_t OUTPUT_SIZE = 32;
CSHA256();
CSHA256& Write(const unsigned char *data, size_t len);
void Finalize(unsigned char hash[OUTPUT_SIZE]);
CSHA256& Reset();
};
/** A hasher class for SHA-512. */
class CSHA512 {
private:
uint64_t s[8];
unsigned char buf[128];
size_t bytes;
public:
static const size_t OUTPUT_SIZE = 64;
CSHA512();
CSHA512& Write(const unsigned char *data, size_t len);
void Finalize(unsigned char hash[OUTPUT_SIZE]);
CSHA512& Reset();
};
/** A hasher class for HMAC-SHA-512. */
class CHMAC_SHA512 {
private:
CSHA512 outer;
CSHA512 inner;
public:
static const size_t OUTPUT_SIZE = 64;
CHMAC_SHA512(const unsigned char *key, size_t keylen);
CHMAC_SHA512& Write(const unsigned char *data, size_t len) {
inner.Write(data, len);
return *this;
}
void Finalize(unsigned char hash[OUTPUT_SIZE]);
};
#endif

41
src/hash.cpp

@ -56,44 +56,3 @@ unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char @@ -56,44 +56,3 @@ unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char
return h1;
}
int HMAC_SHA512_Init(HMAC_SHA512_CTX *pctx, const void *pkey, size_t len)
{
unsigned char key[128];
if (len <= 128)
{
memcpy(key, pkey, len);
memset(key + len, 0, 128-len);
}
else
{
SHA512_CTX ctxKey;
SHA512_Init(&ctxKey);
SHA512_Update(&ctxKey, pkey, len);
SHA512_Final(key, &ctxKey);
memset(key + 64, 0, 64);
}
for (int n=0; n<128; n++)
key[n] ^= 0x5c;
SHA512_Init(&pctx->ctxOuter);
SHA512_Update(&pctx->ctxOuter, key, 128);
for (int n=0; n<128; n++)
key[n] ^= 0x5c ^ 0x36;
SHA512_Init(&pctx->ctxInner);
return SHA512_Update(&pctx->ctxInner, key, 128);
}
int HMAC_SHA512_Update(HMAC_SHA512_CTX *pctx, const void *pdata, size_t len)
{
return SHA512_Update(&pctx->ctxInner, pdata, len);
}
int HMAC_SHA512_Final(unsigned char *pmd, HMAC_SHA512_CTX *pctx)
{
unsigned char buf[64];
SHA512_Final(buf, &pctx->ctxInner);
SHA512_Update(&pctx->ctxOuter, buf, 64);
return SHA512_Final(pmd, &pctx->ctxOuter);
}

189
src/hash.h

@ -6,55 +6,138 @@ @@ -6,55 +6,138 @@
#ifndef BITCOIN_HASH_H
#define BITCOIN_HASH_H
#include "crypto/sha2.h"
#include "crypto/ripemd160.h"
#include "serialize.h"
#include "uint256.h"
#include "version.h"
#include <vector>
#include <openssl/ripemd.h>
#include <openssl/sha.h>
/** A hasher class for Bitcoin's 256-bit hash (double SHA-256). */
class CHash256 {
private:
CSHA256 sha;
public:
static const size_t OUTPUT_SIZE = CSHA256::OUTPUT_SIZE;
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
unsigned char buf[sha.OUTPUT_SIZE];
sha.Finalize(buf);
sha.Reset().Write(buf, sha.OUTPUT_SIZE).Finalize(hash);
}
CHash256& Write(const unsigned char *data, size_t len) {
sha.Write(data, len);
return *this;
}
CHash256& Reset() {
sha.Reset();
return *this;
}
};
/** A hasher class for Bitcoin's 160-bit hash (SHA-256 + RIPEMD-160). */
class CHash160 {
private:
CSHA256 sha;
public:
static const size_t OUTPUT_SIZE = CRIPEMD160::OUTPUT_SIZE;
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
unsigned char buf[sha.OUTPUT_SIZE];
sha.Finalize(buf);
CRIPEMD160().Write(buf, sha.OUTPUT_SIZE).Finalize(hash);
}
CHash160& Write(const unsigned char *data, size_t len) {
sha.Write(data, len);
return *this;
}
CHash160& Reset() {
sha.Reset();
return *this;
}
};
/** Compute the 256-bit hash of an object. */
template<typename T1>
inline uint256 Hash(const T1 pbegin, const T1 pend)
{
static unsigned char pblank[1];
uint256 hash1;
SHA256((pbegin == pend ? pblank : (unsigned char*)&pbegin[0]), (pend - pbegin) * sizeof(pbegin[0]), (unsigned char*)&hash1);
uint256 hash2;
SHA256((unsigned char*)&hash1, sizeof(hash1), (unsigned char*)&hash2);
return hash2;
static const unsigned char pblank[1] = {};
uint256 result;
CHash256().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
.Finalize((unsigned char*)&result);
return result;
}
/** Compute the 256-bit hash of the concatenation of two objects. */
template<typename T1, typename T2>
inline uint256 Hash(const T1 p1begin, const T1 p1end,
const T2 p2begin, const T2 p2end) {
static const unsigned char pblank[1] = {};
uint256 result;
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
.Finalize((unsigned char*)&result);
return result;
}
/** Compute the 256-bit hash of the concatenation of three objects. */
template<typename T1, typename T2, typename T3>
inline uint256 Hash(const T1 p1begin, const T1 p1end,
const T2 p2begin, const T2 p2end,
const T3 p3begin, const T3 p3end) {
static const unsigned char pblank[1] = {};
uint256 result;
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
.Write(p3begin == p3end ? pblank : (const unsigned char*)&p3begin[0], (p3end - p3begin) * sizeof(p3begin[0]))
.Finalize((unsigned char*)&result);
return result;
}
/** Compute the 160-bit hash an object. */
template<typename T1>
inline uint160 Hash160(const T1 pbegin, const T1 pend)
{
static unsigned char pblank[1] = {};
uint160 result;
CHash160().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
.Finalize((unsigned char*)&result);
return result;
}
/** Compute the 160-bit hash of a vector. */
inline uint160 Hash160(const std::vector<unsigned char>& vch)
{
return Hash160(vch.begin(), vch.end());
}
/** A writer stream (for serialization) that computes a 256-bit hash. */
class CHashWriter
{
private:
SHA256_CTX ctx;
CHash256 ctx;
public:
int nType;
int nVersion;
void Init() {
SHA256_Init(&ctx);
}
CHashWriter(int nTypeIn, int nVersionIn) : nType(nTypeIn), nVersion(nVersionIn) {
Init();
}
CHashWriter(int nTypeIn, int nVersionIn) : nType(nTypeIn), nVersion(nVersionIn) {}
CHashWriter& write(const char *pch, size_t size) {
SHA256_Update(&ctx, pch, size);
ctx.Write((const unsigned char*)pch, size);
return (*this);
}
// invalidates the object
uint256 GetHash() {
uint256 hash1;
SHA256_Final((unsigned char*)&hash1, &ctx);
uint256 hash2;
SHA256((unsigned char*)&hash1, sizeof(hash1), (unsigned char*)&hash2);
return hash2;
uint256 result;
ctx.Finalize((unsigned char*)&result);
return result;
}
template<typename T>
@ -65,41 +148,7 @@ public: @@ -65,41 +148,7 @@ public:
}
};
template<typename T1, typename T2>
inline uint256 Hash(const T1 p1begin, const T1 p1end,
const T2 p2begin, const T2 p2end)
{
static unsigned char pblank[1];
uint256 hash1;
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, (p1begin == p1end ? pblank : (unsigned char*)&p1begin[0]), (p1end - p1begin) * sizeof(p1begin[0]));
SHA256_Update(&ctx, (p2begin == p2end ? pblank : (unsigned char*)&p2begin[0]), (p2end - p2begin) * sizeof(p2begin[0]));
SHA256_Final((unsigned char*)&hash1, &ctx);
uint256 hash2;
SHA256((unsigned char*)&hash1, sizeof(hash1), (unsigned char*)&hash2);
return hash2;
}
template<typename T1, typename T2, typename T3>
inline uint256 Hash(const T1 p1begin, const T1 p1end,
const T2 p2begin, const T2 p2end,
const T3 p3begin, const T3 p3end)
{
static unsigned char pblank[1];
uint256 hash1;
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, (p1begin == p1end ? pblank : (unsigned char*)&p1begin[0]), (p1end - p1begin) * sizeof(p1begin[0]));
SHA256_Update(&ctx, (p2begin == p2end ? pblank : (unsigned char*)&p2begin[0]), (p2end - p2begin) * sizeof(p2begin[0]));
SHA256_Update(&ctx, (p3begin == p3end ? pblank : (unsigned char*)&p3begin[0]), (p3end - p3begin) * sizeof(p3begin[0]));
SHA256_Final((unsigned char*)&hash1, &ctx);
uint256 hash2;
SHA256((unsigned char*)&hash1, sizeof(hash1), (unsigned char*)&hash2);
return hash2;
}
/** Compute the 256-bit hash of an object's serialization. */
template<typename T>
uint256 SerializeHash(const T& obj, int nType=SER_GETHASH, int nVersion=PROTOCOL_VERSION)
{
@ -108,32 +157,6 @@ uint256 SerializeHash(const T& obj, int nType=SER_GETHASH, int nVersion=PROTOCOL @@ -108,32 +157,6 @@ uint256 SerializeHash(const T& obj, int nType=SER_GETHASH, int nVersion=PROTOCOL
return ss.GetHash();
}
template<typename T1>
inline uint160 Hash160(const T1 pbegin, const T1 pend)
{
static unsigned char pblank[1];
uint256 hash1;
SHA256((pbegin == pend ? pblank : (unsigned char*)&pbegin[0]), (pend - pbegin) * sizeof(pbegin[0]), (unsigned char*)&hash1);
uint160 hash2;
RIPEMD160((unsigned char*)&hash1, sizeof(hash1), (unsigned char*)&hash2);
return hash2;
}
inline uint160 Hash160(const std::vector<unsigned char>& vch)
{
return Hash160(vch.begin(), vch.end());
}
unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char>& vDataToHash);
typedef struct
{
SHA512_CTX ctxInner;
SHA512_CTX ctxOuter;
} HMAC_SHA512_CTX;
int HMAC_SHA512_Init(HMAC_SHA512_CTX *pctx, const void *pkey, size_t len);
int HMAC_SHA512_Update(HMAC_SHA512_CTX *pctx, const void *pdata, size_t len);
int HMAC_SHA512_Final(unsigned char *pmd, HMAC_SHA512_CTX *pctx);
#endif

3
src/init.cpp

@ -116,7 +116,6 @@ void Shutdown() @@ -116,7 +116,6 @@ void Shutdown()
RenameThread("bitcoin-shutoff");
mempool.AddTransactionsUpdated(1);
StopRPCThreads();
ShutdownRPCMining();
#ifdef ENABLE_WALLET
if (pwalletMain)
bitdb.Flush(false);
@ -1148,8 +1147,6 @@ bool AppInit2(boost::thread_group& threadGroup) @@ -1148,8 +1147,6 @@ bool AppInit2(boost::thread_group& threadGroup)
#endif
StartNode(threadGroup);
// InitRPCMining is needed here so getwork/getblocktemplate in the GUI debug console works properly.
InitRPCMining();
if (fServer)
StartRPCThreads();

19
src/key.cpp

@ -4,6 +4,8 @@ @@ -4,6 +4,8 @@
#include "key.h"
#include "crypto/sha2.h"
#include <openssl/bn.h>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>
@ -510,12 +512,10 @@ void static BIP32Hash(const unsigned char chainCode[32], unsigned int nChild, un @@ -510,12 +512,10 @@ void static BIP32Hash(const unsigned char chainCode[32], unsigned int nChild, un
num[1] = (nChild >> 16) & 0xFF;
num[2] = (nChild >> 8) & 0xFF;
num[3] = (nChild >> 0) & 0xFF;
HMAC_SHA512_CTX ctx;
HMAC_SHA512_Init(&ctx, chainCode, 32);
HMAC_SHA512_Update(&ctx, &header, 1);
HMAC_SHA512_Update(&ctx, data, 32);
HMAC_SHA512_Update(&ctx, num, 4);
HMAC_SHA512_Final(output, &ctx);
CHMAC_SHA512(chainCode, 32).Write(&header, 1)
.Write(data, 32)
.Write(num, 4)
.Finalize(output);
}
bool CKey::Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const {
@ -562,13 +562,10 @@ bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const { @@ -562,13 +562,10 @@ bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const {
}
void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) {
static const char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
HMAC_SHA512_CTX ctx;
HMAC_SHA512_Init(&ctx, hashkey, sizeof(hashkey));
HMAC_SHA512_Update(&ctx, seed, nSeedLen);
static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
unsigned char out[64];
LockObject(out);
HMAC_SHA512_Final(out, &ctx);
CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out);
key.Set(&out[0], &out[32], true);
memcpy(vchChainCode, &out[32], 32);
UnlockObject(out);

161
src/miner.cpp

@ -6,6 +6,7 @@ @@ -6,6 +6,7 @@
#include "miner.h"
#include "core.h"
#include "hash.h"
#include "main.h"
#include "net.h"
#ifdef ENABLE_WALLET
@ -13,47 +14,12 @@ @@ -13,47 +14,12 @@
#endif
using namespace std;
//////////////////////////////////////////////////////////////////////////////
//
// BitcoinMiner
//
int static FormatHashBlocks(void* pbuffer, unsigned int len)
{
unsigned char* pdata = (unsigned char*)pbuffer;
unsigned int blocks = 1 + ((len + 8) / 64);
unsigned char* pend = pdata + 64 * blocks;
memset(pdata + len, 0, 64 * blocks - len);
pdata[len] = 0x80;
unsigned int bits = len * 8;
pend[-1] = (bits >> 0) & 0xff;
pend[-2] = (bits >> 8) & 0xff;
pend[-3] = (bits >> 16) & 0xff;
pend[-4] = (bits >> 24) & 0xff;
return blocks;
}
static const unsigned int pSHA256InitState[8] =
{0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
void SHA256Transform(void* pstate, void* pinput, const void* pinit)
{
SHA256_CTX ctx;
unsigned char data[64];
SHA256_Init(&ctx);
for (int i = 0; i < 16; i++)
((uint32_t*)data)[i] = ByteReverse(((uint32_t*)pinput)[i]);
for (int i = 0; i < 8; i++)
ctx.h[i] = ((uint32_t*)pinit)[i];
SHA256_Update(&ctx, data, sizeof(data));
for (int i = 0; i < 8; i++)
((uint32_t*)pstate)[i] = ctx.h[i];
}
//
// Unconfirmed transactions in the memory pool often depend on other
// transactions in the memory pool. When we select transactions from the
@ -369,51 +335,6 @@ void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& @@ -369,51 +335,6 @@ void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int&
}
void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1)
{
//
// Pre-build hash buffers
//
struct
{
struct unnamed2
{
int nVersion;
uint256 hashPrevBlock;
uint256 hashMerkleRoot;
unsigned int nTime;
unsigned int nBits;
unsigned int nNonce;
}
block;
unsigned char pchPadding0[64];
uint256 hash1;
unsigned char pchPadding1[64];
}
tmp;
memset(&tmp, 0, sizeof(tmp));
tmp.block.nVersion = pblock->nVersion;
tmp.block.hashPrevBlock = pblock->hashPrevBlock;
tmp.block.hashMerkleRoot = pblock->hashMerkleRoot;
tmp.block.nTime = pblock->nTime;
tmp.block.nBits = pblock->nBits;
tmp.block.nNonce = pblock->nNonce;
FormatHashBlocks(&tmp.block, sizeof(tmp.block));
FormatHashBlocks(&tmp.hash1, sizeof(tmp.hash1));
// Byte swap all the input buffer
for (unsigned int i = 0; i < sizeof(tmp)/4; i++)
((unsigned int*)&tmp)[i] = ByteReverse(((unsigned int*)&tmp)[i]);
// Precalc the first half of the first hash, which stays constant
SHA256Transform(pmidstate, &tmp.block, pSHA256InitState);
memcpy(pdata, &tmp.block, 128);
memcpy(phash1, &tmp.hash1, 64);
}
#ifdef ENABLE_WALLET
//////////////////////////////////////////////////////////////////////////////
//
@ -424,34 +345,33 @@ int64_t nHPSTimerStart = 0; @@ -424,34 +345,33 @@ int64_t nHPSTimerStart = 0;
//
// ScanHash scans nonces looking for a hash with at least some zero bits.
// It operates on big endian data. Caller does the byte reversing.
// All input buffers are 16-byte aligned. nNonce is usually preserved
// between calls, but periodically or if nNonce is 0xffff0000 or above,
// the block is rebuilt and nNonce starts over at zero.
// The nonce is usually preserved between calls, but periodically or if the
// nonce is 0xffff0000 or above, the block is rebuilt and nNonce starts over at
// zero.
//
unsigned int static ScanHash_CryptoPP(char* pmidstate, char* pdata, char* phash1, char* phash, unsigned int& nHashesDone)
{
unsigned int& nNonce = *(unsigned int*)(pdata + 12);
for (;;)
{
// Crypto++ SHA256
// Hash pdata using pmidstate as the starting state into
// pre-formatted buffer phash1, then hash phash1 into phash
bool static ScanHash(const CBlockHeader *pblock, uint32_t& nNonce, uint256 *phash) {
// Write the first 76 bytes of the block header to a double-SHA256 state.
CHash256 hasher;
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss << *pblock;
assert(ss.size() == 80);
hasher.Write((unsigned char*)&ss[0], 76);
for (;;) {
nNonce++;
SHA256Transform(phash1, pdata, pmidstate);
SHA256Transform(phash, phash1, pSHA256InitState);
// Write the last 4 bytes of the block header (the nonce) to a copy of
// the double-SHA256 state, and compute the result.
CHash256(hasher).Write((unsigned char*)&nNonce, 4).Finalize((unsigned char*)phash);
// Return the nonce if the hash has at least some zero bits,
// caller will check if it has enough to reach the target
if (((unsigned short*)phash)[14] == 0)
return nNonce;
if (((uint16_t*)phash)[15] == 0)
return true;
// If nothing found after trying for a while, return -1
if ((nNonce & 0xffff) == 0)
{
nHashesDone = 0xffff+1;
return (unsigned int) -1;
}
return false;
if ((nNonce & 0xfff) == 0)
boost::this_thread::interruption_point();
}
@ -538,46 +458,27 @@ void static BitcoinMiner(CWallet *pwallet) @@ -538,46 +458,27 @@ void static BitcoinMiner(CWallet *pwallet)
LogPrintf("Running BitcoinMiner with %u transactions in block (%u bytes)\n", pblock->vtx.size(),
::GetSerializeSize(*pblock, SER_NETWORK, PROTOCOL_VERSION));
//
// Pre-build hash buffers
//
char pmidstatebuf[32+16]; char* pmidstate = alignup<16>(pmidstatebuf);
char pdatabuf[128+16]; char* pdata = alignup<16>(pdatabuf);
char phash1buf[64+16]; char* phash1 = alignup<16>(phash1buf);
FormatHashBuffers(pblock, pmidstate, pdata, phash1);
unsigned int& nBlockTime = *(unsigned int*)(pdata + 64 + 4);
unsigned int& nBlockBits = *(unsigned int*)(pdata + 64 + 8);
unsigned int& nBlockNonce = *(unsigned int*)(pdata + 64 + 12);
//
// Search
//
int64_t nStart = GetTime();
uint256 hashTarget = uint256().SetCompact(pblock->nBits);
uint256 hashbuf[2];
uint256& hash = *alignup<16>(hashbuf);
uint256 hash;
uint32_t nNonce = 0;
uint32_t nOldNonce = 0;
while (true)
{
unsigned int nHashesDone = 0;
unsigned int nNonceFound;
// Crypto++ SHA256
nNonceFound = ScanHash_CryptoPP(pmidstate, pdata + 64, phash1,
(char*)&hash, nHashesDone);
bool fFound = ScanHash(pblock, nNonce, &hash);
uint32_t nHashesDone = nNonce - nOldNonce;
nOldNonce = nNonce;
// Check if something found
if (nNonceFound != (unsigned int) -1)
if (fFound)
{
for (unsigned int i = 0; i < sizeof(hash)/4; i++)
((unsigned int*)&hash)[i] = ByteReverse(((unsigned int*)&hash)[i]);
if (hash <= hashTarget)
{
// Found a solution
pblock->nNonce = ByteReverse(nNonceFound);
pblock->nNonce = nNonce;
assert(hash == pblock->GetHash());
SetThreadPriority(THREAD_PRIORITY_NORMAL);
@ -626,7 +527,7 @@ void static BitcoinMiner(CWallet *pwallet) @@ -626,7 +527,7 @@ void static BitcoinMiner(CWallet *pwallet)
// Regtest mode doesn't require peers
if (vNodes.empty() && Params().MiningRequiresPeers())
break;
if (nBlockNonce >= 0xffff0000)
if (nNonce >= 0xffff0000)
break;
if (mempool.GetTransactionsUpdated() != nTransactionsUpdatedLast && GetTime() - nStart > 60)
break;
@ -635,11 +536,9 @@ void static BitcoinMiner(CWallet *pwallet) @@ -635,11 +536,9 @@ void static BitcoinMiner(CWallet *pwallet)
// Update nTime every few seconds
UpdateTime(*pblock, pindexPrev);
nBlockTime = ByteReverse(pblock->nTime);
if (Params().AllowMinDifficultyBlocks())
{
// Changing pblock->nTime can change work required on testnet:
nBlockBits = ByteReverse(pblock->nBits);
hashTarget.SetCompact(pblock->nBits);
}
}

4
src/miner.h

@ -23,12 +23,8 @@ CBlockTemplate* CreateNewBlock(const CScript& scriptPubKeyIn); @@ -23,12 +23,8 @@ CBlockTemplate* CreateNewBlock(const CScript& scriptPubKeyIn);
CBlockTemplate* CreateNewBlockWithKey(CReserveKey& reservekey);
/** Modify the extranonce in a block */
void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce);
/** Do mining precalculation */
void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1);
/** Check mined block */
bool CheckWork(CBlock* pblock, CWallet& wallet, CReserveKey& reservekey);
/** Base sha256 mining transform */
void SHA256Transform(void* pstate, void* pinput, const void* pinit);
extern double dHashesPerSec;
extern int64_t nHPSTimerStart;

159
src/rpcmining.cpp

@ -24,36 +24,6 @@ @@ -24,36 +24,6 @@
using namespace json_spirit;
using namespace std;
#ifdef ENABLE_WALLET
// Key used by getwork miners.
// Allocated in InitRPCMining, free'd in ShutdownRPCMining
static CReserveKey* pMiningKey = NULL;
void InitRPCMining()
{
if (!pwalletMain)
return;
// getwork/getblocktemplate mining rewards paid here:
pMiningKey = new CReserveKey(pwalletMain);
}
void ShutdownRPCMining()
{
if (!pMiningKey)
return;
delete pMiningKey; pMiningKey = NULL;
}
#else
void InitRPCMining()
{
}
void ShutdownRPCMining()
{
}
#endif
// Return average network hashes per second based on the last 'lookup' blocks,
// or from the last difficulty change if 'lookup' is nonpositive.
// If 'height' is nonnegative, compute the estimate at the time when a given block was found.
@ -131,9 +101,6 @@ Value getgenerate(const Array& params, bool fHelp) @@ -131,9 +101,6 @@ Value getgenerate(const Array& params, bool fHelp)
+ HelpExampleRpc("getgenerate", "")
);
if (!pMiningKey)
return false;
return GetBoolArg("-gen", false);
}
@ -279,132 +246,6 @@ Value getmininginfo(const Array& params, bool fHelp) @@ -279,132 +246,6 @@ Value getmininginfo(const Array& params, bool fHelp)
}
#ifdef ENABLE_WALLET
Value getwork(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 1)
throw runtime_error(
"getwork ( \"data\" )\n"
"\nIf 'data' is not specified, it returns the formatted hash data to work on.\n"
"If 'data' is specified, tries to solve the block and returns true if it was successful.\n"
"\nArguments:\n"
"1. \"data\" (string, optional) The hex encoded data to solve\n"
"\nResult (when 'data' is not specified):\n"
"{\n"
" \"midstate\" : \"xxxx\", (string) The precomputed hash state after hashing the first half of the data (DEPRECATED)\n" // deprecated
" \"data\" : \"xxxxx\", (string) The block data\n"
" \"hash1\" : \"xxxxx\", (string) The formatted hash buffer for second hash (DEPRECATED)\n" // deprecated
" \"target\" : \"xxxx\" (string) The little endian hash target\n"
"}\n"
"\nResult (when 'data' is specified):\n"
"true|false (boolean) If solving the block specified in the 'data' was successfull\n"
"\nExamples:\n"
+ HelpExampleCli("getwork", "")
+ HelpExampleRpc("getwork", "")
);
if (vNodes.empty())
throw JSONRPCError(RPC_CLIENT_NOT_CONNECTED, "Bitcoin is not connected!");
if (IsInitialBlockDownload())
throw JSONRPCError(RPC_CLIENT_IN_INITIAL_DOWNLOAD, "Bitcoin is downloading blocks...");
typedef map<uint256, pair<CBlock*, CScript> > mapNewBlock_t;
static mapNewBlock_t mapNewBlock; // FIXME: thread safety
static vector<CBlockTemplate*> vNewBlockTemplate;
if (params.size() == 0)
{
// Update block
static unsigned int nTransactionsUpdatedLast;
static CBlockIndex* pindexPrev;
static int64_t nStart;
static CBlockTemplate* pblocktemplate;
if (pindexPrev != chainActive.Tip() ||
(mempool.GetTransactionsUpdated() != nTransactionsUpdatedLast && GetTime() - nStart > 60))
{
if (pindexPrev != chainActive.Tip())
{
// Deallocate old blocks since they're obsolete now
mapNewBlock.clear();
BOOST_FOREACH(CBlockTemplate* pblocktemplate, vNewBlockTemplate)
delete pblocktemplate;
vNewBlockTemplate.clear();
}
// Clear pindexPrev so future getworks make a new block, despite any failures from here on
pindexPrev = NULL;
// Store the pindexBest used before CreateNewBlock, to avoid races
nTransactionsUpdatedLast = mempool.GetTransactionsUpdated();
CBlockIndex* pindexPrevNew = chainActive.Tip();
nStart = GetTime();
// Create new block
pblocktemplate = CreateNewBlockWithKey(*pMiningKey);
if (!pblocktemplate)
throw JSONRPCError(RPC_OUT_OF_MEMORY, "Out of memory");
vNewBlockTemplate.push_back(pblocktemplate);
// Need to update only after we know CreateNewBlock succeeded
pindexPrev = pindexPrevNew;
}
CBlock* pblock = &pblocktemplate->block; // pointer for convenience
// Update nTime
UpdateTime(*pblock, pindexPrev);
pblock->nNonce = 0;
// Update nExtraNonce
static unsigned int nExtraNonce = 0;
IncrementExtraNonce(pblock, pindexPrev, nExtraNonce);
// Save
mapNewBlock[pblock->hashMerkleRoot] = make_pair(pblock, pblock->vtx[0].vin[0].scriptSig);
// Pre-build hash buffers
char pmidstate[32];
char pdata[128];
char phash1[64];
FormatHashBuffers(pblock, pmidstate, pdata, phash1);
uint256 hashTarget = uint256().SetCompact(pblock->nBits);
Object result;
result.push_back(Pair("midstate", HexStr(BEGIN(pmidstate), END(pmidstate)))); // deprecated
result.push_back(Pair("data", HexStr(BEGIN(pdata), END(pdata))));
result.push_back(Pair("hash1", HexStr(BEGIN(phash1), END(phash1)))); // deprecated
result.push_back(Pair("target", HexStr(BEGIN(hashTarget), END(hashTarget))));
return result;
}
else
{
// Parse parameters
vector<unsigned char> vchData = ParseHex(params[0].get_str());
if (vchData.size() != 128)
throw JSONRPCError(RPC_INVALID_PARAMETER, "Invalid parameter");
CBlock* pdata = (CBlock*)&vchData[0];
// Byte reverse
for (int i = 0; i < 128/4; i++)
((unsigned int*)pdata)[i] = ByteReverse(((unsigned int*)pdata)[i]);
// Get saved block
if (!mapNewBlock.count(pdata->hashMerkleRoot))
return false;
CBlock* pblock = mapNewBlock[pdata->hashMerkleRoot].first;
pblock->nTime = pdata->nTime;
pblock->nNonce = pdata->nNonce;
pblock->vtx[0].vin[0].scriptSig = mapNewBlock[pdata->hashMerkleRoot].second;
pblock->hashMerkleRoot = pblock->BuildMerkleTree();
assert(pwalletMain != NULL);
return CheckWork(pblock, *pwalletMain, *pMiningKey);
}
}
#endif
Value getblocktemplate(const Array& params, bool fHelp)
{
if (fHelp || params.size() > 1)

3
src/rpcserver.cpp

@ -315,7 +315,6 @@ static const CRPCCommand vRPCCommands[] = @@ -315,7 +315,6 @@ static const CRPCCommand vRPCCommands[] =
/* Wallet-enabled mining */
{ "getgenerate", &getgenerate, true, false, false },
{ "gethashespersec", &gethashespersec, true, false, false },
{ "getwork", &getwork, true, false, true },
{ "setgenerate", &setgenerate, true, true, false },
#endif // ENABLE_WALLET
};
@ -772,7 +771,7 @@ void JSONRequest::parse(const Value& valRequest) @@ -772,7 +771,7 @@ void JSONRequest::parse(const Value& valRequest)
if (valMethod.type() != str_type)
throw JSONRPCError(RPC_INVALID_REQUEST, "Method must be a string");
strMethod = valMethod.get_str();
if (strMethod != "getwork" && strMethod != "getblocktemplate")
if (strMethod != "getblocktemplate")
LogPrint("rpc", "ThreadRPCServer method=%s\n", strMethod);
// Parse params

1
src/rpcserver.h

@ -130,7 +130,6 @@ extern json_spirit::Value setgenerate(const json_spirit::Array& params, bool fHe @@ -130,7 +130,6 @@ extern json_spirit::Value setgenerate(const json_spirit::Array& params, bool fHe
extern json_spirit::Value getnetworkhashps(const json_spirit::Array& params, bool fHelp);
extern json_spirit::Value gethashespersec(const json_spirit::Array& params, bool fHelp);
extern json_spirit::Value getmininginfo(const json_spirit::Array& params, bool fHelp);
extern json_spirit::Value getwork(const json_spirit::Array& params, bool fHelp);
extern json_spirit::Value getblocktemplate(const json_spirit::Array& params, bool fHelp);
extern json_spirit::Value submitblock(const json_spirit::Array& params, bool fHelp);
extern json_spirit::Value estimatefee(const json_spirit::Array& params, bool fHelp);

19
src/script.cpp

@ -9,6 +9,9 @@ @@ -9,6 +9,9 @@
#include "hash.h"
#include "key.h"
#include "keystore.h"
#include "crypto/sha1.h"
#include "crypto/sha2.h"
#include "crypto/ripemd160.h"
#include "sync.h"
#include "uint256.h"
#include "util.h"
@ -801,21 +804,15 @@ bool EvalScript(vector<vector<unsigned char> >& stack, const CScript& script, co @@ -801,21 +804,15 @@ bool EvalScript(vector<vector<unsigned char> >& stack, const CScript& script, co
valtype& vch = stacktop(-1);
valtype vchHash((opcode == OP_RIPEMD160 || opcode == OP_SHA1 || opcode == OP_HASH160) ? 20 : 32);
if (opcode == OP_RIPEMD160)
RIPEMD160(&vch[0], vch.size(), &vchHash[0]);
CRIPEMD160().Write(&vch[0], vch.size()).Finalize(&vchHash[0]);
else if (opcode == OP_SHA1)
SHA1(&vch[0], vch.size(), &vchHash[0]);
CSHA1().Write(&vch[0], vch.size()).Finalize(&vchHash[0]);
else if (opcode == OP_SHA256)
SHA256(&vch[0], vch.size(), &vchHash[0]);
CSHA256().Write(&vch[0], vch.size()).Finalize(&vchHash[0]);
else if (opcode == OP_HASH160)
{
uint160 hash160 = Hash160(vch);
memcpy(&vchHash[0], &hash160, sizeof(hash160));
}
CHash160().Write(&vch[0], vch.size()).Finalize(&vchHash[0]);
else if (opcode == OP_HASH256)
{
uint256 hash = Hash(vch.begin(), vch.end());
memcpy(&vchHash[0], &hash, sizeof(hash));
}
CHash256().Write(&vch[0], vch.size()).Finalize(&vchHash[0]);
popstack(stack);
stack.push_back(vchHash);
}

203
src/test/crypto_tests.cpp

@ -0,0 +1,203 @@ @@ -0,0 +1,203 @@
// Copyright (c) 2014 The Bitcoin Core developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "crypto/ripemd160.h"
#include "crypto/sha1.h"
#include "crypto/sha2.h"
#include "util.h"
#include <vector>
#include <boost/test/unit_test.hpp>
BOOST_AUTO_TEST_SUITE(crypto_tests)
template<typename Hasher, typename In, typename Out>
void TestVector(const Hasher &h, const In &in, const Out &out) {
Out hash;
BOOST_CHECK(out.size() == h.OUTPUT_SIZE);
hash.resize(out.size());
{
// Test that writing the whole input string at once works.
Hasher(h).Write((unsigned char*)&in[0], in.size()).Finalize(&hash[0]);
BOOST_CHECK(hash == out);
}
for (int i=0; i<32; i++) {
// Test that writing the string broken up in random pieces works.
Hasher hasher(h);
size_t pos = 0;
while (pos < in.size()) {
size_t len = insecure_rand() % ((in.size() - pos + 1) / 2 + 1);
hasher.Write((unsigned char*)&in[pos], len);
pos += len;
if (pos > 0 && pos + 2 * out.size() > in.size()) {
// Test that writing the rest at once to a copy of a hasher works.
Hasher(hasher).Write((unsigned char*)&in[pos], in.size() - pos).Finalize(&hash[0]);
BOOST_CHECK(hash == out);
}
}
hasher.Finalize(&hash[0]);
BOOST_CHECK(hash == out);
}
}
void TestSHA1(const std::string &in, const std::string &hexout) { TestVector(CSHA1(), in, ParseHex(hexout));}
void TestSHA256(const std::string &in, const std::string &hexout) { TestVector(CSHA256(), in, ParseHex(hexout));}
void TestSHA512(const std::string &in, const std::string &hexout) { TestVector(CSHA512(), in, ParseHex(hexout));}
void TestRIPEMD160(const std::string &in, const std::string &hexout) { TestVector(CRIPEMD160(), in, ParseHex(hexout));}
void TestHMACSHA512(const std::string &hexkey, const std::string &hexin, const std::string &hexout) {
std::vector<unsigned char> key = ParseHex(hexkey);
TestVector(CHMAC_SHA512(&key[0], key.size()), ParseHex(hexin), ParseHex(hexout));
}
std::string LongTestString(void) {
std::string ret;
for (int i=0; i<200000; i++) {
ret += (unsigned char)(i);
ret += (unsigned char)(i >> 4);
ret += (unsigned char)(i >> 8);
ret += (unsigned char)(i >> 12);
ret += (unsigned char)(i >> 16);
}
return ret;
}
const std::string test1 = LongTestString();
BOOST_AUTO_TEST_CASE(ripemd160_testvectors) {
TestRIPEMD160("", "9c1185a5c5e9fc54612808977ee8f548b2258d31");
TestRIPEMD160("abc", "8eb208f7e05d987a9b044a8e98c6b087f15a0bfc");
TestRIPEMD160("message digest", "5d0689ef49d2fae572b881b123a85ffa21595f36");
TestRIPEMD160("secure hash algorithm", "20397528223b6a5f4cbc2808aba0464e645544f9");
TestRIPEMD160("RIPEMD160 is considered to be safe", "a7d78608c7af8a8e728778e81576870734122b66");
TestRIPEMD160("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
"12a053384a9c0c88e405a06c27dcf49ada62eb2b");
TestRIPEMD160("For this sample, this 63-byte string will be used as input data",
"de90dbfee14b63fb5abf27c2ad4a82aaa5f27a11");
TestRIPEMD160("This is exactly 64 bytes long, not counting the terminating byte",
"eda31d51d3a623b81e19eb02e24ff65d27d67b37");
TestRIPEMD160(std::string(1000000, 'a'), "52783243c1697bdbe16d37f97f68f08325dc1528");
TestRIPEMD160(test1, "464243587bd146ea835cdf57bdae582f25ec45f1");
}
BOOST_AUTO_TEST_CASE(sha1_testvectors) {
TestSHA1("", "da39a3ee5e6b4b0d3255bfef95601890afd80709");
TestSHA1("abc", "a9993e364706816aba3e25717850c26c9cd0d89d");
TestSHA1("message digest", "c12252ceda8be8994d5fa0290a47231c1d16aae3");
TestSHA1("secure hash algorithm", "d4d6d2f0ebe317513bbd8d967d89bac5819c2f60");
TestSHA1("SHA1 is considered to be safe", "f2b6650569ad3a8720348dd6ea6c497dee3a842a");
TestSHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
"84983e441c3bd26ebaae4aa1f95129e5e54670f1");
TestSHA1("For this sample, this 63-byte string will be used as input data",
"4f0ea5cd0585a23d028abdc1a6684e5a8094dc49");
TestSHA1("This is exactly 64 bytes long, not counting the terminating byte",
"fb679f23e7d1ce053313e66e127ab1b444397057");
TestSHA1(std::string(1000000, 'a'), "34aa973cd4c4daa4f61eeb2bdbad27316534016f");
TestSHA1(test1, "b7755760681cbfd971451668f32af5774f4656b5");
}
BOOST_AUTO_TEST_CASE(sha256_testvectors) {
TestSHA256("", "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855");
TestSHA256("abc", "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad");
TestSHA256("message digest",
"f7846f55cf23e14eebeab5b4e1550cad5b509e3348fbc4efa3a1413d393cb650");
TestSHA256("secure hash algorithm",
"f30ceb2bb2829e79e4ca9753d35a8ecc00262d164cc077080295381cbd643f0d");
TestSHA256("SHA256 is considered to be safe",
"6819d915c73f4d1e77e4e1b52d1fa0f9cf9beaead3939f15874bd988e2a23630");
TestSHA256("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
"248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1");
TestSHA256("For this sample, this 63-byte string will be used as input data",
"f08a78cbbaee082b052ae0708f32fa1e50c5c421aa772ba5dbb406a2ea6be342");
TestSHA256("This is exactly 64 bytes long, not counting the terminating byte",
"ab64eff7e88e2e46165e29f2bce41826bd4c7b3552f6b382a9e7d3af47c245f8");
TestSHA256("As Bitcoin relies on 80 byte header hashes, we want to have an example for that.",
"7406e8de7d6e4fffc573daef05aefb8806e7790f55eab5576f31349743cca743");
TestSHA256(std::string(1000000, 'a'),
"cdc76e5c9914fb9281a1c7e284d73e67f1809a48a497200e046d39ccc7112cd0");
TestSHA256(test1, "a316d55510b49662420f49d145d42fb83f31ef8dc016aa4e32df049991a91e26");
}
BOOST_AUTO_TEST_CASE(sha512_testvectors) {
TestSHA512("",
"cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce"
"47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e");
TestSHA512("abc",
"ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
"2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f");
TestSHA512("message digest",
"107dbf389d9e9f71a3a95f6c055b9251bc5268c2be16d6c13492ea45b0199f33"
"09e16455ab1e96118e8a905d5597b72038ddb372a89826046de66687bb420e7c");
TestSHA512("secure hash algorithm",
"7746d91f3de30c68cec0dd693120a7e8b04d8073cb699bdce1a3f64127bca7a3"
"d5db502e814bb63c063a7a5043b2df87c61133395f4ad1edca7fcf4b30c3236e");
TestSHA512("SHA512 is considered to be safe",
"099e6468d889e1c79092a89ae925a9499b5408e01b66cb5b0a3bd0dfa51a9964"
"6b4a3901caab1318189f74cd8cf2e941829012f2449df52067d3dd5b978456c2");
TestSHA512("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
"204a8fc6dda82f0a0ced7beb8e08a41657c16ef468b228a8279be331a703c335"
"96fd15c13b1b07f9aa1d3bea57789ca031ad85c7a71dd70354ec631238ca3445");
TestSHA512("For this sample, this 63-byte string will be used as input data",
"b3de4afbc516d2478fe9b518d063bda6c8dd65fc38402dd81d1eb7364e72fb6e"
"6663cf6d2771c8f5a6da09601712fb3d2a36c6ffea3e28b0818b05b0a8660766");
TestSHA512("This is exactly 64 bytes long, not counting the terminating byte",
"70aefeaa0e7ac4f8fe17532d7185a289bee3b428d950c14fa8b713ca09814a38"
"7d245870e007a80ad97c369d193e41701aa07f3221d15f0e65a1ff970cedf030");
TestSHA512("abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno"
"ijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
"8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018"
"501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909");
TestSHA512(std::string(1000000, 'a'),
"e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa973eb"
"de0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217ad8cc09b");
TestSHA512(test1,
"40cac46c147e6131c5193dd5f34e9d8bb4951395f27b08c558c65ff4ba2de594"
"37de8c3ef5459d76a52cedc02dc499a3c9ed9dedbfb3281afd9653b8a112fafc");
}
BOOST_AUTO_TEST_CASE(hmac_sha512_testvectors) {
// test cases 1, 2, 3, 4, 6 and 7 of RFC 4231
TestHMACSHA512("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
"4869205468657265",
"87aa7cdea5ef619d4ff0b4241a1d6cb02379f4e2ce4ec2787ad0b30545e17cde"
"daa833b7d6b8a702038b274eaea3f4e4be9d914eeb61f1702e696c203a126854");
TestHMACSHA512("4a656665",
"7768617420646f2079612077616e7420666f72206e6f7468696e673f",
"164b7a7bfcf819e2e395fbe73b56e0a387bd64222e831fd610270cd7ea250554"
"9758bf75c05a994a6d034f65f8f0e6fdcaeab1a34d4a6b4b636e070a38bce737");
TestHMACSHA512("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
"dddddddddddddddddddddddddddddddddddd",
"fa73b0089d56a284efb0f0756c890be9b1b5dbdd8ee81a3655f83e33b2279d39"
"bf3e848279a722c806b485a47e67c807b946a337bee8942674278859e13292fb");
TestHMACSHA512("0102030405060708090a0b0c0d0e0f10111213141516171819",
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd"
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd",
"b0ba465637458c6990e5a8c5f61d4af7e576d97ff94b872de76f8050361ee3db"
"a91ca5c11aa25eb4d679275cc5788063a5f19741120c4f2de2adebeb10a298dd");
TestHMACSHA512("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaa",
"54657374205573696e67204c6172676572205468616e20426c6f636b2d53697a"
"65204b6579202d2048617368204b6579204669727374",
"80b24263c7c1a3ebb71493c1dd7be8b49b46d1f41b4aeec1121b013783f8f352"
"6b56d037e05f2598bd0fd2215d6a1e5295e64f73f63f0aec8b915a985d786598");
TestHMACSHA512("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaa",
"5468697320697320612074657374207573696e672061206c6172676572207468"
"616e20626c6f636b2d73697a65206b657920616e642061206c61726765722074"
"68616e20626c6f636b2d73697a6520646174612e20546865206b6579206e6565"
"647320746f20626520686173686564206265666f7265206265696e6720757365"
"642062792074686520484d414320616c676f726974686d2e",
"e37b6a775dc87dbaa4dfa9f96e5e3ffddebd71f8867289865df5a32d20cdc944"
"b6022cac3c4982b10d5eeb55c3e4de15134676fb6de0446065c97440fa8c6a58");
}
BOOST_AUTO_TEST_SUITE_END()

129
src/test/hmac_tests.cpp

@ -1,129 +0,0 @@ @@ -1,129 +0,0 @@
// Copyright (c) 2013 The Bitcoin Core developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "hash.h"
#include "util.h"
#include <boost/test/unit_test.hpp>
using namespace std;
BOOST_AUTO_TEST_SUITE(hmac_tests)
typedef struct {
const char *pszKey;
const char *pszData;
const char *pszMAC;
} testvec_t;
// test cases 1, 2, 3, 4, 6 and 7 of RFC 4231
static const testvec_t vtest[] = {
{
"0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b"
"0b0b0b0b",
"4869205468657265",
"87aa7cdea5ef619d4ff0b4241a1d6cb0"
"2379f4e2ce4ec2787ad0b30545e17cde"
"daa833b7d6b8a702038b274eaea3f4e4"
"be9d914eeb61f1702e696c203a126854"
},
{
"4a656665",
"7768617420646f2079612077616e7420"
"666f72206e6f7468696e673f",
"164b7a7bfcf819e2e395fbe73b56e0a3"
"87bd64222e831fd610270cd7ea250554"
"9758bf75c05a994a6d034f65f8f0e6fd"
"caeab1a34d4a6b4b636e070a38bce737"
},
{
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaa",
"dddddddddddddddddddddddddddddddd"
"dddddddddddddddddddddddddddddddd"
"dddddddddddddddddddddddddddddddd"
"dddd",
"fa73b0089d56a284efb0f0756c890be9"
"b1b5dbdd8ee81a3655f83e33b2279d39"
"bf3e848279a722c806b485a47e67c807"
"b946a337bee8942674278859e13292fb"
},
{
"0102030405060708090a0b0c0d0e0f10"
"111213141516171819",
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd"
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd"
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd"
"cdcd",
"b0ba465637458c6990e5a8c5f61d4af7"
"e576d97ff94b872de76f8050361ee3db"
"a91ca5c11aa25eb4d679275cc5788063"
"a5f19741120c4f2de2adebeb10a298dd"
},
{
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaa",
"54657374205573696e67204c61726765"
"72205468616e20426c6f636b2d53697a"
"65204b6579202d2048617368204b6579"
"204669727374",
"80b24263c7c1a3ebb71493c1dd7be8b4"
"9b46d1f41b4aeec1121b013783f8f352"
"6b56d037e05f2598bd0fd2215d6a1e52"
"95e64f73f63f0aec8b915a985d786598"
},
{
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaa",
"54686973206973206120746573742075"
"73696e672061206c6172676572207468"
"616e20626c6f636b2d73697a65206b65"
"7920616e642061206c61726765722074"
"68616e20626c6f636b2d73697a652064"
"6174612e20546865206b6579206e6565"
"647320746f2062652068617368656420"
"6265666f7265206265696e6720757365"
"642062792074686520484d414320616c"
"676f726974686d2e",
"e37b6a775dc87dbaa4dfa9f96e5e3ffd"
"debd71f8867289865df5a32d20cdc944"
"b6022cac3c4982b10d5eeb55c3e4de15"
"134676fb6de0446065c97440fa8c6a58"
}
};
BOOST_AUTO_TEST_CASE(hmacsha512_testvectors)
{
for (unsigned int n=0; n<sizeof(vtest)/sizeof(vtest[0]); n++)
{
vector<unsigned char> vchKey = ParseHex(vtest[n].pszKey);
vector<unsigned char> vchData = ParseHex(vtest[n].pszData);
vector<unsigned char> vchMAC = ParseHex(vtest[n].pszMAC);
unsigned char vchTemp[64];
HMAC_SHA512_CTX ctx;
HMAC_SHA512_Init(&ctx, &vchKey[0], vchKey.size());
HMAC_SHA512_Update(&ctx, &vchData[0], vchData.size());
HMAC_SHA512_Final(&vchTemp[0], &ctx);
BOOST_CHECK(memcmp(&vchTemp[0], &vchMAC[0], 64) == 0);
}
}
BOOST_AUTO_TEST_SUITE_END()

28
src/test/miner_tests.cpp

@ -9,8 +9,6 @@ @@ -9,8 +9,6 @@
#include <boost/test/unit_test.hpp>
extern void SHA256Transform(void* pstate, void* pinput, const void* pinit);
BOOST_AUTO_TEST_SUITE(miner_tests)
static
@ -259,30 +257,4 @@ BOOST_AUTO_TEST_CASE(CreateNewBlock_validity) @@ -259,30 +257,4 @@ BOOST_AUTO_TEST_CASE(CreateNewBlock_validity)
}
BOOST_AUTO_TEST_CASE(sha256transform_equality)
{
unsigned int pSHA256InitState[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
// unsigned char pstate[32];
unsigned char pinput[64];
int i;
for (i = 0; i < 32; i++) {
pinput[i] = i;
pinput[i+32] = 0;
}
uint256 hash;
SHA256Transform(&hash, pinput, pSHA256InitState);
BOOST_TEST_MESSAGE(hash.GetHex());
uint256 hash_reference("0x2df5e1c65ef9f8cde240d23cae2ec036d31a15ec64bc68f64be242b1da6631f3");
BOOST_CHECK(hash == hash_reference);
}
BOOST_AUTO_TEST_SUITE_END()

Loading…
Cancel
Save