Browse Source

Merge #9107: Safer modify new coins

b50cd7a Fix dangerous condition in ModifyNewCoins. (Alex Morcos)
0.14
Pieter Wuille 8 years ago
parent
commit
7dac1e5e9e
No known key found for this signature in database
GPG Key ID: DBA1A67379A1A931
  1. 37
      src/coins.cpp
  2. 5
      src/coins.h
  3. 187
      src/test/coins_tests.cpp
  4. 2
      src/validation.cpp

37
src/coins.cpp

@ -117,17 +117,37 @@ CCoinsModifier CCoinsViewCache::ModifyCoins(const uint256 &txid) { @@ -117,17 +117,37 @@ CCoinsModifier CCoinsViewCache::ModifyCoins(const uint256 &txid) {
return CCoinsModifier(*this, ret.first, cachedCoinUsage);
}
// ModifyNewCoins has to know whether the new outputs its creating are for a
// coinbase or not. If they are for a coinbase, it can not mark them as fresh.
// This is to ensure that the historical duplicate coinbases before BIP30 was
// in effect will still be properly overwritten when spent.
/* ModifyNewCoins allows for faster coin modification when creating the new
* outputs from a transaction. It assumes that BIP 30 (no duplicate txids)
* applies and has already been tested for (or the test is not required due to
* BIP 34, height in coinbase). If we can assume BIP 30 then we know that any
* non-coinbase transaction we are adding to the UTXO must not already exist in
* the utxo unless it is fully spent. Thus we can check only if it exists DIRTY
* at the current level of the cache, in which case it is not safe to mark it
* FRESH (b/c then its spentness still needs to flushed). If it's not dirty and
* doesn't exist or is pruned in the current cache, we know it either doesn't
* exist or is pruned in parent caches, which is the definition of FRESH. The
* exception to this is the two historical violations of BIP 30 in the chain,
* both of which were coinbases. We do not mark these fresh so we we can ensure
* that they will still be properly overwritten when spent.
*/
CCoinsModifier CCoinsViewCache::ModifyNewCoins(const uint256 &txid, bool coinbase) {
assert(!hasModifier);
std::pair<CCoinsMap::iterator, bool> ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry()));
ret.first->second.coins.Clear();
if (!coinbase) {
ret.first->second.flags = CCoinsCacheEntry::FRESH;
// New coins must not already exist.
if (!ret.first->second.coins.IsPruned())
throw std::logic_error("ModifyNewCoins should not find pre-existing coins on a non-coinbase unless they are pruned!");
if (!(ret.first->second.flags & CCoinsCacheEntry::DIRTY)) {
// If the coin is known to be pruned (have no unspent outputs) in
// the current view and the cache entry is not dirty, we know the
// coin also must be pruned in the parent view as well, so it is safe
// to mark this fresh.
ret.first->second.flags |= CCoinsCacheEntry::FRESH;
}
}
ret.first->second.coins.Clear();
ret.first->second.flags |= CCoinsCacheEntry::DIRTY;
return CCoinsModifier(*this, ret.first, 0);
}
@ -200,6 +220,11 @@ bool CCoinsViewCache::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlockIn @@ -200,6 +220,11 @@ bool CCoinsViewCache::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlockIn
itUs->second.coins.swap(it->second.coins);
cachedCoinsUsage += itUs->second.coins.DynamicMemoryUsage();
itUs->second.flags |= CCoinsCacheEntry::DIRTY;
// NOTE: It is possible the child has a FRESH flag here in
// the event the entry we found in the parent is pruned. But
// we must not copy that FRESH flag to the parent as that
// pruned state likely still needs to be communicated to the
// grandparent.
}
}
}

5
src/coins.h

@ -269,6 +269,11 @@ struct CCoinsCacheEntry @@ -269,6 +269,11 @@ struct CCoinsCacheEntry
enum Flags {
DIRTY = (1 << 0), // This cache entry is potentially different from the version in the parent view.
FRESH = (1 << 1), // The parent view does not have this entry (or it is pruned).
/* Note that FRESH is a performance optimization with which we can
* erase coins that are fully spent if we know we do not need to
* flush the changes to the parent cache. It is always safe to
* not mark FRESH if that condition is not guaranteed.
*/
};
CCoinsCacheEntry() : coins(), flags(0) {}

187
src/test/coins_tests.cpp

@ -5,6 +5,7 @@ @@ -5,6 +5,7 @@
#include "coins.h"
#include "script/standard.h"
#include "uint256.h"
#include "undo.h"
#include "utilstrencodings.h"
#include "test/test_bitcoin.h"
#include "test/test_random.h"
@ -16,6 +17,9 @@ @@ -16,6 +17,9 @@
#include <boost/test/unit_test.hpp>
bool ApplyTxInUndo(const CTxInUndo& undo, CCoinsViewCache& view, const COutPoint& out);
void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, CTxUndo &txundo, int nHeight);
namespace
{
class CCoinsViewTest : public CCoinsView
@ -213,6 +217,22 @@ BOOST_AUTO_TEST_CASE(coins_cache_simulation_test) @@ -213,6 +217,22 @@ BOOST_AUTO_TEST_CASE(coins_cache_simulation_test)
BOOST_CHECK(missed_an_entry);
}
typedef std::tuple<CTransaction,CTxUndo,CCoins> TxData;
// Store of all necessary tx and undo data for next test
std::map<uint256, TxData> alltxs;
TxData &FindRandomFrom(const std::set<uint256> &txidset) {
assert(txidset.size());
std::set<uint256>::iterator txIt = txidset.lower_bound(GetRandHash());
if (txIt == txidset.end()) {
txIt = txidset.begin();
}
std::map<uint256, TxData>::iterator txdit = alltxs.find(*txIt);
assert(txdit != alltxs.end());
return txdit->second;
}
// This test is similar to the previous test
// except the emphasis is on testing the functionality of UpdateCoins
// random txs are created and UpdateCoins is used to update the cache stack
@ -229,77 +249,139 @@ BOOST_AUTO_TEST_CASE(updatecoins_simulation_test) @@ -229,77 +249,139 @@ BOOST_AUTO_TEST_CASE(updatecoins_simulation_test)
std::vector<CCoinsViewCacheTest*> stack; // A stack of CCoinsViewCaches on top.
stack.push_back(new CCoinsViewCacheTest(&base)); // Start with one cache.
// Track the txids we've used and whether they have been spent or not
std::map<uint256, CAmount> coinbaseids;
std::set<uint256> alltxids;
// Track the txids we've used in various sets
std::set<uint256> coinbaseids;
std::set<uint256> disconnectedids;
std::set<uint256> duplicateids;
std::set<uint256> utxoset;
for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
{
uint32_t randiter = insecure_rand();
// 19/20 txs add a new transaction
if (randiter % 20 < 19) {
CMutableTransaction tx;
tx.vin.resize(1);
tx.vout.resize(1);
tx.vout[0].nValue = i; //Keep txs unique unless intended to duplicate
unsigned int height = insecure_rand();
CCoins oldcoins;
// 1/10 times create a coinbase
if (insecure_rand() % 10 == 0 || coinbaseids.size() < 10) {
// 1/100 times create a duplicate coinbase
// 2/20 times create a new coinbase
if (randiter % 20 < 2 || coinbaseids.size() < 10) {
// 1/10 of those times create a duplicate coinbase
if (insecure_rand() % 10 == 0 && coinbaseids.size()) {
std::map<uint256, CAmount>::iterator coinbaseIt = coinbaseids.lower_bound(GetRandHash());
if (coinbaseIt == coinbaseids.end()) {
coinbaseIt = coinbaseids.begin();
}
//Use same random value to have same hash and be a true duplicate
tx.vout[0].nValue = coinbaseIt->second;
assert(tx.GetHash() == coinbaseIt->first);
duplicateids.insert(coinbaseIt->first);
TxData &txd = FindRandomFrom(coinbaseids);
// Reuse the exact same coinbase
tx = std::get<0>(txd);
// shouldn't be available for reconnection if its been duplicated
disconnectedids.erase(tx.GetHash());
duplicateids.insert(tx.GetHash());
}
else {
coinbaseids[tx.GetHash()] = tx.vout[0].nValue;
coinbaseids.insert(tx.GetHash());
}
assert(CTransaction(tx).IsCoinBase());
}
// 9/10 times create a regular tx
// 17/20 times reconnect previous or add a regular tx
else {
uint256 prevouthash;
// equally likely to spend coinbase or non coinbase
std::set<uint256>::iterator txIt = alltxids.lower_bound(GetRandHash());
if (txIt == alltxids.end()) {
txIt = alltxids.begin();
// 1/20 times reconnect a previously disconnected tx
if (randiter % 20 == 2 && disconnectedids.size()) {
TxData &txd = FindRandomFrom(disconnectedids);
tx = std::get<0>(txd);
prevouthash = tx.vin[0].prevout.hash;
if (!CTransaction(tx).IsCoinBase() && !utxoset.count(prevouthash)) {
disconnectedids.erase(tx.GetHash());
continue;
}
// If this tx is already IN the UTXO, then it must be a coinbase, and it must be a duplicate
if (utxoset.count(tx.GetHash())) {
assert(CTransaction(tx).IsCoinBase());
assert(duplicateids.count(tx.GetHash()));
}
prevouthash = *txIt;
disconnectedids.erase(tx.GetHash());
}
// 16/20 times create a regular tx
else {
TxData &txd = FindRandomFrom(utxoset);
prevouthash = std::get<0>(txd).GetHash();
// Construct the tx to spend the coins of prevouthash
tx.vin[0].prevout.hash = prevouthash;
tx.vin[0].prevout.n = 0;
assert(!CTransaction(tx).IsCoinBase());
}
// In this simple test coins only have two states, spent or unspent, save the unspent state to restore
oldcoins = result[prevouthash];
// Update the expected result of prevouthash to know these coins are spent
CCoins& oldcoins = result[prevouthash];
oldcoins.Clear();
result[prevouthash].Clear();
// It is of particular importance here that once we spend a coinbase tx hash
// it is no longer available to be duplicated (or spent again)
// BIP 34 in conjunction with enforcing BIP 30 (at least until BIP 34 was active)
// results in the fact that no coinbases were duplicated after they were already spent
alltxids.erase(prevouthash);
coinbaseids.erase(prevouthash);
utxoset.erase(prevouthash);
// The test is designed to ensure spending a duplicate coinbase will work properly
// if that ever happens and not resurrect the previously overwritten coinbase
if (duplicateids.count(prevouthash))
spent_a_duplicate_coinbase = true;
assert(!CTransaction(tx).IsCoinBase());
}
// Track this tx to possibly spend later
alltxids.insert(tx.GetHash());
// Update the expected result to know about the new output coins
CCoins &coins = result[tx.GetHash()];
coins.FromTx(tx, height);
result[tx.GetHash()].FromTx(tx, height);
// Call UpdateCoins on the top cache
CTxUndo undo;
UpdateCoins(tx, *(stack.back()), undo, height);
// Update the utxo set for future spends
utxoset.insert(tx.GetHash());
// Track this tx and undo info to use later
alltxs.insert(std::make_pair(tx.GetHash(),std::make_tuple(tx,undo,oldcoins)));
}
UpdateCoins(tx, *(stack.back()), height);
//1/20 times undo a previous transaction
else if (utxoset.size()) {
TxData &txd = FindRandomFrom(utxoset);
CTransaction &tx = std::get<0>(txd);
CTxUndo &undo = std::get<1>(txd);
CCoins &origcoins = std::get<2>(txd);
uint256 undohash = tx.GetHash();
// Update the expected result
// Remove new outputs
result[undohash].Clear();
// If not coinbase restore prevout
if (!tx.IsCoinBase()) {
result[tx.vin[0].prevout.hash] = origcoins;
}
// Disconnect the tx from the current UTXO
// See code in DisconnectBlock
// remove outputs
{
CCoinsModifier outs = stack.back()->ModifyCoins(undohash);
outs->Clear();
}
// restore inputs
if (!tx.IsCoinBase()) {
const COutPoint &out = tx.vin[0].prevout;
const CTxInUndo &undoin = undo.vprevout[0];
ApplyTxInUndo(undoin, *(stack.back()), out);
}
// Store as a candidate for reconnection
disconnectedids.insert(undohash);
// Update the utxoset
utxoset.erase(undohash);
if (!tx.IsCoinBase())
utxoset.insert(tx.vin[0].prevout.hash);
}
// Once every 1000 iterations and at the end, verify the full cache.
@ -420,6 +502,7 @@ BOOST_AUTO_TEST_CASE(ccoins_serialization) @@ -420,6 +502,7 @@ BOOST_AUTO_TEST_CASE(ccoins_serialization)
const static uint256 TXID;
const static CAmount PRUNED = -1;
const static CAmount ABSENT = -2;
const static CAmount FAIL = -3;
const static CAmount VALUE1 = 100;
const static CAmount VALUE2 = 200;
const static CAmount VALUE3 = 300;
@ -630,11 +713,17 @@ BOOST_AUTO_TEST_CASE(ccoins_modify) @@ -630,11 +713,17 @@ BOOST_AUTO_TEST_CASE(ccoins_modify)
void CheckModifyNewCoinsBase(CAmount base_value, CAmount cache_value, CAmount modify_value, CAmount expected_value, char cache_flags, char expected_flags, bool coinbase)
{
SingleEntryCacheTest test(base_value, cache_value, cache_flags);
SetCoinsValue(modify_value, *test.cache.ModifyNewCoins(TXID, coinbase));
CAmount result_value;
char result_flags;
try {
SetCoinsValue(modify_value, *test.cache.ModifyNewCoins(TXID, coinbase));
GetCoinsMapEntry(test.cache.map(), result_value, result_flags);
} catch (std::logic_error& e) {
result_value = FAIL;
result_flags = NO_ENTRY;
}
BOOST_CHECK_EQUAL(result_value, expected_value);
BOOST_CHECK_EQUAL(result_flags, expected_flags);
}
@ -669,7 +758,7 @@ BOOST_AUTO_TEST_CASE(ccoins_modify_new) @@ -669,7 +758,7 @@ BOOST_AUTO_TEST_CASE(ccoins_modify_new)
CheckModifyNewCoins(PRUNED, PRUNED, PRUNED, 0 , DIRTY , true );
CheckModifyNewCoins(PRUNED, PRUNED, ABSENT, FRESH , NO_ENTRY , false);
CheckModifyNewCoins(PRUNED, PRUNED, ABSENT, FRESH , NO_ENTRY , true );
CheckModifyNewCoins(PRUNED, PRUNED, ABSENT, DIRTY , NO_ENTRY , false);
CheckModifyNewCoins(PRUNED, PRUNED, PRUNED, DIRTY , DIRTY , false);
CheckModifyNewCoins(PRUNED, PRUNED, PRUNED, DIRTY , DIRTY , true );
CheckModifyNewCoins(PRUNED, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY , false);
CheckModifyNewCoins(PRUNED, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY , true );
@ -677,25 +766,25 @@ BOOST_AUTO_TEST_CASE(ccoins_modify_new) @@ -677,25 +766,25 @@ BOOST_AUTO_TEST_CASE(ccoins_modify_new)
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, 0 , DIRTY , true );
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, FRESH , DIRTY|FRESH, false);
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, FRESH , DIRTY|FRESH, true );
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, DIRTY , DIRTY|FRESH, false);
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, DIRTY , DIRTY , false);
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, DIRTY , DIRTY , true );
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH, false);
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH, true );
CheckModifyNewCoins(VALUE2, PRUNED, ABSENT, 0 , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, FAIL , 0 , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, PRUNED, 0 , DIRTY , true );
CheckModifyNewCoins(VALUE2, PRUNED, ABSENT, FRESH , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, FAIL , FRESH , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, ABSENT, FRESH , NO_ENTRY , true );
CheckModifyNewCoins(VALUE2, PRUNED, ABSENT, DIRTY , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, FAIL , DIRTY , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, PRUNED, DIRTY , DIRTY , true );
CheckModifyNewCoins(VALUE2, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, FAIL , DIRTY|FRESH, NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY , true );
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, 0 , DIRTY|FRESH, false);
CheckModifyNewCoins(VALUE2, VALUE3, FAIL , 0 , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, 0 , DIRTY , true );
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, FRESH , DIRTY|FRESH, false);
CheckModifyNewCoins(VALUE2, VALUE3, FAIL , FRESH , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, FRESH , DIRTY|FRESH, true );
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, DIRTY , DIRTY|FRESH, false);
CheckModifyNewCoins(VALUE2, VALUE3, FAIL , DIRTY , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, DIRTY , DIRTY , true );
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH, false);
CheckModifyNewCoins(VALUE2, VALUE3, FAIL , DIRTY|FRESH, NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH, true );
}

2
src/validation.cpp

@ -1499,7 +1499,7 @@ bool AbortNode(CValidationState& state, const std::string& strMessage, const std @@ -1499,7 +1499,7 @@ bool AbortNode(CValidationState& state, const std::string& strMessage, const std
* @param out The out point that corresponds to the tx input.
* @return True on success.
*/
static bool ApplyTxInUndo(const CTxInUndo& undo, CCoinsViewCache& view, const COutPoint& out)
bool ApplyTxInUndo(const CTxInUndo& undo, CCoinsViewCache& view, const COutPoint& out)
{
bool fClean = true;

Loading…
Cancel
Save