Browse Source

Update key.cpp to new secp256k1 API

0.13
Pieter Wuille 9 years ago
parent
commit
48edf5746a
  1. 2
      configure.ac
  2. 155
      src/key.cpp

2
configure.ac

@ -958,7 +958,7 @@ PKGCONFIG_LIBDIR_TEMP="$PKG_CONFIG_LIBDIR" @@ -958,7 +958,7 @@ PKGCONFIG_LIBDIR_TEMP="$PKG_CONFIG_LIBDIR"
unset PKG_CONFIG_LIBDIR
PKG_CONFIG_LIBDIR="$PKGCONFIG_LIBDIR_TEMP"
ac_configure_args="${ac_configure_args} --disable-shared --with-pic --with-bignum=no"
ac_configure_args="${ac_configure_args} --disable-shared --with-pic --with-bignum=no --enable-module-recovery"
AC_CONFIG_SUBDIRS([src/secp256k1 src/univalue])
AC_OUTPUT

155
src/key.cpp

@ -7,17 +7,120 @@ @@ -7,17 +7,120 @@
#include "arith_uint256.h"
#include "crypto/common.h"
#include "crypto/hmac_sha512.h"
#include "eccryptoverify.h"
#include "pubkey.h"
#include "random.h"
#include <secp256k1.h>
#include "ecwrapper.h"
#include <secp256k1_recovery.h>
static secp256k1_context_t* secp256k1_context = NULL;
static secp256k1_context* secp256k1_context_sign = NULL;
/** These functions are taken from the libsecp256k1 distribution and are very ugly. */
static int ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) {
const unsigned char *end = privkey + privkeylen;
int lenb = 0;
int len = 0;
memset(out32, 0, 32);
/* sequence header */
if (end < privkey+1 || *privkey != 0x30) {
return 0;
}
privkey++;
/* sequence length constructor */
if (end < privkey+1 || !(*privkey & 0x80)) {
return 0;
}
lenb = *privkey & ~0x80; privkey++;
if (lenb < 1 || lenb > 2) {
return 0;
}
if (end < privkey+lenb) {
return 0;
}
/* sequence length */
len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0);
privkey += lenb;
if (end < privkey+len) {
return 0;
}
/* sequence element 0: version number (=1) */
if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) {
return 0;
}
privkey += 3;
/* sequence element 1: octet string, up to 32 bytes */
if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) {
return 0;
}
memcpy(out32 + 32 - privkey[1], privkey + 2, privkey[1]);
if (!secp256k1_ec_seckey_verify(ctx, out32)) {
memset(out32, 0, 32);
return 0;
}
return 1;
}
static int ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) {
secp256k1_pubkey pubkey;
size_t pubkeylen = 0;
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
*privkeylen = 0;
return 0;
}
if (compressed) {
static const unsigned char begin[] = {
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = 33;
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
ptr += pubkeylen;
*privkeylen = ptr - privkey;
} else {
static const unsigned char begin[] = {
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = 65;
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
ptr += pubkeylen;
*privkeylen = ptr - privkey;
}
return 1;
}
bool CKey::Check(const unsigned char *vch) {
return eccrypto::Check(vch);
return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch);
}
void CKey::MakeNewKey(bool fCompressedIn) {
@ -30,7 +133,7 @@ void CKey::MakeNewKey(bool fCompressedIn) { @@ -30,7 +133,7 @@ void CKey::MakeNewKey(bool fCompressedIn) {
}
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
if (!secp256k1_ec_privkey_import(secp256k1_context, (unsigned char*)begin(), &privkey[0], privkey.size()))
if (!ec_privkey_import_der(secp256k1_context_sign, (unsigned char*)begin(), &privkey[0], privkey.size()))
return false;
fCompressed = fCompressedIn;
fValid = true;
@ -40,10 +143,11 @@ bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) { @@ -40,10 +143,11 @@ bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
CPrivKey CKey::GetPrivKey() const {
assert(fValid);
CPrivKey privkey;
int privkeylen, ret;
int ret;
size_t privkeylen;
privkey.resize(279);
privkeylen = 279;
ret = secp256k1_ec_privkey_export(secp256k1_context, begin(), (unsigned char*)&privkey[0], &privkeylen, fCompressed);
ret = ec_privkey_export_der(secp256k1_context_sign, (unsigned char*)&privkey[0], &privkeylen, begin(), fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
assert(ret);
privkey.resize(privkeylen);
return privkey;
@ -51,11 +155,13 @@ CPrivKey CKey::GetPrivKey() const { @@ -51,11 +155,13 @@ CPrivKey CKey::GetPrivKey() const {
CPubKey CKey::GetPubKey() const {
assert(fValid);
secp256k1_pubkey pubkey;
size_t clen = 65;
CPubKey result;
int clen = 65;
int ret = secp256k1_ec_pubkey_create(secp256k1_context, (unsigned char*)result.begin(), &clen, begin(), fCompressed);
assert((int)result.size() == clen);
int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin());
assert(ret);
secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
assert(result.size() == clen);
assert(result.IsValid());
return result;
}
@ -64,11 +170,13 @@ bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, uint32_ @@ -64,11 +170,13 @@ bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, uint32_
if (!fValid)
return false;
vchSig.resize(72);
int nSigLen = 72;
size_t nSigLen = 72;
unsigned char extra_entropy[32] = {0};
WriteLE32(extra_entropy, test_case);
int ret = secp256k1_ecdsa_sign(secp256k1_context, hash.begin(), (unsigned char*)&vchSig[0], &nSigLen, begin(), secp256k1_nonce_function_rfc6979, test_case ? extra_entropy : NULL);
secp256k1_ecdsa_signature sig;
int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, test_case ? extra_entropy : NULL);
assert(ret);
secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, (unsigned char*)&vchSig[0], &nSigLen, &sig);
vchSig.resize(nSigLen);
return true;
}
@ -92,7 +200,10 @@ bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) @@ -92,7 +200,10 @@ bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig)
return false;
vchSig.resize(65);
int rec = -1;
int ret = secp256k1_ecdsa_sign_compact(secp256k1_context, hash.begin(), &vchSig[1], begin(), secp256k1_nonce_function_rfc6979, NULL, &rec);
secp256k1_ecdsa_recoverable_signature sig;
int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, NULL);
assert(ret);
secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, (unsigned char*)&vchSig[1], &rec, &sig);
assert(ret);
assert(rec != -1);
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
@ -100,7 +211,7 @@ bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) @@ -100,7 +211,7 @@ bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig)
}
bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) {
if (!secp256k1_ec_privkey_import(secp256k1_context, (unsigned char*)begin(), &privkey[0], privkey.size()))
if (!ec_privkey_import_der(secp256k1_context_sign, (unsigned char*)begin(), &privkey[0], privkey.size()))
return false;
fCompressed = vchPubKey.IsCompressed();
fValid = true;
@ -126,7 +237,7 @@ bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const @@ -126,7 +237,7 @@ bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const
}
memcpy(ccChild.begin(), out+32, 32);
memcpy((unsigned char*)keyChild.begin(), begin(), 32);
bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context, (unsigned char*)keyChild.begin(), out);
bool ret = secp256k1_ec_privkey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), out);
UnlockObject(out);
keyChild.fCompressed = true;
keyChild.fValid = ret;
@ -184,20 +295,16 @@ void CExtKey::Decode(const unsigned char code[74]) { @@ -184,20 +295,16 @@ void CExtKey::Decode(const unsigned char code[74]) {
}
bool ECC_InitSanityCheck() {
if (!CECKey::SanityCheck()) {
return false;
}
CKey key;
key.MakeNewKey(true);
CPubKey pubkey = key.GetPubKey();
return key.VerifyPubKey(pubkey);
}
void ECC_Start() {
assert(secp256k1_context == NULL);
assert(secp256k1_context_sign == NULL);
secp256k1_context_t *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
assert(ctx != NULL);
{
@ -210,12 +317,12 @@ void ECC_Start() { @@ -210,12 +317,12 @@ void ECC_Start() {
UnlockObject(seed);
}
secp256k1_context = ctx;
secp256k1_context_sign = ctx;
}
void ECC_Stop() {
secp256k1_context_t *ctx = secp256k1_context;
secp256k1_context = NULL;
secp256k1_context *ctx = secp256k1_context_sign;
secp256k1_context_sign = NULL;
if (ctx) {
secp256k1_context_destroy(ctx);

Loading…
Cancel
Save