Upgraded to Cryptonight V8.

This commit is contained in:
Jianping Wu 2018-11-15 11:51:05 -08:00
parent b363a8d80e
commit 348513dda6
4 changed files with 432 additions and 70 deletions

View File

@ -122,30 +122,27 @@ public:
pchMessageStart[3] = 0x9a;
nDefaultPort = 9333;
nPruneAfterHeight = 100000;
genesis = CreateGenesisBlock(1542309299, 14580, 0x1f0ffff0, 1, 50 * COIN);
// JWU change the timestamp!
genesis = CreateGenesisBlock(1541534427, 7307, 0x1f0ffff0, 1, 50 * COIN); // Cryptonight
//genesis = CreateGenesisBlock(1317972665, 176784, 0x1e0ffff0, 1, 50 * COIN); // Scrypt
//JW remove the following code!
#if 0
arith_uint256 hashTarget = arith_uint256().SetCompact(genesis.nBits);
uint256 hashGenesisBlock = uint256S("0x01");
if (false && genesis.GetHash() != hashGenesisBlock) {
if (genesis.GetHash() != hashGenesisBlock) {
printf("recalculating params for mainnet.\n");
printf("old mainnet genesis nonce: %d\n", genesis.nNonce);
printf("old mainnet genesis hash: %s\n", hashGenesisBlock.ToString().c_str());
// deliberately empty for loop finds nonce value.
for(genesis.nNonce = 1000; hashTarget < UintToArith256(genesis.GetPoWHash()); genesis.nNonce++) {
printf("JWU nNonce: %d\n\n", genesis.nNonce);
for(genesis.nNonce = 500; hashTarget < UintToArith256(genesis.GetPoWHash()); genesis.nNonce++) {
printf("nNonce: %d\n\n", genesis.nNonce);
}
printf("new mainnet genesis merkle root: %s\n", genesis.hashMerkleRoot.ToString().c_str());
printf("new mainnet genesis nonce: %d\n", genesis.nNonce);
printf("new mainnet genesis hash: %s\n", genesis.GetHash().ToString().c_str());
}
#endif
consensus.hashGenesisBlock = genesis.GetHash();
assert(consensus.hashGenesisBlock == uint256S("0x581cc1e4153a2a367012d3678f0f83f7d62286d84e69ab860804acf3ff2f572b")); //Cryptonight
//assert(consensus.hashGenesisBlock == uint256S("0xd7a681608b8fc3bd6d85110317357920291e1c6a4fdf6ee38e5d04c49b878c33")); // Scrypt
assert(consensus.hashGenesisBlock == uint256S("0xff628438a3818f53874f6b3d125a39edac0ee2557a1d41befeae712f3029b650"));
assert(genesis.hashMerkleRoot == uint256S("0x677b0cc3aa49a118484f34bc1b1065e4ecdbd9a895e43d7fcd1c4b74beb492da"));
// Note that of those with the service bits flag, most only support a subset of possible options

View File

@ -38,6 +38,7 @@
#include "common/int-util.h"
#include "hash-ops.h"
#include "oaes_lib.h"
#include "variant2_int_sqrt.h"
#define MEMORY (1 << 21) // 2MB scratchpad
#define ITER (1 << 20)
@ -50,7 +51,7 @@ extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expa
extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);
#define VARIANT1_1(p) \
do if (variant > 0) \
do if (variant == 1) \
{ \
const uint8_t tmp = ((const uint8_t*)(p))[11]; \
static const uint32_t table = 0x75310; \
@ -59,7 +60,7 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp
} while(0)
#define VARIANT1_2(p) \
do if (variant > 0) \
do if (variant == 1) \
{ \
xor64(p, tweak1_2); \
} while(0)
@ -67,7 +68,7 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp
#define VARIANT1_CHECK() \
do if (length < 43) \
{ \
fprintf(stderr, "Cryptonight variants need at least 43 bytes of data"); \
fprintf(stderr, "Cryptonight variant 1 needs at least 43 bytes of data"); \
_exit(1); \
} while(0)
@ -75,7 +76,7 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp
#define VARIANT1_PORTABLE_INIT() \
uint8_t tweak1_2[8]; \
do if (variant > 0) \
do if (variant == 1) \
{ \
VARIANT1_CHECK(); \
memcpy(&tweak1_2, &state.hs.b[192], sizeof(tweak1_2)); \
@ -83,11 +84,135 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp
} while(0)
#define VARIANT1_INIT64() \
if (variant > 0) \
if (variant == 1) \
{ \
VARIANT1_CHECK(); \
} \
const uint64_t tweak1_2 = variant > 0 ? (state.hs.w[24] ^ (*((const uint64_t*)NONCE_POINTER))) : 0
const uint64_t tweak1_2 = (variant == 1) ? (state.hs.w[24] ^ (*((const uint64_t*)NONCE_POINTER))) : 0
#define VARIANT2_INIT64() \
uint64_t division_result = 0; \
uint64_t sqrt_result = 0; \
do if (variant >= 2) \
{ \
U64(b)[2] = state.hs.w[8] ^ state.hs.w[10]; \
U64(b)[3] = state.hs.w[9] ^ state.hs.w[11]; \
division_result = state.hs.w[12]; \
sqrt_result = state.hs.w[13]; \
} while (0)
#define VARIANT2_PORTABLE_INIT() \
uint64_t division_result = 0; \
uint64_t sqrt_result = 0; \
do if (variant >= 2) \
{ \
memcpy(b + AES_BLOCK_SIZE, state.hs.b + 64, AES_BLOCK_SIZE); \
xor64(b + AES_BLOCK_SIZE, state.hs.b + 80); \
xor64(b + AES_BLOCK_SIZE + 8, state.hs.b + 88); \
division_result = state.hs.w[12]; \
sqrt_result = state.hs.w[13]; \
} while (0)
#define VARIANT2_SHUFFLE_ADD_SSE2(base_ptr, offset) \
do if (variant >= 2) \
{ \
const __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \
const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \
const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \
} while (0)
#define VARIANT2_SHUFFLE_ADD_NEON(base_ptr, offset) \
do if (variant >= 2) \
{ \
const uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \
const uint64x2_t chunk2 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x20))); \
const uint64x2_t chunk3 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x30))); \
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x10)), vaddq_u64(chunk3, vreinterpretq_u64_u8(_b1))); \
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x20)), vaddq_u64(chunk1, vreinterpretq_u64_u8(_b))); \
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x30)), vaddq_u64(chunk2, vreinterpretq_u64_u8(_a))); \
} while (0)
#define VARIANT2_PORTABLE_SHUFFLE_ADD(base_ptr, offset) \
do if (variant >= 2) \
{ \
uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \
uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \
uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \
\
const uint64_t chunk1_old[2] = { chunk1[0], chunk1[1] }; \
\
uint64_t b1[2]; \
memcpy(b1, b + 16, 16); \
chunk1[0] = chunk3[0] + b1[0]; \
chunk1[1] = chunk3[1] + b1[1]; \
\
uint64_t a0[2]; \
memcpy(a0, a, 16); \
chunk3[0] = chunk2[0] + a0[0]; \
chunk3[1] = chunk2[1] + a0[1]; \
\
uint64_t b0[2]; \
memcpy(b0, b, 16); \
chunk2[0] = chunk1_old[0] + b0[0]; \
chunk2[1] = chunk1_old[1] + b0[1]; \
} while (0)
#define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \
((uint64_t*)(b))[0] ^= division_result ^ (sqrt_result << 32); \
{ \
const uint64_t dividend = ((uint64_t*)(ptr))[1]; \
const uint32_t divisor = (((uint64_t*)(ptr))[0] + (uint32_t)(sqrt_result << 1)) | 0x80000001UL; \
division_result = ((uint32_t)(dividend / divisor)) + \
(((uint64_t)(dividend % divisor)) << 32); \
} \
const uint64_t sqrt_input = ((uint64_t*)(ptr))[0] + division_result
#define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \
do if (variant >= 2) \
{ \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \
VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \
} while(0)
#if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50)
// double precision floating point type has enough bits of precision on current platform
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
do if (variant >= 2) \
{ \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \
VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \
} while (0)
#else
// double precision floating point type is not good enough on current platform
// fall back to the reference code (integer only)
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
do if (variant >= 2) \
{ \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \
} while (0)
#endif
#define VARIANT2_2_PORTABLE() \
if (variant >= 2) { \
xor_blocks(long_state + (j ^ 0x10), d); \
xor_blocks(d, long_state + (j ^ 0x20)); \
}
#define VARIANT2_2() \
do if (variant >= 2) \
{ \
*U64(hp_state + (j ^ 0x10)) ^= hi; \
*(U64(hp_state + (j ^ 0x10)) + 1) ^= lo; \
hi ^= *U64(hp_state + (j ^ 0x20)); \
lo ^= *(U64(hp_state + (j ^ 0x20)) + 1); \
} while (0)
#if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64)))
// Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI
@ -164,19 +289,23 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp
* This code is based upon an optimized implementation by dga.
*/
#define post_aes() \
VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
_mm_store_si128(R128(c), _c); \
_b = _mm_xor_si128(_b, _c); \
_mm_store_si128(R128(&hp_state[j]), _b); \
_mm_store_si128(R128(&hp_state[j]), _mm_xor_si128(_b, _c)); \
VARIANT1_1(&hp_state[j]); \
j = state_index(c); \
p = U64(&hp_state[j]); \
b[0] = p[0]; b[1] = p[1]; \
VARIANT2_INTEGER_MATH_SSE2(b, c); \
__mul(); \
VARIANT2_2(); \
VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
a[0] += hi; a[1] += lo; \
p = U64(&hp_state[j]); \
p[0] = a[0]; p[1] = a[1]; \
a[0] ^= b[0]; a[1] ^= b[1]; \
VARIANT1_2(p + 1); \
_b1 = _b; \
_b = _c; \
#if defined(_MSC_VER)
@ -309,7 +438,7 @@ STATIC INLINE void aes_256_assist2(__m128i* t1, __m128i * t3)
* CPU AES support.
* For more information about these functions, see page 19 of Intel's AES instructions
* white paper:
* http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-instructions-set-white-paper.pdf
* https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
*
* @param key the input 128 bit key
* @param expandedKey An output buffer to hold the generated key schedule
@ -492,7 +621,7 @@ void slow_hash_allocate_state(void)
MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#else
#if defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || \
defined(__DragonFly__)
defined(__DragonFly__) || defined(__NetBSD__)
hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, 0, 0);
#else
@ -558,7 +687,7 @@ void slow_hash_free_state(void)
* AES support on x86 CPUs.
*
* A diagram of the inner loop of this function can be found at
* http://www.cs.cmu.edu/~dga/crypto/xmr/cryptonight.png
* https://www.cs.cmu.edu/~dga/crypto/xmr/cryptonight.png
*
* @param data the data to hash
* @param length the length in bytes of the data
@ -570,10 +699,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
uint8_t text[INIT_SIZE_BYTE];
RDATA_ALIGN16 uint64_t a[2];
RDATA_ALIGN16 uint64_t b[2];
RDATA_ALIGN16 uint64_t b[4];
RDATA_ALIGN16 uint64_t c[2];
union cn_slow_hash_state state;
__m128i _a, _b, _c;
__m128i _a, _b, _b1, _c;
uint64_t hi, lo;
size_t i, j;
@ -599,6 +728,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
memcpy(text, state.init, INIT_SIZE_BYTE);
VARIANT1_INIT64();
VARIANT2_INIT64();
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
* the 2MB large random access buffer.
@ -637,6 +767,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
*/
_b = _mm_load_si128(R128(b));
_b1 = _mm_load_si128(R128(b) + 1);
// Two independent versions, one with AES, one without, to ensure that
// the useAes test is only performed once, not every iteration.
if(useAes)
@ -761,19 +892,23 @@ union cn_slow_hash_state
_a = vld1q_u8((const uint8_t *)a); \
#define post_aes() \
VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
vst1q_u8((uint8_t *)c, _c); \
_b = veorq_u8(_b, _c); \
vst1q_u8(&hp_state[j], _b); \
vst1q_u8(&hp_state[j], veorq_u8(_b, _c)); \
VARIANT1_1(&hp_state[j]); \
j = state_index(c); \
p = U64(&hp_state[j]); \
b[0] = p[0]; b[1] = p[1]; \
VARIANT2_PORTABLE_INTEGER_MATH(b, c); \
__mul(); \
VARIANT2_2(); \
VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
a[0] += hi; a[1] += lo; \
p = U64(&hp_state[j]); \
p[0] = a[0]; p[1] = a[1]; \
a[0] ^= b[0]; a[1] ^= b[1]; \
VARIANT1_2(p + 1); \
_b1 = _b; \
_b = _c; \
@ -905,17 +1040,44 @@ STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out, const u
}
}
#ifdef FORCE_USE_HEAP
STATIC INLINE void* aligned_malloc(size_t size, size_t align)
{
void *result;
#ifdef _MSC_VER
result = _aligned_malloc(size, align);
#else
if (posix_memalign(&result, align, size)) result = NULL;
#endif
return result;
}
STATIC INLINE void aligned_free(void *ptr)
{
#ifdef _MSC_VER
_aligned_free(ptr);
#else
free(ptr);
#endif
}
#endif /* FORCE_USE_HEAP */
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
{
RDATA_ALIGN16 uint8_t expandedKey[240];
#ifndef FORCE_USE_HEAP
RDATA_ALIGN16 uint8_t hp_state[MEMORY];
#else
uint8_t *hp_state = (uint8_t *)aligned_malloc(MEMORY,16);
#endif
uint8_t text[INIT_SIZE_BYTE];
RDATA_ALIGN16 uint64_t a[2];
RDATA_ALIGN16 uint64_t b[2];
RDATA_ALIGN16 uint64_t b[4];
RDATA_ALIGN16 uint64_t c[2];
union cn_slow_hash_state state;
uint8x16_t _a, _b, _c, zero = {0};
uint8x16_t _a, _b, _b1, _c, zero = {0};
uint64_t hi, lo;
size_t i, j;
@ -936,6 +1098,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
memcpy(text, state.init, INIT_SIZE_BYTE);
VARIANT1_INIT64();
VARIANT2_INIT64();
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
* the 2MB large random access buffer.
@ -959,7 +1122,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
*/
_b = vld1q_u8((const uint8_t *)b);
_b1 = vld1q_u8(((const uint8_t *)b) + AES_BLOCK_SIZE);
for(i = 0; i < ITER / 2; i++)
{
@ -993,6 +1156,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
memcpy(state.init, text, INIT_SIZE_BYTE);
hash_permutation(&state.hs);
extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
#ifdef FORCE_USE_HEAP
aligned_free(hp_state);
#endif
}
#else /* aarch64 && crypto */
@ -1075,6 +1242,11 @@ __asm__ __volatile__(
#endif /* !aarch64 */
#endif // NO_OPTIMIZED_MULTIPLY_ON_ARM
STATIC INLINE void copy_block(uint8_t* dst, const uint8_t* src)
{
memcpy(dst, src, AES_BLOCK_SIZE);
}
STATIC INLINE void sum_half_blocks(uint8_t* a, const uint8_t* b)
{
uint64_t a0, a1, b0, b1;
@ -1109,7 +1281,9 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
{
uint8_t text[INIT_SIZE_BYTE];
uint8_t a[AES_BLOCK_SIZE];
uint8_t b[AES_BLOCK_SIZE];
uint8_t b[AES_BLOCK_SIZE * 2];
uint8_t c[AES_BLOCK_SIZE];
uint8_t c1[AES_BLOCK_SIZE];
uint8_t d[AES_BLOCK_SIZE];
uint8_t aes_key[AES_KEY_SIZE];
RDATA_ALIGN16 uint8_t expandedKey[256];
@ -1127,8 +1301,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
#ifndef FORCE_USE_HEAP
uint8_t long_state[MEMORY];
#else
uint8_t *long_state = NULL;
long_state = (uint8_t *)malloc(MEMORY);
uint8_t *long_state = (uint8_t *)malloc(MEMORY);
#endif
if (prehashed) {
@ -1138,11 +1311,12 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
}
memcpy(text, state.init, INIT_SIZE_BYTE);
VARIANT1_INIT64();
aes_ctx = (oaes_ctx *) oaes_alloc();
oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE);
VARIANT1_INIT64();
VARIANT2_INIT64();
// use aligned data
memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
@ -1163,23 +1337,34 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
#define state_index(x) ((*(uint32_t *) x) & MASK)
// Iteration 1
p = &long_state[state_index(a)];
j = state_index(a);
p = &long_state[j];
aesb_single_round(p, p, a);
copy_block(c1, p);
xor_blocks(b, p);
swap_blocks(b, p);
swap_blocks(a, b);
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
xor_blocks(p, b);
VARIANT1_1(p);
// Iteration 2
p = &long_state[state_index(a)];
j = state_index(c1);
p = &long_state[j];
copy_block(c, p);
mul(a, p, d);
sum_half_blocks(b, d);
swap_blocks(b, p);
xor_blocks(b, p);
swap_blocks(a, b);
VARIANT1_2(U64(p) + 1);
VARIANT2_PORTABLE_INTEGER_MATH(c, c1);
mul(c1, c, d);
VARIANT2_2_PORTABLE();
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
sum_half_blocks(a, d);
swap_blocks(a, c);
xor_blocks(a, c);
VARIANT1_2(U64(c) + 1);
copy_block(p, c);
if (variant >= 2) {
copy_block(b + AES_BLOCK_SIZE, b);
}
copy_block(b, c1);
}
memcpy(text, state.init, INIT_SIZE_BYTE);
@ -1294,12 +1479,18 @@ union cn_slow_hash_state {
#pragma pack(pop)
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed) {
#ifndef FORCE_USE_HEAP
uint8_t long_state[MEMORY];
#else
uint8_t *long_state = (uint8_t *)malloc(MEMORY);
#endif
union cn_slow_hash_state state;
uint8_t text[INIT_SIZE_BYTE];
uint8_t a[AES_BLOCK_SIZE];
uint8_t b[AES_BLOCK_SIZE];
uint8_t c[AES_BLOCK_SIZE];
uint8_t b[AES_BLOCK_SIZE * 2];
uint8_t c1[AES_BLOCK_SIZE];
uint8_t c2[AES_BLOCK_SIZE];
uint8_t d[AES_BLOCK_SIZE];
size_t i, j;
uint8_t aes_key[AES_KEY_SIZE];
@ -1315,6 +1506,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
aes_ctx = (oaes_ctx *) oaes_alloc();
VARIANT1_PORTABLE_INIT();
VARIANT2_PORTABLE_INIT();
oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
@ -1324,9 +1516,9 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
}
for (i = 0; i < 16; i++) {
a[i] = state.k[ i] ^ state.k[32 + i];
b[i] = state.k[16 + i] ^ state.k[48 + i];
for (i = 0; i < AES_BLOCK_SIZE; i++) {
a[i] = state.k[ i] ^ state.k[AES_BLOCK_SIZE * 2 + i];
b[i] = state.k[AES_BLOCK_SIZE + i] ^ state.k[AES_BLOCK_SIZE * 3 + i];
}
for (i = 0; i < ITER / 2; i++) {
@ -1335,26 +1527,33 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
* next address <-+
*/
/* Iteration 1 */
j = e2i(a, MEMORY / AES_BLOCK_SIZE);
copy_block(c, &long_state[j * AES_BLOCK_SIZE]);
aesb_single_round(c, c, a);
xor_blocks(b, c);
swap_blocks(b, c);
copy_block(&long_state[j * AES_BLOCK_SIZE], c);
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE));
swap_blocks(a, b);
VARIANT1_1(&long_state[j * AES_BLOCK_SIZE]);
j = e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
copy_block(c1, &long_state[j]);
aesb_single_round(c1, c1, a);
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
copy_block(&long_state[j], c1);
xor_blocks(&long_state[j], b);
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE);
VARIANT1_1(&long_state[j]);
/* Iteration 2 */
j = e2i(a, MEMORY / AES_BLOCK_SIZE);
copy_block(c, &long_state[j * AES_BLOCK_SIZE]);
mul(a, c, d);
sum_half_blocks(b, d);
swap_blocks(b, c);
xor_blocks(b, c);
VARIANT1_2(c + 8);
copy_block(&long_state[j * AES_BLOCK_SIZE], c);
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE));
swap_blocks(a, b);
j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
copy_block(c2, &long_state[j]);
VARIANT2_PORTABLE_INTEGER_MATH(c2, c1);
mul(c1, c2, d);
VARIANT2_2_PORTABLE();
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
swap_blocks(a, c1);
sum_half_blocks(c1, d);
swap_blocks(c1, c2);
xor_blocks(c1, c2);
VARIANT1_2(c2 + 8);
copy_block(&long_state[j], c2);
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE);
if (variant >= 2) {
copy_block(b + AES_BLOCK_SIZE, b);
}
copy_block(b, a);
copy_block(a, c1);
}
memcpy(text, state.init, INIT_SIZE_BYTE);
@ -1370,6 +1569,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
/*memcpy(hash, &state, 32);*/
extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
oaes_free((OAES_CTX **) &aes_ctx);
#ifdef FORCE_USE_HEAP
free(long_state);
#endif
}
#endif

View File

@ -0,0 +1,163 @@
#ifndef VARIANT2_INT_SQRT_H
#define VARIANT2_INT_SQRT_H
#include <math.h>
#include <float.h>
#define VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2() \
do { \
const __m128i exp_double_bias = _mm_set_epi64x(0, 1023ULL << 52); \
__m128d x = _mm_castsi128_pd(_mm_add_epi64(_mm_cvtsi64_si128(sqrt_input >> 12), exp_double_bias)); \
x = _mm_sqrt_sd(_mm_setzero_pd(), x); \
sqrt_result = (uint64_t)(_mm_cvtsi128_si64(_mm_sub_epi64(_mm_castpd_si128(x), exp_double_bias))) >> 19; \
} while(0)
#define VARIANT2_INTEGER_MATH_SQRT_STEP_FP64() \
do { \
sqrt_result = sqrt(sqrt_input + 18446744073709551616.0) * 2.0 - 8589934592.0; \
} while(0)
#define VARIANT2_INTEGER_MATH_SQRT_STEP_REF() \
sqrt_result = integer_square_root_v2(sqrt_input)
// Reference implementation of the integer square root for Cryptonight variant 2
// Computes integer part of "sqrt(2^64 + n) * 2 - 2^33"
//
// In other words, given 64-bit unsigned integer n:
// 1) Write it as x = 1.NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN000... in binary (1 <= x < 2, all 64 bits of n are used)
// 2) Calculate sqrt(x) = 1.0RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR... (1 <= sqrt(x) < sqrt(2), so it will always start with "1.0" in binary)
// 3) Take 32 bits that come after "1.0" and return them as a 32-bit unsigned integer, discard all remaining bits
//
// Some sample inputs and outputs:
//
// Input | Output | Exact value of "sqrt(2^64 + n) * 2 - 2^33"
// -----------------|------------|-------------------------------------------
// 0 | 0 | 0
// 2^32 | 0 | 0.99999999994179233909330885695244...
// 2^32 + 1 | 1 | 1.0000000001746229827200734316305...
// 2^50 | 262140 | 262140.00012206565608606978175873...
// 2^55 + 20963331 | 8384515 | 8384515.9999999997673963974959744...
// 2^55 + 20963332 | 8384516 | 8384516
// 2^62 + 26599786 | 1013904242 | 1013904242.9999999999479374853545...
// 2^62 + 26599787 | 1013904243 | 1013904243.0000000001561875439364...
// 2^64 - 1 | 3558067407 | 3558067407.9041987696409179931096...
// The reference implementation as it is now uses only unsigned int64 arithmetic, so it can't have undefined behavior
// It was tested once for all edge cases and confirmed correct
static inline uint32_t integer_square_root_v2(uint64_t n)
{
uint64_t r = 1ULL << 63;
for (uint64_t bit = 1ULL << 60; bit; bit >>= 2)
{
const bool b = (n < r + bit);
const uint64_t n_next = n - (r + bit);
const uint64_t r_next = r + bit * 2;
n = b ? n : n_next;
r = b ? r : r_next;
r >>= 1;
}
return r * 2 + ((n > r) ? 1 : 0);
}
/*
VARIANT2_INTEGER_MATH_SQRT_FIXUP checks that "r" is an integer part of "sqrt(2^64 + sqrt_input) * 2 - 2^33" and adds or subtracts 1 if needed
It's hard to understand how it works, so here is a full calculation of formulas used in VARIANT2_INTEGER_MATH_SQRT_FIXUP
The following inequalities must hold for r if it's an integer part of "sqrt(2^64 + sqrt_input) * 2 - 2^33":
1) r <= sqrt(2^64 + sqrt_input) * 2 - 2^33
2) r + 1 > sqrt(2^64 + sqrt_input) * 2 - 2^33
We need to check them using only unsigned integer arithmetic to avoid rounding errors and undefined behavior
First inequality: r <= sqrt(2^64 + sqrt_input) * 2 - 2^33
-----------------------------------------------------------------------------------
r <= sqrt(2^64 + sqrt_input) * 2 - 2^33
r + 2^33 <= sqrt(2^64 + sqrt_input) * 2
r/2 + 2^32 <= sqrt(2^64 + sqrt_input)
(r/2 + 2^32)^2 <= 2^64 + sqrt_input
Rewrite r as r = s * 2 + b (s = trunc(r/2), b is 0 or 1)
((s*2+b)/2 + 2^32)^2 <= 2^64 + sqrt_input
(s*2+b)^2/4 + 2*2^32*(s*2+b)/2 + 2^64 <= 2^64 + sqrt_input
(s*2+b)^2/4 + 2*2^32*(s*2+b)/2 <= sqrt_input
(s*2+b)^2/4 + 2^32*r <= sqrt_input
(s^2*4+2*s*2*b+b^2)/4 + 2^32*r <= sqrt_input
s^2+s*b+b^2/4 + 2^32*r <= sqrt_input
s*(s+b) + b^2/4 + 2^32*r <= sqrt_input
Let r2 = s*(s+b) + r*2^32
r2 + b^2/4 <= sqrt_input
If this inequality doesn't hold, then we must decrement r: IF "r2 + b^2/4 > sqrt_input" THEN r = r - 1
b can be 0 or 1
If b is 0 then we need to compare "r2 > sqrt_input"
If b is 1 then b^2/4 = 0.25, so we need to compare "r2 + 0.25 > sqrt_input"
Since both r2 and sqrt_input are integers, we can safely replace it with "r2 + 1 > sqrt_input"
-----------------------------------------------------------------------------------
Both cases can be merged to a single expression "r2 + b > sqrt_input"
-----------------------------------------------------------------------------------
There will be no overflow when calculating "r2 + b", so it's safe to compare with sqrt_input:
r2 + b = s*(s+b) + r*2^32 + b
The largest value s, b and r can have is s = 1779033703, b = 1, r = 3558067407 when sqrt_input = 2^64 - 1
r2 + b <= 1779033703*1779033704 + 3558067407*2^32 + 1 = 18446744068217447385 < 2^64
Second inequality: r + 1 > sqrt(2^64 + sqrt_input) * 2 - 2^33
-----------------------------------------------------------------------------------
r + 1 > sqrt(2^64 + sqrt_input) * 2 - 2^33
r + 1 + 2^33 > sqrt(2^64 + sqrt_input) * 2
((r+1)/2 + 2^32)^2 > 2^64 + sqrt_input
Rewrite r as r = s * 2 + b (s = trunc(r/2), b is 0 or 1)
((s*2+b+1)/2 + 2^32)^2 > 2^64 + sqrt_input
(s*2+b+1)^2/4 + 2*(s*2+b+1)/2*2^32 + 2^64 > 2^64 + sqrt_input
(s*2+b+1)^2/4 + (s*2+b+1)*2^32 > sqrt_input
(s*2+b+1)^2/4 + (r+1)*2^32 > sqrt_input
(s*2+(b+1))^2/4 + r*2^32 + 2^32 > sqrt_input
(s^2*4+2*s*2*(b+1)+(b+1)^2)/4 + r*2^32 + 2^32 > sqrt_input
s^2+s*(b+1)+(b+1)^2/4 + r*2^32 + 2^32 > sqrt_input
s*(s+b) + s + (b+1)^2/4 + r*2^32 + 2^32 > sqrt_input
Let r2 = s*(s+b) + r*2^32
r2 + s + (b+1)^2/4 + 2^32 > sqrt_input
r2 + 2^32 + (b+1)^2/4 > sqrt_input - s
If this inequality doesn't hold, then we must decrement r: IF "r2 + 2^32 + (b+1)^2/4 <= sqrt_input - s" THEN r = r - 1
b can be 0 or 1
If b is 0 then we need to compare "r2 + 2^32 + 1/4 <= sqrt_input - s" which is equal to "r2 + 2^32 < sqrt_input - s" because all numbers here are integers
If b is 1 then (b+1)^2/4 = 1, so we need to compare "r2 + 2^32 + 1 <= sqrt_input - s" which is also equal to "r2 + 2^32 < sqrt_input - s"
-----------------------------------------------------------------------------------
Both cases can be merged to a single expression "r2 + 2^32 < sqrt_input - s"
-----------------------------------------------------------------------------------
There will be no overflow when calculating "r2 + 2^32":
r2 + 2^32 = s*(s+b) + r*2^32 + 2^32 = s*(s+b) + (r+1)*2^32
The largest value s, b and r can have is s = 1779033703, b = 1, r = 3558067407 when sqrt_input = 2^64 - 1
r2 + b <= 1779033703*1779033704 + 3558067408*2^32 = 18446744072512414680 < 2^64
There will be no integer overflow when calculating "sqrt_input - s", i.e. "sqrt_input >= s" at all times:
s = trunc(r/2) = trunc(sqrt(2^64 + sqrt_input) - 2^32) < sqrt(2^64 + sqrt_input) - 2^32 + 1
sqrt_input > sqrt(2^64 + sqrt_input) - 2^32 + 1
sqrt_input + 2^32 - 1 > sqrt(2^64 + sqrt_input)
(sqrt_input + 2^32 - 1)^2 > sqrt_input + 2^64
sqrt_input^2 + 2*sqrt_input*(2^32 - 1) + (2^32-1)^2 > sqrt_input + 2^64
sqrt_input^2 + sqrt_input*(2^33 - 2) + (2^32-1)^2 > sqrt_input + 2^64
sqrt_input^2 + sqrt_input*(2^33 - 3) + (2^32-1)^2 > 2^64
sqrt_input^2 + sqrt_input*(2^33 - 3) + 2^64-2^33+1 > 2^64
sqrt_input^2 + sqrt_input*(2^33 - 3) - 2^33 + 1 > 0
This inequality is true if sqrt_input > 1 and it's easy to check that s = 0 if sqrt_input is 0 or 1, so there will be no integer overflow
*/
#define VARIANT2_INTEGER_MATH_SQRT_FIXUP(r) \
do { \
const uint64_t s = r >> 1; \
const uint64_t b = r & 1; \
const uint64_t r2 = (uint64_t)(s) * (s + b) + (r << 32); \
r += ((r2 + b > sqrt_input) ? -1 : 0) + ((r2 + (1ULL << 32) < sqrt_input - s) ? 1 : 0); \
} while(0)
#endif

View File

@ -23,8 +23,7 @@ uint256 CBlockHeader::GetHash() const
uint256 CBlockHeader::GetPoWHash() const
{
uint256 thash;
//scrypt_1024_1_1_256(BEGIN(nVersion), BEGIN(thash));
cn_slow_hash(BEGIN(nVersion), 80, BEGIN(thash), 1, 0);
cn_slow_hash(BEGIN(nVersion), 80, BEGIN(thash), 2, 0);
return thash;
}